6 research outputs found

    Pattern languages in HCI: A critical review

    Get PDF
    This article presents a critical review of patterns and pattern languages in human-computer interaction (HCI). In recent years, patterns and pattern languages have received considerable attention in HCI for their potential as a means for developing and communicating information and knowledge to support good design. This review examines the background to patterns and pattern languages in HCI, and seeks to locate pattern languages in relation to other approaches to interaction design. The review explores four key issues: What is a pattern? What is a pattern language? How are patterns and pattern languages used? and How are values reflected in the pattern-based approach to design? Following on from the review, a future research agenda is proposed for patterns and pattern languages in HCI

    Evaluating usability evaluation methods for location-­aware interactive systems in contextually rich environments.

    Get PDF
    PhDIn this research we investigate the evaluation of usability evaluations methods (UEMs). In particular we are concerned with evaluating their suitability for the evaluation of location-­‐ aware systems. Not all approaches for the evaluation of UEMs have been extensively validated for such types of dynamic interaction, while their application is not clearly documented. We overview the strengths of the current approach and suggest how to improve them. We examine navigation systems as examples for issues with location-­‐aware systems in a contextually rich environment. The setting is very different to a traditional desktop-­‐based application. Take the use of the navigation device for example. It is a secondary task; the primary task is to safely drive the car. The interface is continuously changing to adapt to the current location of the user. The user navigates in a complex dynamic environment encompassing various stimuli and unpredictable external factors. We present in the thesis a methodological and systematic way to approach the evaluation of UEMs. A comparative study of analytical and empirical techniques was carried out, to assess them in identifying usability problems within both static and dynamic contexts of use. Four analytical methods (CW, UAN, EMU, and Design Guidelines) and one empirical were compared. In this thesis, we validate the existing classification scheme of Blandford et al. (2008) and highlight relevant issues. We present an alternative systematic approach building on this scheme (CoHUM), and its shortcomings with dynamic systems. We show how a rigorous and systematic error analysis identifies phenotypes as the outcome of empirical techniques, whilst genotypes are the outcome of analytical techniques. Finally, we present new dimensions that previous literature had not identified for the evaluation of UEMs. This research will help future researchers by providing them with a stronger methodological approach for comparing UEMs and, in particular, categories of UEMs

    The Design and evaluation of the specification framework for user interface design

    Get PDF
    This thesis presentsthe design and evaluation of an interface specification meta-language(ISML) that has been developed to explicitly support metaphor abstractions in a model-based, user interface design framework. The application of metaphor to user interface design is widely accepted within the HCI community, yet despite this, there exists relatively little formal support for user interface design practitioners. With the increasing range and power of user interface technologies made widely available comes the opportunity for the designof sophisticated, new forms of interactive environments. The inter-disciplinary nature of HCI offers many approaches to user interface design that include views on tasks, presentationand dialogue architectures and various domain models. Notations and tools that support these views vary equally, ranging from craft-based approachesthrough to computational or tool- based support and formal methods. Work in these areas depicts gradual cohesion of a number of these design views, but do not currently explicitly specify the application of metaphorical concepts in graphical user interface design. Towards addressing this omission, ISML was developed based on (and extending) some existing model- based user interface design concepts. Abstractions of metaphor and other interface design views are captured in the ISML framework using the extensible mark-up language(XML). A six-month case study, developing the `Urban Shout Cast' application is used to evaluate ISML. Two groups of four software engineers developed a networked, multi-user, virtual radio-broadcasting environment. A qualitative analysis examines both how each group developed metaphor designs within the ISML framework and also their perceptions of its utility and practicality. Subsequent analysis on the specification data from both groups reveals aspects of the project's design that ISML captured and those that were missed. Finally, the extent to which ISML can currently abstract the metaphors used in the case study is assessed through the development of a unified `meta-object' model. The results of the case study show that ISML is capable of expressing many of the features of each group's metaphor design, as well as highlighting important design considerations during development. Furthermore, it has been shown, in principle, how an underlying metaphor abstraction can be mapped to two different implementations. Evaluation of the case study also includes important design lessons: ISML metaphor models can be both very large and difficult to separate from other design views, some of which are either weakly expressed or unsupported. This suggests that the appropriate mappings between design abstractions cannot always be easily anticipated, and that understanding the use of model-based specifications in user interface design projects remains a challenge to the HCI community

    The design and evaluation of the specification framework for user interface design

    Get PDF
    This thesis presentsthe design and evaluation of an interface specification meta-language(ISML) that has been developed to explicitly support metaphor abstractions in a model-based, user interface design framework. The application of metaphor to user interface design is widely accepted within the HCI community, yet despite this, there exists relatively little formal support for user interface design practitioners. With the increasing range and power of user interface technologies made widely available comes the opportunity for the designof sophisticated, new forms of interactive environments. The inter-disciplinary nature of HCI offers many approaches to user interface design that include views on tasks, presentationand dialogue architectures and various domain models. Notations and tools that support these views vary equally, ranging from craft-based approachesthrough to computational or tool- based support and formal methods. Work in these areas depicts gradual cohesion of a number of these design views, but do not currently explicitly specify the application of metaphorical concepts in graphical user interface design. Towards addressing this omission, ISML was developed based on (and extending) some existing model- based user interface design concepts. Abstractions of metaphor and other interface design views are captured in the ISML framework using the extensible mark-up language(XML). A six-month case study, developing the `Urban Shout Cast' application is used to evaluate ISML. Two groups of four software engineers developed a networked, multi-user, virtual radio-broadcasting environment. A qualitative analysis examines both how each group developed metaphor designs within the ISML framework and also their perceptions of its utility and practicality. Subsequent analysis on the specification data from both groups reveals aspects of the project's design that ISML captured and those that were missed. Finally, the extent to which ISML can currently abstract the metaphors used in the case study is assessed through the development of a unified `meta-object' model. The results of the case study show that ISML is capable of expressing many of the features of each group's metaphor design, as well as highlighting important design considerations during development. Furthermore, it has been shown, in principle, how an underlying metaphor abstraction can be mapped to two different implementations. Evaluation of the case study also includes important design lessons: ISML metaphor models can be both very large and difficult to separate from other design views, some of which are either weakly expressed or unsupported. This suggests that the appropriate mappings between design abstractions cannot always be easily anticipated, and that understanding the use of model-based specifications in user interface design projects remains a challenge to the HCI community.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore