40 research outputs found

    A time series classification method for behaviour-based dropout prediction

    Get PDF
    Students' dropout rate is a key metric in online and open distance learning courses. We propose a time-series classification method to construct data based on students' behaviour and activities on a number of online distance learning modules. Further, we propose a dropout prediction model based on the time series forest (TSF) classification algorithm. The proposed predictive model is based on interaction data and is independent of learning objectives and subject domains. The model enables prediction of dropout rates without the requirement for pedagogical experts. Results show that the prediction accuracy on two selected datasets increases as the portion of data used in the model grows. However, a reasonable prediction accuracy of 0.84 is possible with only 5% of the dataset processed. As a result, early prediction can help instructors design interventions to encourage course completion before a student falls too far behind

    Capturing Fairness and Uncertainty in Student Dropout Prediction – A Comparison Study

    Get PDF
    This study aims to explore and improve ways of handling a continuous variable dataset, in order to predict student dropout in MOOCs, by implementing various models, including the ones most successful across various domains, such as recurrent neural network (RNN), and tree-based algorithms. Unlike existing studies, we arguably fairly compare each algorithm with the dataset that it can perform best with, thus ‘like for like’. I.e., we use a time-series dataset ‘as is’ with algorithms suited for time-series, as well as a conversion of the time-series into a discrete-variables dataset, through feature engineering, with algorithms handling well discrete variables. We show that these much lighter discrete models outperform the time-series models. Our work additionally shows the importance of handing the uncertainty in the data, via these ‘compressed’ models

    Is MOOC Learning Different for Dropouts? A Visually-Driven, Multi-granularity Explanatory ML Approach

    Full text link
    Millions of people have enrolled and enrol (especially in the Covid-19 pandemic world) in MOOCs. However, the retention rate of learners is notoriously low. The majority of the research work on this issue focuses on predicting the dropout rate, but very few use explainable learning patterns as part of this analysis. However, visual representation of learning patterns could provide deeper insights into learners' behaviour across different courses, whilst numerical analyses can -- and arguably, should -- be used to confirm the latter. Thus, this paper proposes and compares different granularity visualisations for learning patterns (based on clickstream data) for both course completers and non-completers. In the large-scale MOOCs we analysed, across various domains, our fine-grained, fish-eye visualisation approach showed that non-completers are more likely to jump forward in their learning sessions, often on a 'catch-up' path, whilst completers exhibit linear behaviour. For coarser, bird-eye granularity visualisation, we observed learners' transition between types of learning activity, obtaining typed transition graphs. The results, backed up by statistical significance analysis and machine learning, provide insights for course instructors to maintain engagement of learners by adapting the course design to not just 'dry' predicted values, but explainable, visually viable paths extracted.Comment: Intelligent Tutoring Systems. ITS 2020. Lecture Notes in Computer Science, vol 1214
    corecore