5 research outputs found

    MCS-IOV : Real-time I/o virtualization for mixed-criticality systems

    Get PDF
    In mixed-criticality systems, timely handling of I/O is a key for the system being successfully implemented and functioning appropriately. The criticality levels of functions and sometimes the whole system are often dependent on the state of the I/O. An I/O system for a MCS must provide simultaneously isolation/separation, performance/efficiency and timing-predictability, as well as being able to manage I/O resource in an adaptive manner to facilitate efficient yet safe resource sharing among components of different criticality levels. Existing approaches cannot achieve all of these requirements simultaneously. This paper presents a MCS I/O management framework, termed MCS-IOV. MCS-IOV is based on hardware assisted virtualisation, which provides temporal and spatial isolation and prohibits fault propagation with small extra overhead in performance. MCS-IOV extends a real-time I/O virtualisation system, by supporting the concept of mixed criticalities and customised interfaces for schedulers, which offers good timing-preditability. MCS-IOV supports I/O driven criticality mode switch (the mode switch can be triggered by detection of unexpected I/O behaviors, e.g., a higher I/O utilization than expected) and timely I/O resource reconfiguration up on that. Finally, We evaluated and demonstrate MCS-IOV in different aspects

    Time synchronization for an emulated CAN device on a Multi-Processor System on Chip

    Get PDF
    The increasing number of applications implemented on modern vehicles leads to the use of multi-core platforms in the automotive field. As the number of I/O interfaces offered by these platforms is typically lower than the number of integrated applications, a solution is needed to provide access to the peripherals, such as the Controller Area Network (CAN), to all applications. Emulation and virtualization can be used to implement and share a CAN bus among multiple applications. Furthermore, cyber-physical automotive applications often require time synchronization. A time synchronization protocol on CAN has been recently introduced by AUTOSAR. In this article we present how multiple applications can share a CAN port, which can be on the local processor tile or on a remote tile. Each application can access a local time base, synchronized over CAN, using the AUTOSAR Application Programming Interface (API). We evaluate our approach with four emulation and virtualization examples, trading the number of applications per core with the speed of the software emulated CAN bus.</p

    Demystifying Internet of Things Security

    Get PDF
    Break down the misconceptions of the Internet of Things by examining the different security building blocks available in Intel Architecture (IA) based IoT platforms. This open access book reviews the threat pyramid, secure boot, chain of trust, and the SW stack leading up to defense-in-depth. The IoT presents unique challenges in implementing security and Intel has both CPU and Isolated Security Engine capabilities to simplify it. This book explores the challenges to secure these devices to make them immune to different threats originating from within and outside the network. The requirements and robustness rules to protect the assets vary greatly and there is no single blanket solution approach to implement security. Demystifying Internet of Things Security provides clarity to industry professionals and provides and overview of different security solutions What You'll Learn Secure devices, immunizing them against different threats originating from inside and outside the network Gather an overview of the different security building blocks available in Intel Architecture (IA) based IoT platforms Understand the threat pyramid, secure boot, chain of trust, and the software stack leading up to defense-in-depth Who This Book Is For Strategists, developers, architects, and managers in the embedded and Internet of Things (IoT) space trying to understand and implement the security in the IoT devices/platforms

    COMBINING HARDWARE MANAGEMENT WITH MIXED-CRITICALITY PROVISIONING IN MULTICORE REAL-TIME SYSTEMS

    Get PDF
    Safety-critical applications in cyber-physical domains such as avionics and automotive systems require strict timing constraints because loss of life or severe financial repercussions may occur if they fail to produce correct outputs at the right moment. We call such systems “real-time systems.” When designing a real-time system, a multicore platform would be desirable to use because such platforms have advantages in size, weight, and power constraints, especially in embedded systems. However, the multicore revolution is having limited impact in safety-critical application domains. A key reason is the “one-out-of-m” problem: when validating real-time constraints on an m-core platform, excessive analysis pessimism can effectively negate the processing capacity of the additional m-1 cores so that only “one core’s worth” of capacity is available. The root of this problem is that shared hardware resources are not predictably managed. Two approaches have been investigated previously to address this problem: mixed-criticality analysis, which provision less-critical software components less pessimistically, and hardware-management techniques, which make the underlying platform itself more predictable. The goal of the research presented in this dissertation is to combine both approaches to reduce the capacity loss caused by contention for shared hardware resources in multicore platforms. Towards that goal, fundamentally new criticality-cognizant hardware-management tradeoffs must be explored. Such tradeoffs are investigated in the context of a new variant of a mixed-criticality framework, called MC2, that supports configurable criticality-based hardware management. This framework allows specific DRAM banks and areas of the last-level cache to be allocated to certain groups of tasks to provide criticality-aware isolation. MC2 is further extended to support the sharing of memory locations, which is required to realize the ability to support real-world workloads. We evaluate the impact of combining mixed-criticality provisioning and hardware-management techniques with both micro-benchmark experiments and schedulability studies. In our micro-benchmark experiments, we evaluate each hardware-management technique and consider tradeoffs that arise when applying them together. The effectiveness of the overall framework in resolving such tradeoffs is investigated via largescale overhead-aware schedulability studies. Our results demonstrate that mixed-criticality analysis and hardware-management techniques can be much more effective when applied together instead of alone.Doctor of Philosoph
    corecore