7 research outputs found

    Self-modifiable color petri nets for modeling user manipulation and network event handling

    Get PDF
    A Self-Modifiable Color Petri Net (SMCPN) which has multimedia synchronization capability and the ability to model user manipulation and network event (i.e. network congestion, etc.) handling is proposed in this paper. In SMCPN, there are two types of tokens: resource tokens representing resources to be presented and color tokens with two sub-types: one associated with some commands to modify the net mechanism in operation, another associated with a number to decide iteration times. Also introduced is a new type of resource token named reverse token that moves to the opposite direction of arcs. When user manipulation/network event occurs, color tokens associated with the corresponding interrupt handling commands will be injected into places that contain resource tokens. These commands are then executed to handle the user manipulation/network event. SMCPN has the desired general programmability in the following sense: 1) It allows handling of user manipulations or pre-specified events at any time while keeping the Petri net design simple and easy. 2) It allows the user to customize event handling beforehand. This means the system being modeled can handle not only commonly seen user interrupts (e.g. skip, reverse, freeze), the user is free to define new operations including network event handling. 3) It has the power to simulate self-modifying protocols. A simulator has been built to demonstrate the feasibility of SMCPN

    Cooperating intelligent mobile agents mechanism for distributed multimedia synchronization

    Get PDF
    [[abstract]]With the development of distributed multimedia systems, there has been much research on how to reduce network traffic and how to initialize and gather the distributed multimedia resources. We propose a robust system using intelligent mobile agents to construct an automatic and adaptation mechanism for distributed multimedia synchronization. Furthermore, an adaptive quality of service (QoS) mechanism is also support by this system. The Distributed Multimedia Synchronization Agent (DMSAgent) system is proposed to improve the efficiency of distributed multimedia networks. Furthermore, using intelligent and mobile agent technology will reduce the frequency of handshaking between client and server.[[conferencetype]]國際[[conferencedate]]20000730~20000802[[iscallforpapers]]Y[[conferencelocation]]New York, NY, US

    Vitruv: Specifying Temporal Aspects of Multimedia Presentations - A Transformational Approach based on Intervals

    Get PDF
    The development of large multimedia applications reveals similar problems to those of developing large software systems. This is not surprising, as multimedia applications are a special kind of software systems. Our experience within the Altenberg Cathedral Project showed, however, that during developing multimedia applications particular problems arise, which do not appear during traditional software development. This is the starting point of the research reported in this thesis. In this introduction, we start with a report on the Altenberg Cathedral Project (sec. 1.1), resulting in a problem statement and a list of requirements for possible solutions. After that we propose our solution named Vitruv (sec. 1.2 on page 11) and explain how it works in general (sec. 1.3 on page 12). It is followed by a discussion of key aspects of Vitruv and relations to other approaches (sec. 1.4 on page 14). The introduction closes with a brief outline of the thesis
    corecore