

Time synchronization for an emulated CAN device on a Multi-
Processor System on Chip
Citation for published version (APA):
Breaban, G., Koedam, M., Stuijk, S., & Goossens, K. G. W. (2017). Time synchronization for an emulated CAN
device on a Multi-Processor System on Chip. Microprocessors and Microsystems, 52, 523-533.
https://doi.org/10.1016/j.micpro.2017.04.019

Document license:
TAVERNE

DOI:
10.1016/j.micpro.2017.04.019

Document status and date:
Published: 01/07/2017

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://doi.org/10.1016/j.micpro.2017.04.019
https://doi.org/10.1016/j.micpro.2017.04.019
https://research.tue.nl/en/publications/a52a4136-4317-4a2b-ba8a-46fdf99ce9bb

Microprocessors and Microsystems 52 (2017) 523–533

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Time synchronization for an emulated CAN device on a

Multi-Processor System on Chip

Gabriela Breaban

a , ∗, Martijn Koedam

a , Sander Stuijk

a , Kees Goossens a , b

a Eindhoven University of Technology, The Netherlands
b Topic Embedded Products, The Netherlands

a r t i c l e i n f o

Article history:

Received 22 January 2017

Revised 5 April 2017

Accepted 28 April 2017

Available online 19 May 2017

a b s t r a c t

The increasing number of applications implemented on modern vehicles leads to the use of multi-core

platforms in the automotive field. As the number of I/O interfaces offered by these platforms is typically

lower than the number of integrated applications, a solution is needed to provide access to the periph-

erals, such as the Controller Area Network (CAN), to all applications. Emulation and virtualization can be

used to implement and share a CAN bus among multiple applications. Furthermore, cyber-physical au-

tomotive applications often require time synchronization. A time synchronization protocol on CAN has

been recently introduced by AUTOSAR.

In this article we present how multiple applications can share a CAN port, which can be on the local

processor tile or on a remote tile. Each application can access a local time base, synchronized over CAN,

using the AUTOSAR Application Programming Interface (API). We evaluate our approach with four em-

ulation and virtualization examples, trading the number of applications per core with the speed of the

software emulated CAN bus.

© 2017 Elsevier B.V. All rights reserved.

1

t

e

t

p

o

q

f

c

a

t

t

t

h

i

c

K

i

f

i

a

e

i

r

f

w

C

a

c

w

s

s

w

e

h

0

. Introduction

The limited scalability of single-core ECUs in conjunction with

he increasing number of functionalities being integrated in mod-

rn vehicles leads to a shift towards a domain controlled architec-

ure in the automotive field. This consists of consolidating multi-

le software functionalities on the same hardware platform based

n their domain [16] and it leads to increased computational re-

uirements. To cope with this demand, the use of multi-core plat-

orms has been proposed in literature [16] . Multi-core platforms

an come as either Commercial-Off-The-Shelf (COTS) platforms or

s Multi-Processor Systems on Chip (MPSoCs).

A COTS platform features a given number of cores and I/O in-

erfaces. Since the number of I/O interfaces is typically lower than

he number of applications requiring them, when integrating mul-

iple software applications on such a platform, the given resources

ave to be shared between applications such that each one meets

ts requirements in terms of real-time capabilities, safety, and se-

urity.
∗ Corresponding author.

E-mail addresses: g.breaban@tue.nl (G. Breaban), m.l.p.j.koedam@tue.nl (M.

oedam), s.stuijk@tue.nl (S. Stuijk), k.g.w.goossens@tue.nl (K. Goossens).

s

s

o

l

ttp://dx.doi.org/10.1016/j.micpro.2017.04.019

141-9331/© 2017 Elsevier B.V. All rights reserved.
The implementation of the protocol governing an I/O interface

s usually done in hardware and therefore, sharing the I/O inter-

ace translates into sharing the hardware controller that drives the

nterface. When sharing a resource among applications with strict

nd diverse requirements, as in automotive, an important prop-

rty of the sharing method is isolation. Isolated resource sharing

s equivalent to virtualization and it means dividing the physical

esource into multiple separate virtual resources that don’t inter-

ere and allocating each one to an application. On the other hand,

hen deciding the I/O interfaces for a Multi-Processor System on

hip (MPSoC), one can choose to include a hardware controller

nd search for virtualization solutions, or, as an alternative, a given

ommunication service can be obtained by implementing it in soft-

are on top of an existing interface. We call the latter solution

oftware emulation . The emulated interface can then be further

hared through virtualization.

Since the automotive industry currently only uses COTS hard-

are platforms that typically include CAN controllers, a consid-

rable amount of research focuses on virtualization solutions for

uch systems. To the best of our knowledge, the possibility of de-

igning a CAN interface on a MPSoC platform that scales depending

n the number of applications and cores has not been addressed in

iterature.

http://dx.doi.org/10.1016/j.micpro.2017.04.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2017.04.019&domain=pdf
mailto:g.breaban@tue.nl
mailto:m.l.p.j.koedam@tue.nl
mailto:s.stuijk@tue.nl
mailto:k.g.w.goossens@tue.nl
http://dx.doi.org/10.1016/j.micpro.2017.04.019

524 G. Breaban et al. / Microprocessors and Microsystems 52 (2017) 523–533

t

s

l

R

r

t

n

a

c

w

t

m

t

a

m

s

t

b

w

a

n

a

t

v

t

f

t

i

p

t

r

t

s

i

s

(

w

C

o

n

t

O

c

3

3

t

f

p

b

o

u

r

4. The bit rate of the CAN bus
In terms of virtualization, the latest proposed methods in au-

tomotive systems are inspired by server environments where Vir-

tual Machines (VMs) define an isolated set of resources [6] . Con-

sequently, since the mostly used network in server environments

is Ethernet, the virtualization methods for the CAN interface are

derived from state-of-the-art techniques used for the Ethernet in-

terface [9] . Virtual platforms have been introduced for isolating re-

sources on a multi-processor platform and allocating them to indi-

vidual applications [8] .

In terms of software emulation, the CAN interface has been

build on top of specific hardware architectures such as the Time

Triggered Architecture (TTA) [11] . However, this solution targets

non-critical non-real-time CAN applications and it does not ad-

dress the problem of providing isolated CAN interfaces to multiple

applications integrated on the same platform.

Time synchronization is used for distributed cyber-physical ap-

plications running on different processing nodes that require a

global notion of time. Global time is needed either for synchro-

nized actions (e.g. sensor reads, actuator triggers) or for access-

ing absolute time (e.g. Global Positioning System (GPS), Coordi-

nated Universal Time (UTC), Temps Atomique International (TAI))

to perform sensor data fusion, event data recording, etc. Time syn-

chronization can be obtained by exchanging messages between a

predefined master and slave, after which the slave corrects its lo-

cal clock. The most well known time synchronization protocols are

Network Time Protocol (NTP) and Precision Time Protocol (PTP). In

automotive, AUTOSAR recently introduced, as of release 4.2.2, sim-

plified versions of the PTP protocol for the CAN, Flexray and auto-

motive Ethernet networks.

In this paper we evaluate four different emulation and virtual-

ization solutions as examples of a general method that provide a

trade-off between the number of applications sharing a CAN port,

which can be on the local or a remote processor tile, with the

speed of the software emulated CAN bus. This offers to the user

the possibility of choosing a different im plementation depending

on the number of applications being integrated on the platform

and also the desired CAN bit rate. Our prototype enforces full tem-

poral isolation and offers spatial isolation that is yet to be enforced

in hardware. Hence, this impacts the degree of safety criticality

that can be supported on our prototype. Our software CAN con-

troller achieves bit rates between 1 and 100 kbit/s in the exper-

iments done on our 5 Microblaze processor platform synthesized

on the Xilinx ML605 Field-Programmable Gate Array (FPGA). The

CAN user applications can also access a local time base, synchro-

nized over CAN using the AUTOSAR CAN time synchronization pro-

tocol.

The paper is structured as follows: Section 2 presents the

related work, Section 3 gives an overview of the proposed

method, Sections 5 and 6 describe its implementation, and finally

Section 8 concludes the paper.

2. Related work

Herber et al. propose software CAN controller virtualization

methods inspired from server environments [9] . The software

method consists of paravirtualization. However, the presented re-

sults show the performance of the method only in an interference-

free scenario. Moreover, to avoid an increase of the performance

overhead involved by scheduling, only one VM was mapped to

each core, leading to a limited scalability. As a comparison, in one

of our four solutions we also use a dedicated core as a CAN gate-

way. The main differences are that we use the CoMik microker-

nel [13] to schedule multiple applications on the CAN client cores

and communicate the CAN message to the CAN gateway using C-

HEAP FIFOs [14] via a contention-free Network on Chip (NoC). The

C-HEAP protocol ensures a safe synchronous communication. On
he CAN gateway core, the arbitration between the incoming mes-

ages is done using a round-robin schedule.

To reduce the performance overhead, Sander et al. offer the so-

ution of hardware controller virtualization [17] , based on Single

oot I/O virtualization (SR-IOV). SR-IOV is an extension of the Pe-

ipheral Component Interconnect Express (PCIe) protocol and it is

he state-of-the-art hardware I/O virtualization method for Ether-

et. The implementation is done by extending a CAN controller to

dd virtualization support and connecting it to a multi-core pro-

essor via a PCIe interface. Unlike the software method, the hard-

are one has the downside that the PCIe interconnect affects the

emporal isolation between the serviced VMs leading to a perfor-

ance degradation. This is caused by the fact that all VMs share

he same interconnect and the contention on the bus cannot be

voided. In comparison, our solution does not target the enhance-

ent of existing COTS platforms. It rather proposes a combined

oftware and hardware design method for a platform based on a

emplate hardware architecture, whose instance could afterwards

e taped out for a specific automotive system.

An orthogonal approach from Herber et al. introduces CAN net-

ork virtualization [10] . The method is implemented in hardware

nd it divides a physical network into multiple virtually isolated

etworks of different priorities. CAN nodes are then allocated to

 certain network based on their criticality. Our method does not

arget the virtualization of a CAN network, but the emulation and

irtualization of a CAN controller.

In terms of emulation, the CAN interface has been integrated in

he TTA architecture by implementing it on top of the TTP/C inter-

ace [15] . Apart from providing the functionality of the CAN pro-

ocol, the emulated CAN adds new services such as membership

nformation, global time, temporal composability and increased de-

endability. The reported implementation uses the embedded real-

ime Linux operating system to integrate CAN applications and

eal-time applications. However, the CAN applications are allocated

o the non-real-time part of the kernel and are competing with

tandard Linux applications for resources. In our case, we do not

mplement the CAN protocol on top of another protocol, but we

imply lift the implementation of the CAN Media Access Control

MAC) layer from the hardware to the software on top of a hard-

are module that realizes the CAN physical layer and use the

oMik microkernel to schedule real-time CAN applications.

In terms of time synchronization in in-car networks, Lim et al.

ffer an evaluation of IEEE 802.1AS standard for switched Ether-

et [12] . The authors measured the peer propagation delay and

he synchronization error in daisy-chain based topology using the

MNeT ++ simulation environment. Our work evaluates the syn-

hronization accuracy for the CAN bus using our MPSoC prototype.

. Design alternatives for CAN emulation and virtualization

.1. Overview

In the context of automotive applications, we propose a method

o design a CAN interface on a MPSoC that consists of defining dif-

erent platform configurations that trade-off the number of sup-

orted applications and CAN ports with the bit rate of the CAN

us. The MPSoC platform consists of a set of processor tiles, each

ne embedding a processor, the local memories and the CAN mod-

les. Each CAN module provides a CAN port. The main design pa-

ameters that we vary are:

1. The number of applications sharing each processor

2. The number of CAN ports per processor tile

3. The number of applications sharing a CAN port

G. Breaban et al. / Microprocessors and Microsystems 52 (2017) 523–533 525

Table 1

Virtualization and emulation platform configurations.

Configuration E 1 E 2 V 1 V 2

CAN Bus Baud rate [kbit/s] 4 2 2 100

(applications + controllers) per core Cores 1-4 Cores 1-4 Cores 1-4 Cores 1-3 Cores 4

1 + 1 2 + 2 2 + 1 2 + 0 0 + 1

CAN ports per tile Tiles 1-4 Tiles 1-4 Tiles 1-4 Tiles 1-3 Tiles 4

1 2 1 0 1

Fig. 1. CAN configuration E2 - system architecture of a tile.

f

d

r

t

s

d

m

t

l

a

i

i

d

w

p

v

o

n

s

w

a

t

t

n

e

3

v

t

p

E

w

s

p

s

t

t

c

c

i

h

w

w

t

g

t

p

f

v

l

3

t

a

w

r

o

t

v

d

C

i

3

n

m

s

t

d

b

c

b

i

u

3

c

o

s

E

c

w
The CAN parameters (bit rate and number of ports) are used

or hardware synthesis, while the others are part of the software

esign. Table 1 gives an overview of the exact values of the pa-

ameters for each of the four example configurations.

Each configuration ensures a complete temporal isolation be-

ween applications. Spatial isolation is logically ensured in the

ense that each application gets assigned its own stack, heap and

ata memory, but the proposed configurations do not include a

emory protection unit to enforce this separation.

Each CAN port is connected to an individual hardware module

hat implements the physical layer of the CAN protocol. The MAC

ayer is implemented in software. We refer to this implementation

s a software emulated CAN device since it achieves the functional-

ty of a hardware CAN device in software. Further, if the CAN port

s to be used by multiple applications such that the integrity of the

ata sent and received on CAN by each one of them is not affected,

e say that the CAN device is virtualized .

Given the design parameters presented above, we defined four

latform configurations: two configurations for which the CAN de-

ice is emulated but not virtualized, denoted E 1 and E 2 and two

thers for which the CAN device is emulated and virtualized, de-

oted V 1 and V 2 . E 1 and E 2 differ on whether the processor is

hared between multiple applications or not. V 1 and V 2 differ on

hether the emulated CAN device shares the processor with other

pplications or not. As the CAN device is implemented in software,

he maximum achievable bit rate in each case depends on whether

he processor on which it runs is shared with other applications or

ot.

In the remainder of this section we will describe and evaluate

ach of the four configurations.

.2. Platform configuration E 1

This configuration is the simplest one, in the sense that the

alue of each of the design parameters mentioned above is equal

o 1. We have one application on each processor using a local CAN

ort. The bit rate of the CAN bus is 4 kbit/s.

We will refer to Fig. 1 to describe the system architecture of

 1 and E 2 , as they have a similar structure. This configuration as

ell as the other ones, comprises four processor tiles. The figure

hows the tile architecture for the case in which we have two ap-

lications and two controllers running on a processor. For E 1 , the

tructure is the same, only that it has one application and one con-
roller. On the software side, we can see that the sequence of func-

ion calls starts from the application layer, where the message is

reated. Then the AUTOSAR driver API [1] is called, that further

alls a version of the C-Heap library to safely transfer the message

nto the controller’s buffer. Finally the controller accesses the CAN

ardware module to transmit the message. On the bottom soft-

are layer, the CoMik microkernel creates the TDM partitions in

hich the tasks (application and controller) can run without in-

erference. Further details about the software implementation are

iven in Section 5 .

The main advantages of this configuration are the spatial isola-

ion between applications, as they are mapped one-to-one to the

rocessor cores and the use of the local data memory on the tile

or the communication between the application and the CAN de-

ice, which implies a low timing overhead. The disadvantage is the

ow scalability in terms of number of supported applications.

.3. Platform configuration E 2

In this configuration, we increase both the number of applica-

ions and CAN ports per core to two, such that each application

ccesses its own emulated CAN device. Since the number of soft-

are entities running on the same processor is higher, the CAN bit

ate decreases to 2 kbit/s.

The advantages of this configuration are the increased number

f applications running on each core, the physical isolation be-

ween the CAN ports used by each application and, as in the pre-

ious case, the use of the local memory for the application to CAN

evice communication. The number of increased applications and

AN ports come at the expense of the reduced CAN bit rate, and,

mplicitly, extra area for the second CAN module.

.4. Platform configuration V 1

Configuration V 1 is similar to E 1 , the main difference is that the

umber of applications running on each core is equal to two. This

eans that the emulated CAN device and the port that it drives is

hared between the two applications. Each application has its own

ransmit and receive buffer and the arbitration between them is

one in software based on the message ID. The bit rate of the CAN

us is 2 kbit/s. Fig. 2 illustrates the system architecture for this

ase. The multiplexer inside the CAN controller symbolizes the ID-

ased arbitration.

Compared to E 1 , the main advantage of this configuration is the

mproved scalability of the CAN device. This comes at the price of

sing the same physical CAN port for all applications on the core.

.5. Platform configuration V 2

Configuration V 2 differs more from the previous ones. In this

ase, we use a dedicated core to implement a CAN device, which

perates as a CAN gateway at 100 kbit/s bit rate. As this core is not

hared with other applications, the CAN controller runs bare-metal.

ach of the other cores runs two applications. To send and re-

eive CAN messages, the cores use the NoC for the communication

ith the dedicated CAN core. Each CAN application has a separate

526 G. Breaban et al. / Microprocessors and Microsystems 52 (2017) 523–533

Fig. 2. CAN configuration V1 - system architecture of a tile.

Fig. 3. CAN configuration V2 - using one tile as a CAN gateway.

Fig. 4. Time synchronization over CAN.

m

t

f

d

o

n

r

b

c

m

b

s

i

T

b

g

l

c

F

p

c

i

o

o

i

p

b

t

t

m

W

i

a

s

5

a

b

f

t

e
transmit and receive FIFO. Moreover, the Daelite NoC [18] provides

contention-free communication; therefore the message communi-

cation time is predictable and bounded and it can be used to offer

timing guarantees for the end-to-end transmission and reception

of the messages to be sent over the CAN bus.

Fig. 3 illustrates the system architecture for this configuration.

For simplicity, the arrows illustrate the sequence of function calls

only for the transmission of messages from the applications to the

gateway through the NoC.

4. Time synchronization on the CAN network

Starting with the release 4.2.2, AUTOSAR introduced specifica-

tions for time synchronization on the CAN network [2,3] . This sec-

tion presents the time synchronization concepts according to the

AUTOSAR specifications.

AUTOSAR defines 16 synchronized time bases and 16 offset time

bases for the CAN [2] . A time base is a unique source of time that

has its own progression rate, ownership and reference to the phys-

ical world. An offset time base is statically linked to a certain time

base. Offset time bases were defined for large systems that require

more than 16 time bases. A time base can be absolute (e.g. GPS)

or relative. Relative time bases are used in automotive to track rel-

ative amounts of time, such as the operating time of the vehicle

or of the ECU. A time hierarchy is formed by the distribution of a

time base over different network segments via time gateways.

The time synchronization protocol for the CAN network is a

simplified version of the PTP protocol [5]. The PTP protocol con-

sists of four messages exchanged between the time master and the

time slave. First, the master sends a SYNC message containing an

estimate of the current time, then it sends a Follow Up (FUP) mes-

sage containing a precise value of the current time, taken as close

as possible to the physical network layer. In the second part, the

slave sends a Delay Request message to which the master replies

with a Delay Response message containing the receipt time of the

Delay Request message. Based on these exchanged messages, the

slave estimates the master-slave link delay and computes the off-

set. The computed offset is then used to correct the local clock.

For the CAN network, the time synchronization protocol is re-

duced to the first part of PTP, that is, only the SYNC and the FUP
essages are being used. PTP can use several communication pro-

ocols such as Ethernet, PROFINET, UDP, etc. One fundamental dif-

erence between PTP and CAN Time Synchronization is that PTP

oes not rely on a MAC level means to detect the correct reception

f a message at the slave side during its transmission. For Ether-

et, when a collision happens on the bus, the sender backs off and

etransmits the message later. Acknowledgement mechanisms can

e added by using a high level protocol, such as TCP/IP, to indi-

ate that the slave correctly received the message. Instead, a CAN

essage includes an acknowledgment field in the message, driven

y the slave, by which the master can detect whether the mes-

age was correctly received. For PTP, the local time at the slave

s computed from the transmitted timestamps and the link delay.

he time synchronization on CAN, on the other hand, relies on the

it timing which is designed to compensate for the signal propa-

ation time for the longest link in the network. Thus, the link de-

ay doesn’t have to be computed by the slave through bidirectional

ommunication, as in the case of PTP.

Let us describe the CAN synchronization steps in more detail.

ig. 4 shows the details of the protocol. The synchronization occurs

eriodically, with a predefined period. At the beginning of the syn-

hronization period, the time master reads the current local time

n both standard format (t 0 , represented in seconds and nanosec-

nds) and raw format (t 0r in nanoseconds) and includes the sec-

nds portion of the standard format (32 least significant bits, s(t 0))

n the SYNC message. When the SYNC message has been com-

letely transmitted, the master records the difference in raw time

etween the current raw time (t 1r) and the SYNC message times-

amp (t 0r): t 4r = t 1r - t 0r and any seconds overflow (OVS) while

he slave records the reception time in raw format (t 2r). Next, the

aster sends the recorded raw time difference in the FUP message.

hen receiving the FUP message, the slave records the difference

n raw time between the reception time of the FUP message (t 3r),

nd the reception time of the previous SYNC message. Finally, the

lave computes the synchronized local time as follows:

N ewT ime.nanoseconds = (t 3 r − t 2 r + t 4 r)%10

9

N ewT ime.seconds = s (t 0) + O V S + (t 3 r − t 2 r + t 4 r) / 10

9

. Implementation of the CAN device

We have implemented the physical layer of the CAN interface

s a hardware module. This module functions as a bidirectional

ridge, receiving on one side the data to be transmitted on CAN

rom the Microblaze processor and on the other side putting it on

he CAN port. The module can be instantiated multiple times on

ach processor tile and the resulting CAN line is a wired AND be-

G. Breaban et al. / Microprocessors and Microsystems 52 (2017) 523–533 527

t

q

a

f

c

t

5

g

t

i

s

e

C

c

T

t

h

d

5

C

g

t

o

k

p

a

c

v

m

f

I

t

a

p

a

i

t

c

C

T

w

t

t

1

s

T

o

c

R

C

t

c

Fig. 5. Timing diagram for configuration E 1 - emulated CAN on top of CoMik.

Fig. 6. CAN bit timing on CompSoC.

s

c

u

i

t

s

s

H

i

a

t

C

t

t

p

s

c

p

t

e

o

a

t

s

b

m

t

i

w

i

m

t

5

t
ween all the CAN ports present on the platform. The CAN bit fre-

uency is obtained by dividing the processor clock frequency with

 constant value. All the tiles run synchronously at the same clock

requency. In the remainder of this article we use the term syn-

hronous to refer to a platform that includes a single clock oscilla-

or, which feeds all the hardware components instantiated on it.

.1. Software emulation of the CAN controller

The CAN MAC layer was implemented in software in the C pro-

ramming language and it consists of creating the CAN frame in

he 2.0A format, as defined by the ISO 11898 standard [4] , includ-

ng bit stuffing, CRC computation and filtering of the received mes-

ages. We call the software implementation of the CAN MAC layer

mulation since it acts as a CAN controller, which transmits the

AN frames sent by the application and returns back to it the re-

eived frames according to the configuration of the reception filter.

o ensure a safe transfer of the data between the application and

he controller, a simplified version of C-Heap is used. Further, we

ave implemented the driver API according to the AUTOSAR stan-

ard.

.2. Implementing a CAN controller on the virtual processor

We will first present the design concept for a synchronous

ompSoC platform in which the clock skew and jitter are negli-

ible. Then we will explain the modifications needed to tolerate

hese deviations.

To be able to run the software CAN controller together with

ther applications on the same processor, we use the CoMik micro-

ernel. CoMik divides the physical processor into multiple virtual

rocessors scheduled in TDM fashion. Each virtual processor gets

 fraction of the processor capacity based on the number of allo-

ated TDM slots and it is fully temporally isolated from the other

irtual processors. The TDM table duration determines the maxi-

um sustainable CAN bit rate, as the software controller has to be

ast enough to write or read every CAN bit in its allocated slot.

Each software controller accesses a unique physical CAN port.

n order to provide CAN access to multiple applications, we need

o either instantiate in hardware the same number of CAN ports

s the number of applications, or share a lower number of CAN

orts. Both options imply creating a TDM table that accommodates

ll the applications and their software CAN controllers, and defin-

ng the maximum CAN bit rate based on the maximum delay be-

ween two successive allocated TDM slots allocated to the same

ontroller, among all controllers. Thus, in this case, the minimum

AN bit duration, T bit min
is:

 bit min
= max

0 <i ≤N
{ max

0 < j< 2 ·M i

(t i j+1
− t i j) } (1)

here N refers to the total number of CAN controllers running on

he platform, M i represents the number of TDM slots allocated to

he controller i and t i j , t i j+1
denote the start time of slots j and j +

 of controller i . To detect the maximum delay between any two

uccessive slots of controller i , we need to consider two successive

DM frames, which is why the upper bound for the second max

perator is 2 · M i . Hence, the maximum CAN bit rate, R max for this

ase is:

 max =

1

T bit min

(2)

Fig. 5 shows the TDM schedule for configuration E 1 and the

AN signals. A TDM frame consists of two slots, one allocated

o the application and one to the CAN controller. Each TDM slot

ontains a CoMik sub-slot and a partition sub-slot. In the CoMik
ub-slot the context switch operations are performed. The appli-

ation and CAN driver each run in partition sub-slot. In the fig-

re, the maximum delay between any two consecutive CAN slots

s two slots and the chosen CAN bit period, T bit is higher than

he minimum (two slots) and it is equal to three slots. We can

ee that applications 1 and 2 write a transmit message in corre-

ponding buffers at times t wrMsg1 and t wrMsg2 respectively. The C-

eap library is not shown in the figure for the sake of simplic-

ty. Each CAN controller detects the message in the following slot,

t times t startMsg1 and t startMsg2 respectively and it starts to drive

he allocated CAN output port immediately. The resulting CAN line,

AN_IN changes at the start of every CAN bit period and it reflects

he result of all the CAN output lines on the platform. All CAN con-

rollers synchronize with the CAN bus at the beginning of each bit

eriod, T bit . When the controller is shared, as in configuration V 1 ,

eparate buffers are allocated to each client application and the in-

oming messages are arbitrated based on their IDs.

Driving the CAN bus at any point within the bit period works

roperly in a synchronous platform in which the skew and jitter of

he different processor tiles are low enough to be ignored. How-

ver, substantial skew and jitter can lead to incorrect functioning

f the bus since the writing and reading of the bus values within

 bit period would not be always synchronized among the tiles. To

olerate clock substantial jitter, we set the writing point and the

ampling point as far as possible from each other, that is half CAN

it period apart, as seen in Fig. 6 . For this the CoMik TDM table

ust be aligned with the CAN bit period on each processor tile and

he slot for the CAN controller is allocated such that the controller

s running when the middle of the CAN bit period is reached. Thus,

e will only have one CAN controller slot per TDM table. This will

mpact the design space choices, as we can no longer make use of

ore than one CAN port per tile. We return to clock synchroniza-

ion below.

.3. Bare-metal implementation of the CAN controller

Configuration V 2 illustrates the possibility of allocating the en-

ire processor to the CAN controller. Fig. 7 shows the stages of

528 G. Breaban et al. / Microprocessors and Microsystems 52 (2017) 523–533

Fig. 7. Timing diagram for configuration V 2 - bare-metal implementation of the

CAN controller and the communication of CAN messages via NoC.

Fig. 8. CAN bit timing.

Fig. 9. Clock skew.

Fig. 10. Clock jitter.

Fig. 11. Clock drift.

t

e

P

i

p

s

T

b

C

e

i

F

s

t

s

i

T

i

c

a

a

l

o

F

q

t

c

e

s

n

e

m
sending a CAN message from the moment the application creates

it, t wrMsg1 until its transmission starts on the CAN output line,

CAN_OUT. As mentioned before, we use the C-HEAP library to send

the CAN messages across the NoC. Each sending application has its

own FIFO transmit buffer in the local memory of the CAN gateway

tile. A FIFO contains a number of predefined data tokens. In our

case, a token is a CAN message. When writing a token into a re-

mote FIFO, the sender first sends the token and then the value of

the updated write counter via the NoC. A NoC path between 2 tiles

includes a number of routers. In the figure, the tokens traveling

from the sender tile to the CAN gateway go through four routers.

The NoC is scheduled using a pipelined TDM table. This means that

across the path, each router forwards the data from one of its in-

puts to one of its outputs in a given TDM slot, such that for a TDM

frame having n slots, router i forwards the data during slot j and

router i + 1 forwards the same data in the following slot, (j + 1) mod

n . In the figure, the NoC TDM table has 3 slots and the connection

between the sender tile and the gateway tile uses slot 3 in the first

router and it increases with 1 in every upcoming router. After the

write counter has left the last router, it reaches the gateway tile.

Here, when the CAN bus is idle, at the start of every CAN bit pe-

riod, T bit , the transmit FIFO of each CAN client is polled. If a new

token is found, it is read during T CheapRdFifo and the transmission of

the message starts right away on the CAN_OUT line. Since in this

case the processor is not virtualized, the performance bottleneck

determining the CAN bit rate is no longer given by the TDM table,

but by the worst case execution time needed to send one CAN bit,

which is determined by accessing the communication FIFOs.

6. Implementation of the time synchronization over CAN

This section describes how the configurations presented above

can be extended to include the time synchronization protocol over

CAN. We distinguish between two main configuration types: one

that uses the local emulated/virtualized CAN device (such as E 1 , E 2
and V 1) and one that uses the remote CAN device (such as V 2).

6.1. CAN bit timing and clock signal deviation concepts

CAN is an event-triggered communication protocol. The nodes

connected to the bus synchronize with each other via the edges of

the CAN signal. For this, the Non Return To Zero (NRZ) signal en-

coding enforces a signal change (and thus, an edge) after every 5

consecutive bits having the same value. The CAN bit synchroniza-
ion happens at the start of frame (on the Recessive to Dominant

dge) and during the frame via the stuffed bits.

The CAN bit period consists of four segments: SYNC, PROP,

HASE_1 and PHASE_2, as can be seen in Fig. 8 . The SYNC segment

s used for synchronization and it is where the signal edge is ex-

ected, while the other segments are used to compensate for the

ignal propagation times and phase differences across the network.

he Sampling Point is the moment when the current value of the

it is sampled by all the connected nodes. Via synchronization, the

AN controllers shorten or lengthen the bit period to align with

ach other on the bit period start. This shortening or lengthening

s realized either by restarting the CAN bit timing, at the Start of

rame, or by adjusting the PHASE_1 and PHASE_2 segments, on the

tuff bits.

In an ideal platform, all HW modules have synchronous clocks,

hat have the same phase and period. Although one particular in-

tance of the CompSoC platform manifests these ideal properties,

n general it is a GALS platform, that deviates from this ideal case.

o characterize the behavior of the clocks on GALS platforms, we

ntroduce three concepts: clock skew, clock jitter and clock drift . The

lock skew or phase shift is a constant time difference between

 clock transition and a reference. It is constant from a cycle to

nother and is equivalent to a phase shift [7] . The concept is il-

ustrated in Fig. 9 . Clock jitter represents a deviation from peri-

dicity, which can vary from cycle to cycle, as shown in Fig. 10 .

inally, clock drift refers to the variation of the clock signal fre-

uency with respect to a reference frequency. Clock drift is illus-

rated in Fig. 11 . Out of these deviations, clock drift is the main

ontributor to time desynchronization. Clocks that drift away from

ach other will cause arbitrarily different time values, making time

ynchronization necessary across devices that require a common

otion of time.

Our implementation is 100% synchronous and therefore only

xhibits skew and jitter at processor frequency. This frequency is

uch higher than the CAN frequency and hence can be ignored.

G. Breaban et al. / Microprocessors and Microsystems 52 (2017) 523–533 529

Fig. 12. AUTOSAR StbM_TimeStampType.

Fig. 13. Time synchronization implementation for configuration E 1 .

D

C

p

t

r

C

6

w

S

t

s

i

p

t

B

o

k

b

n

f

o

d

v

6

t

o

c

t

i

d

b

C

p

c

t

Fig. 14. Time synchronization over CAN gateways.

Fig. 15. Time synchronization for configuration V 2 .

a

e

s

t

6

i

T

t

g

T

g

n

c

a

s

c

c

C

w

d
rift is not present. In a GALS version of CompSoC and embedded

AN, skew, jitter and drift will be present. Because in this case the

rocessor clocks run much faster than the CAN clock, we propose

o use a software adjustment to clocking issues, i.e. by adding or

emoving processor cycles in the TDM slot to stay in sync with the

AN bus.

.2. AUTOSAR time synchronization concepts

According to the AUTOSAR specification, there are three soft-

are modules involved in the time synchronization: the CAN Time

ynchronization module, the Synchronized Time Base Manager and

he CAN driver. The CAN Time Synchronization module is respon-

ible for starting periodically the time synchronization and creat-

ng the corresponding CAN messages, on the master side, and for

rocessing the contents of the time synchronization messages, on

he slave side. For this, it interacts with the Synchronized Time

ase Manager for either reading the current time (for the master)

r setting it (for the slave). The Synchronized Time Base Manager

eeps the synchronized time base(s) in both raw format (as given

y the local timer) and standard format. The raw format uses the

anosecond as a unit and is represented on 32 bits. The standard

ormat data type, shown in Fig. 12 , is used to express time in sec-

nds (on 48 bits) and nanoseconds on 32 bits. Finally, the CAN

river is responsible for interacting with the CAN hardware.

The SYNC and FUP CAN messages share the same CAN ID. The

alue of the ID is to be decided by the user.

.3. Time synchronization using a local CAN device

To illustrate the implementation of the time synchronization for

his type of configuration, we chose configuration E 1 , the simplest

f the three configurations of this type.

Fig. 13 shows the software architecture for configuration E 1 . The

hanges consist of adding an extra TDM time slot that corresponds

o the CAN Time Synchronization module and a new library that

mplements the Synchronized Time Base Manager. The application,

enoted as App 1, can get the current time value for a certain time

ase by using the Synchronized Time Base Manager API, while the

AN Time Synchronization either starts the time synchronization

eriodically or it updates the local time base using the data re-

eived in the time synchronization messages.

An important observation is that since the implementation of

ime synchronization requires the addition of an extra TDM slot,
s a result, the achievable bit rate for the CAN bus scales down, as

xplained in Section 5.2 .

For this type of configuration, the clock deviation concepts pre-

ented in Subchapter VI-A apply when the CAN communication

akes place between two asynchronous tiles.

.4. Time synchronization using a remote CAN device

When using a CAN configuration in which the CAN device

s implemented on a remote processor, such as V 2 , the CAN

imemaster and Timeslave need to send and receive, respectively,

he corresponding CAN messages via the NoC to/from the CAN

ateway.

We distinguish two subcases here: the case in which the CAN

imemaster and the CAN Timeslave are connected to different

ateways (shown in Fig. 14) and the case in which they are con-

ected to the same gateway (as in Fig. 15). Remember that for both

ases, we reserve one processor per MPSOC to act as CAN gateway.

The CAN gateway is responsible for the CAN communication

nd can take a timestamp when the transmission of the SYNC mes-

age is completed and acknowledged by the slave. This timestamp

an further be used by the time master or the time slave to pro-

eed with the time synchronization protocol. However, since the

AN gateway is using a different clock than the time master/slave,

e need to keep track of the offset between the two clocks in or-

er to transpose the CAN gateway timestamp into the correspond-

530 G. Breaban et al. / Microprocessors and Microsystems 52 (2017) 523–533

Fig. 16. CAN gateway to master/slave offset computation.

Table 2

FPGA synthesis results.

Configuration Device utilization Clock timing report

Slice registers # Slice LUTs Net skew [ns] Net delay [ns]

E 1 7% 24% 0.372 1.952

E 2 /V 1 7% 24% 0.344 1.924

V 2 12% 42% 0.466 2.048

e

c

i

p

o

u

n

i

m

i

0

c

a

a

a

s

a

p

h

s

c

b

m

i

t

b

l

r

t

i

a

s

c

t

s

m

C

s

t

r

s

l

a

t

a

i

o

s

c

d

i

a

ing timestamp at the master/slave side. Therefore, the time mas-

ter/slave has to read regularly (with a predefined period) the CAN

gateway clock value and detect the offset. This process is shown

in Fig. 16 : the master/slave takes a timestamp, ts 1 , then requests a

timestamp from the gateway, ts ′ , and takes another timestamp ts 2
after receiving the response. Assuming that this process is not in-

terrupted (as explained in the previous section) and that the com-

munication on both ways is symmetric, we can consider that the

gateway timestamp ts ′ corresponds to the midtime between ts 1
and ts 2 and compute the offset as ts ′ ′ -ts ′ . This can be visualized in

Fig. 16 . Note that the communication between the tiles is realized

via the NoC using DMAs. The DMAs do not introduce communi-

cation jitter since the DMAs are not shared between applications.

Although the NoC is synchronous with the processor tile, its TDM

schedule (16 slots of 3 words each) is different from that of the

processors (TDM slots of 16,0 0 0 cycles) and it therefore introduces

a small jitter. In general, the jitter on the paths between master

and slave is asymmetric. However, the jitters are small enough to

be ignored, and do not significantly impact the time synchroniza-

tion accuracy.

If the CAN Timemaster is connected to a different CAN gateway

than the slave, the communication on CAN happens between the

two gateways. Each time the CAN message is transmitted on the

CAN bus, each gateway first takes a timestamp after the message

is completely sent/received, and then sends a transmit or receive

confirmation to the Timemaster and the Timeslave, respectively,

together with the recorded timestamp. The Timemaster/Timeslave

then transposes the timestamp into its own time and uses it ac-

cording to the protocol. In other words, the transposed gateway

timestamp corresponds to t 1r and t 2r in Fig. 4 . The process works

similarly in both subcases and is illustrated in Figs. 15 and 14 .

7. Experiments

7.1. CAN emulation and virtualization

We synthesized the four platforms according to the configura-

tions described in the previous sections on a ML605 Xilinx FPGA

platform. Each of the four configurations includes five processor

tiles, out of which four are used for running CAN applications and

the fifth tile is used as a CAN monitor, which prints the value of
very CAN bit. Table 2 shows the FPGA resource utilization and the

lock generation timing results for each configuration.

The applications within all configurations are synthetic, mean-

ng that their only purpose is to send and receive CAN messages

eriodically.

Fig. 17 shows the message latencies and software cost for each

f the proposed configurations using a logarithmic scale. In config-

ration E 1 three applications send messages periodically with a dy-

amic offset and a fourth application is receiving them. The send-

ng period is 0.1 s and it was chosen to fit three worst-case CAN

essages coming from the three applications. The offset is vary-

ng between 0 and 40.9 μs (the TDM slot duration) with a step of

.1 μ s. The message offset was set in the same manner in all four

onfigurations and the messages are created simultaneously in all

pplications. The plots show the global minimum, maximum and

verage software cost and the maximum message latency among

ll sending applications for all possible CAN message payloads. The

oftware cost is the sum of the sending cost on the sending tile

nd the receiving cost on the receiving tile. The sending cost com-

rises the duration between the moment the sending application

as created the CAN message and the moment when the controller

ends the first message bit on the bus. Analogously, the receiving

ost comprises the duration between the moment the last message

it was received on the other side by the controller and the mo-

ent when the receiving application gets the message. The send-

ng cost is illustrated in Fig. 5 as the time between t wrMsg1 and

 startMsg1 for Tile 1. The maximum message latency is determined

y the software cost plus the transmission time on the bus. The

arge values obtained for Payload = 2,3,6,7 bytes come from spo-

adic cases in which one application creates a message just after

he controller enters the reception mode. The minimum overhead

s given by the added duration of the CoMik slots on the sending

nd receiving side that run between the application and controller

lots. Thus, the software cost reflects the execution time of the

ontroller, the communication time between the application and

he controller and the TDM schedule in CoMik, but it can occa-

ionally include the blocking time caused by the reception of CAN

essages.

In configuration E 2 , the number of sending applications and

AN controllers are doubled on each core. The minimum cost

cales consequently from 100 to 200 μ s. The maximum cost, on

he other hand, is given by the alignment between the CAN bit pe-

iod, the start time of each CAN controller slot and the CAN mes-

age offset. In the worst case, the controllers running in the ear-

ier TDM slots detect the new messages and start sending them

nd the ones running in the later slots enter directly into recep-

ion mode before detecting the new messages.

For configuration V 1 , the obtained results are almost the same

s for E 2 , the only difference is in the average cost. In this case

t is much higher due to the fact that there is only one controller

n each core that arbitrates between two senders. Therefore, the

ender with the lower priority will always experience the worst

ase delay, while in the previous configuration, the varying offset

etermined this delay only when the messages were created later

n the CAN bit period. Hence, using a separate controller for each

pplication leads to a better average performance.

G. Breaban et al. / Microprocessors and Microsystems 52 (2017) 523–533 531

Fig. 17. CAN message and software overhead latency for the four platform configurations.

m

d

s

H

t

a

s

s

c

t

c

7

s

n

t

m

w

s

a

T

c

m

i

f

s

s

t

a

I

c

a

b

t

p

t

c

s

c

I

s

m

fi

t

o

c

t

t

T

r

a

p

c

t

v

8

a

t

w
In configuration V 2 we have six sending applications sending

essages with a period of 8.35 ms. As we have no external CAN

evice connected, the results shown characterize only the sending

oftware cost and the corresponding maximum message latency.

ere, the minimum cost is around 12 μ s and is basically given by

he message communication time on the NoC. We implemented

 time-based round robin schedule which iterates between the six

enders based on the order of their CAN message ID and each time

lot is equal to the CAN bit duration (10 μ s). Thus the maximum

ost is obtained when the sending application has just missed its

ime slot in the CAN gateway and has to wait until the messages

oming from all the other applications have been sent.

.2. CAN Time Synchronization

We have extended configuration E 1 with the concepts pre-

ented in Section 6.3 . We allocated a TDM slot to the Synchro-

ized Time Base Manager on each processor. This did not modify

he bus speed of 4 kbps due to the fact that the original imple-

entation was designed with a margin of one TDM slot. In other

ords, the CAN bit period was designed to be equal to 2 + 1 TDM

lots, 2 for the difference between two successive CAN driver slots

nd 1 extra. We have one Timemaster on processor 1 and three

imeslaves on the other processors. The Timemaster sends syn-

hronization messages to the slaves every second. The CAN time

essages (SYNC and FUP) have the highest priority, and the prior-

ty of the original CAN messages used in the previous experiments

or E 1 was incremented with 1.

We ran the code for 10 min and measured the accuracy of the

ynchronization. The accuracy is measured by printing the local

ynchronized time at the master and slaves at the beginning of

he next CAN bit period right after the synchronization process

nd computing the difference between the master and each slave.
t is worth mentioning that for this experiments we used a syn-

hronous platform, hence the beginning of the CAN bits periods are

ligned and the printing of the local time is done simultaneously

y all the applications. There are two possible factors that affect

he synchronization accuracy which can be captured in these ex-

eriments and they are both software related. The first one is the

ime elapsed between capturing the initial timestamp t 0r and the

orresponding raw time value t 1r (as seen in Fig. 4) at the slave

ide. The second one is the time spent to compute the new syn-

hronized time based on the received timestamps at the slave side.

n our implementation we optimized the first factor by taking a

napshot of the raw time right after reading the local time, at the

aster. This eliminates the delay between the completion of the

rst function call, that returns the local time at the master, and

he subsequent call that returns the current raw time. Hence, the

nly factor that is effectively measured in the experiments is the

omputation time at the slave side. The obtained values range be-

ween 4.95 and 6.56 μ s. Figs. 18–20 show the probability distribu-

ions for the obtained accuracies between Tile 1 (time master) and

ile 2 (time slave), Tile 1 and Tile 3 and between Tile 1 and Tile 4,

espectively. The distributions are identical since all the slaves run

t the same frequency and perform the same operations to com-

ute the new synchronized time. The shown distribution of the ac-

uracy values is caused by the variation in the CAN buffer access

ime at the slave side, where a polling loop is used to get the latest

alue received on the bus.

. Conclusions

In this paper we proposed how multiple applications can share

 CAN port in a MPSoC platform. The shared CAN port can be on

he local processor tile, or on a remote one. As part of our hard-

are and software design process, we tune the number of applica-

532 G. Breaban et al. / Microprocessors and Microsystems 52 (2017) 523–533

Fig. 18. Time synchronization accuracy between Tile 1 and Tile 2.

Fig. 19. Time synchronization accuracy between Tile 1 and Tile 3.

Fig. 20. Time synchronization accuracy between Tile 1 and Tile 4.

t

m

c

i

w

C

o

c

fi

s

A

6

R

[

ions per CAN port, we explore the possibility of using local and re-

ote CAN ports and we dimension the bit rate of the CAN bus ac-

ordingly. Our experimental evaluation shows that configuration V 2

s suitable for applications that require a high performance (band-

idth and latency) while E 1 offers the best average software cost.

onfigurations E 2 and V 1 offer similar cost and performance, the

nly difference being that E 2 has a much lower average software

ost. Further, the evaluation of our time synchronization for con-

guration E 1 shows that we can achieve accuracies in the range of

everal microseconds.

cknowledgment

This work was partially funded by projects CATRENE ARTEMIS

21429 EMC2, 621353 DEWI, 621439 ALMARVI, SCOTT, IMECH.

eferences

[1] AUTOSAR Release 4.2 - Specification of CAN Driver, in: AUTOSAR Std (Release
4.2.2), pp. 1–106.

[2] AUTOSAR Release 4.2.2 - Specification of Synchronized Time Base Manager, in:
AUTOSAR Std (Release 4.2.2).

[3] AUTOSAR Release 4.2.2 - Specification of Time Synchronization over CAN, in:
AUTOSAR Std (Release 4.2.2).

[4] ISO11989-1:2015 Road vehicles – Controller area network (CAN) – Part 1: Data

link layer and physical signalling, in: ISO11989-1:2015 Road vehicles – Con-
troller area network (CAN).

[5] IEEE standard for a precision clock synchronization protocol for networked
measurement and control systems, in: IEEE Std 1588 −2008 (Revision of IEEE

Std 1588–2002), 2008, pp. 1 −269, doi: 10.1109/IEEESTD.2008.4579760 .
[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,

I. Pratt, A. Warfield, Xen and the art of virtualization, in: Proceedings of the

Nineteenth ACM Symposium on Operating Systems Principles (SOSP), 37, 2003,
doi: 10.1145/1165389.945462 .

[7] E.G. Friedman, Clock distribution networks in synchronous digital integrated
circuits, Proc. IEEE 89 (5) (2001) 665–692, doi: 10.1109/5.929649 .

[8] K. Goossens , M. Koedam , A. Nelson , S. Sinha , S. Goossens , Y. Li , G. Breaban ,
R. van Kampenhout , R. Tavakoli , J. Valencia , H. Ahmadi Balef , B. Akesson , S. Stu-

ijk , M. Geilen , D. Goswami , M. Nabi , NOC-based multi-processor architecture

for mixed time-criticality applications, in: S. Ha, J. Teich (Eds.), Handbook of
Hardware/Software Codesign, Springer, 2017 .

[9] C. Herber, D. Reinhardt, A. Richter, A. Herkersdorf, HW/SW trade-offs in I/O
virtualization for controller area network, in: Design Automation Conference

(DAC), 2015, doi: 10.1145/2744769.2747929 .
[10] C. Herber, A. Richter, T. Wild, A. Herkersdorf, A network virtualization approach

for performance isolation in controller area network (CAN), in: Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2014, doi: 10.1109/

RTAS.2014.6926004 .

[11] H. Kopetz, G. Bauer, The time-triggered architecture, Proc. IEEE (2003), doi: 10.
1109/JPROC.2002.805821 .

12] H.T. Lim, D. Herrscher, L. Völker, M.J. Waltl, IEEE 802.1AS time synchronization
in a switched Ethernet based in-car network, in: 2011 IEEE Vehicular Network-

ing Conference (VNC), 2011, pp. 147–154, doi: 10.1109/VNC.2011.6117136 .
[13] A . Nelson, A .B. Nejad, A . Molnos, M. Koedam, K. Goossens, CoMik: a predictable

and cycle-accurately composable real-time microkernel, in: Design Automation

and Test in Europe Conference (DATE), 2014, doi: 10.7873/DATE.2014.235 .
[14] A. Nieuwland, J. Kang, O.P. Gangwal, R. Sethuraman, N. Busá, K. Goossens,

R. Peset Llopis, P. Lippens, C-HEAP: a heterogeneous multi-processor architec-
ture template and scalable and flexible protocol for the design of embedded

signal processing systems, Des. Autom. Embedded Syst. (2002), doi: 10.1023/A:
1019782306621 .

[15] R. Obermaisser, CAN emulation in a time-triggered environment, in: Interna-

tional Symposium on Industrial Electronics (ISIE), 1, 2002, doi: 10.1109/ISIE.
2002.1026077 .

[16] D. Reinhardt , M. Kucera , Domain controlled architecture - a new approach for
large scale software integrated automotive systems, in: International Confer-

ence on Pervasive Embedded Computing and Communication Systems (PECCS),
2013 .

[17] O. Sander , T. Sandmann , V.V. Duy , S. Bähr , F. Bapp , J. Becker , H.U. Michel ,

D. Kaule , D. Adam , E. Lübbers , J. Hairbucher , A. Richter , C. Herber , A. Herkers-
dorf , Hardware virtualization support for shared resources in mixed-critical-

ity multicore systems, in: Design Automation and Test in Europe Conference
(DATE), 2014 .

[18] R. Stefan, A. Molnos, A. Ambrose, K. Goossens, DAElite: a TDM NoC supporting
QoS, multicast, and fast connection set-up, Comput. IEEE Trans. 63 (3) (2014),

doi: 10.1109/TC.2012.117 .

http://dx.doi.org/10.1109/IEEESTD.2008.4579760
http://dx.doi.org/10.1145/1165389.945462
http://dx.doi.org/10.1109/5.929649
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0004
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0004
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0004
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0004
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0004
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0004
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0004
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0004
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0004
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0004
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0004
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0004
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0004
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0004
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0004
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0004
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0004
http://dx.doi.org/10.1145/2744769.2747929
http://dx.doi.org/10.1109/RTAS.2014.6926004
http://dx.doi.org/10.1109/JPROC.2002.805821
http://dx.doi.org/10.1109/VNC.2011.6117136
http://dx.doi.org/10.7873/DATE.2014.235
http://dx.doi.org/10.1023/A:1019782306621
http://dx.doi.org/10.1109/ISIE.2002.1026077
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0012
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0012
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0012
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0013
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0013
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0013
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0013
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0013
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0013
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0013
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0013
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0013
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0013
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0013
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0013
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0013
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0013
http://refhub.elsevier.com/S0141-9331(17)30059-5/sbref0013
http://dx.doi.org/10.1109/TC.2012.117

G. Breaban et al. / Microprocessors and Microsystems 52 (2017) 523–533 533

eering department at the Technical University of Eindhoven. She obtained her Bachelor

nical University of Iasi, Romania in 2009. Afterwards, she completed her Master studies
ersity. Her work experience includes 2 years as an Embedded Software Developer in the

gn Verification Engineer in the semiconductor industry. Her research interests are in the

ion and embedded systems architecture.

l Engineering at the Technical University of Eindhoven. His work experience includes

plementation of a regression test framework for POS systems, proof of concept security
g systems. Since 2011 he works as a researcher and developer at the same university. His

n of embedded Systems-on-Chip, composable, predictable, real-time and mixed-criticality

and his PhD in 2007 from the Eindhoven University of Technology. He is currently an

eering at Eindhoven University of Technology. He is also a visiting researcher at Philips
rithms and their embedded implementations. His research focuses on modeling methods

redictable systems.

gh in 1993 on hardware verification using embeddings of formal semantics of hardware

ilips/NXP from 1995 to 2010 on real-time networks on chip for consumer electronics. He
 to 2010, and is now full professor at the Eindhoven University of Technology, researching

upporting multiple models of computation. He is also system architect at Topic Products.
Gabriela Breaban is a PhD student in the Electrical Engin

degree in Electronics and Telecommunications at the Tech
in Digital Radio Communications in 2011 at the same univ

automotive industry and another 2 years as a Digital Desi

areas of formal models of computation, time synchronizat

Martijn Koedam received his master degree in Electrica

software development in the audio industry, design and im
hack for payment systems and evaluating wireless ticketin

research interests include design, modeling, and simulatio
systems and execution models.

Sander Stuijk received his M.Sc. (with honors) in 2002

assistant professor in the Department of Electrical Engin
Research Eindhoven working on bio-signal processing algo

and mapping techniques for the design and synthesis of p

Kees Goossens has a PhD from the University of Edinbur

description languages in proof systems. He worked for Ph
was part-time full professor at Delft university from 2007

composable, predictable, low-power embedded systems, s

He published 4 books, 170 + papers, and 24 patents.

	Time synchronization for an emulated CAN device on a Multi-Processor System on Chip
	1 Introduction
	2 Related work
	3 Design alternatives for CAN emulation and virtualization
	3.1 Overview
	3.2 Platform configuration E1
	3.3 Platform configuration E2
	3.4 Platform configuration V1
	3.5 Platform configuration V2

	4 Time synchronization on the CAN network
	5 Implementation of the CAN device
	5.1 Software emulation of the CAN controller
	5.2 Implementing a CAN controller on the virtual processor
	5.3 Bare-metal implementation of the CAN controller

	6 Implementation of the time synchronization over CAN
	6.1 CAN bit timing and clock signal deviation concepts
	6.2 AUTOSAR time synchronization concepts
	6.3 Time synchronization using a local CAN device
	6.4 Time synchronization using a remote CAN device

	7 Experiments
	7.1 CAN emulation and virtualization
	7.2 CAN Time Synchronization

	8 Conclusions
	 Acknowledgment
	 References

