28,649 research outputs found

    Temporal Network Optimization Subject to Connectivity Constraints

    Get PDF
    In this work we consider temporal networks, i.e. networks defined by a labeling λ assigning to each edge of an underlying graph G a set of discrete time-labels. The labels of an edge, which are natural numbers, indicate the discrete time moments at which the edge is available. We focus on path problems of temporal networks. In particular, we consider time-respecting paths, i.e. paths whose edges are assigned by λ a strictly increasing sequence of labels. We begin by giving two efficient algorithms for computing shortest time-respecting paths on a temporal network. We then prove that there is a natural analogue of Menger’s theorem holding for arbitrary temporal networks. Finally, we propose two cost minimization parameters for temporal network design. One is the temporality of G, in which the goal is to minimize the maximum number of labels of an edge, and the other is the temporal cost of G, in which the goal is to minimize the total number of labels used. Optimization of these parameters is performed subject to some connectivity constraint. We prove several lower and upper bounds for the temporality and the temporal cost of some very basic graph families such as rings, directed acyclic graphs, and trees

    Spectral mapping of brain functional connectivity from diffusion imaging.

    Get PDF
    Understanding the relationship between the dynamics of neural processes and the anatomical substrate of the brain is a central question in neuroscience. On the one hand, modern neuroimaging technologies, such as diffusion tensor imaging, can be used to construct structural graphs representing the architecture of white matter streamlines linking cortical and subcortical structures. On the other hand, temporal patterns of neural activity can be used to construct functional graphs representing temporal correlations between brain regions. Although some studies provide evidence that whole-brain functional connectivity is shaped by the underlying anatomy, the observed relationship between function and structure is weak, and the rules by which anatomy constrains brain dynamics remain elusive. In this article, we introduce a methodology to map the functional connectivity of a subject at rest from his or her structural graph. Using our methodology, we are able to systematically account for the role of structural walks in the formation of functional correlations. Furthermore, in our empirical evaluations, we observe that the eigenmodes of the mapped functional connectivity are associated with activity patterns associated with different cognitive systems

    Learning Discriminative Bayesian Networks from High-dimensional Continuous Neuroimaging Data

    Get PDF
    Due to its causal semantics, Bayesian networks (BN) have been widely employed to discover the underlying data relationship in exploratory studies, such as brain research. Despite its success in modeling the probability distribution of variables, BN is naturally a generative model, which is not necessarily discriminative. This may cause the ignorance of subtle but critical network changes that are of investigation values across populations. In this paper, we propose to improve the discriminative power of BN models for continuous variables from two different perspectives. This brings two general discriminative learning frameworks for Gaussian Bayesian networks (GBN). In the first framework, we employ Fisher kernel to bridge the generative models of GBN and the discriminative classifiers of SVMs, and convert the GBN parameter learning to Fisher kernel learning via minimizing a generalization error bound of SVMs. In the second framework, we employ the max-margin criterion and build it directly upon GBN models to explicitly optimize the classification performance of the GBNs. The advantages and disadvantages of the two frameworks are discussed and experimentally compared. Both of them demonstrate strong power in learning discriminative parameters of GBNs for neuroimaging based brain network analysis, as well as maintaining reasonable representation capacity. The contributions of this paper also include a new Directed Acyclic Graph (DAG) constraint with theoretical guarantee to ensure the graph validity of GBN.Comment: 16 pages and 5 figures for the article (excluding appendix

    Robust Detection of Dynamic Community Structure in Networks

    Get PDF
    We describe techniques for the robust detection of community structure in some classes of time-dependent networks. Specifically, we consider the use of statistical null models for facilitating the principled identification of structural modules in semi-decomposable systems. Null models play an important role both in the optimization of quality functions such as modularity and in the subsequent assessment of the statistical validity of identified community structure. We examine the sensitivity of such methods to model parameters and show how comparisons to null models can help identify system scales. By considering a large number of optimizations, we quantify the variance of network diagnostics over optimizations (`optimization variance') and over randomizations of network structure (`randomization variance'). Because the modularity quality function typically has a large number of nearly-degenerate local optima for networks constructed using real data, we develop a method to construct representative partitions that uses a null model to correct for statistical noise in sets of partitions. To illustrate our results, we employ ensembles of time-dependent networks extracted from both nonlinear oscillators and empirical neuroscience data.Comment: 18 pages, 11 figure

    Intermittent Connectivity for Exploration in Communication-Constrained Multi-Agent Systems

    Get PDF
    Motivated by exploration of communication-constrained underground environments using robot teams, we study the problem of planning for intermittent connectivity in multi-agent systems. We propose a novel concept of information-consistency to handle situations where the plan is not initially known by all agents, and suggest an integer linear program for synthesizing information-consistent plans that also achieve auxiliary goals. Furthermore, inspired by network flow problems we propose a novel way to pose connectivity constraints that scales much better than previous methods. In the second part of the paper we apply these results in an exploration setting, and propose a clustering method that separates a large exploration problem into smaller problems that can be solved independently. We demonstrate how the resulting exploration algorithm is able to coordinate a team of ten agents to explore a large environment
    • …
    corecore