17 research outputs found

    Using a Temporal Constraint Network for Business Process Execution

    Get PDF
    Business process management (BPM) has emerged as a dominant technology in current enterprise systems and business solutions. However, the technology continues to face challenges in coping with dynamic business environments where requirements and goals are constantly changing. In this paper, we present a modelling framework for business processes that is conducive to dynamic change and the need for flexibility in execution. This framework is based on the notion of process constraints. Process constraints may be specified for any aspect of the process, such as task selection, control flow, resource allocation, etc. Our focus in this paper is on a set of scheduling constraints that are specified through a temporal constraint network. We will demonstrate how this specification can lead to increased flexibility in process execution, while maintaining a desired level of control. A key feature and strength of the approach is to use the power of constraints, while still preserving the intuition and visual appeal of graphical languages for process modelling

    Dealing with Changes of Time-Aware Processes

    Get PDF
    The proper handling of temporal process constraints is crucial in many application domains. Contemporary process-aware information systems (PAIS), however, lack a sophisticated support of time-aware processes. As a particular challenge, the execution of time-aware processes needs to be flexible as time can neither be slowed down nor stopped. Hence, it should be possible to dynamically adapt time-aware process instances to cope with unforeseen events. In turn, when applying such dynamic changes, it must be re-ensured that the resulting process instances are temporally consistent; i.e., they still can be completed without violating any of their temporal constraints. This paper presents the ATAPIS framework which extends well established process change operations with temporal constraints. In particular, it provides pre- and post-conditions for these operations that guarantee for the temporal consistency of the changed process instances. Furthermore, we analyze the effects a change has on the temporal properties of a process instance. In this context, we provide a means to significantly reduce the complexity when applying multiple change operations. Respective optimizations will be crucial to properly support the temporal perspective in adaptive PAIS

    Analyzing the Impact of Process Change Operations on Time-Aware Processes

    Get PDF
    The proper handling of temporal constraints is crucial in many application domains. Contemporary process-aware information systems, however, still lack a sophisticated support of time-aware processes. As a particular challenge, by nature, (most) time-aware processes need to be quite flexible as time can neither be slowed down nor stopped. Hence it must be possible to dynamically adapt a time-aware process instance in order to cope with unforeseen events. In turn, when applying dynamic changes to a time-aware process it crucial that the resulting process instance is again sound as well as temporally consistent; i.e., it must still be possible to complete the process instance without violating any of its temporal constraints. This paper extends existing process change operations, which ensure soundness of the resulting process instance, by additionally considering temporal constraints. Furthermore, it provides pre- and post-conditions that ensure that the resulting process instance is again temporally consistent. Finally, we analyze the impact a change has on the overall temporal properties of a process instance and---based on the results---provide means to significantly reduce the complexity of the required time calculations. The latter is crucial to ensure scalability of the approach. The approach has been prototypically implemented in the AristaFlow BPM Suite

    Controlling Time-Awareness in Modularized Processes (Extended Version)

    Get PDF
    The proper handling of temporal process constraints is crucial in many application domains. However, a sophisticated support of time-aware processes is still missing in contemporary information systems. As a particular challenge, temporal constraints must be also handled for modularized processes (i.e., processes comprising subprocesses), enabling the re-use of process knowledge as well as the modular design of complex processes. This paper focuses on the representation and support of time-aware modularized processes. In particular, we present a sound and complete method to derive the duration restrictions of a time-aware (sub-)process in such a way that its temporal properties are completely specified. We then show how this characterization of a process can be utilized when re-using it as a subprocess within a modularized process

    Managing time-awareness in modularized processes

    Get PDF
    Managing temporal process constraints in a suitable way is crucial for long-running business processes in many application domains. However, proper support of time-aware processes is still missing in contemporary information systems. This paper tackles a particular challenge existing in this context, namely the handling of temporal constraints for modularized processes (i.e., processes comprising subprocesses), which shall enable both the reuse of process knowledge and the modular design of complex processes. In detail, this paper focuses on the representation and support of time-aware modularized processes in process-aware information systems. To this end, we present a sound and complete method to derive the duration restrictions of a time-aware (sub-)process in such a way that its temporal properties are completely speci\ufb01ed. We then show how this characterization of a process can be utilized when reusing it as a subprocess within a modularized process. As a motivating example, we consider a compound process from healthcare. Altogether the proper handling of temporal constraints for modularized processes is crucial for the enhancement of time- and process-aware information systems

    A Process Modelling Framework Based on Point Interval Temporal Logic with an Application to Modelling Patient Flows

    Get PDF
    This thesis considers an application of a temporal theory to describe and model the patient journey in the hospital accident and emergency (A&E) department. The aim is to introduce a generic but dynamic method applied to any setting, including healthcare. Constructing a consistent process model can be instrumental in streamlining healthcare issues. Current process modelling techniques used in healthcare such as flowcharts, unified modelling language activity diagram (UML AD), and business process modelling notation (BPMN) are intuitive and imprecise. They cannot fully capture the complexities of the types of activities and the full extent of temporal constraints to an extent where one could reason about the flows. Formal approaches such as Petri have also been reviewed to investigate their applicability to the healthcare domain to model processes. Additionally, to schedule patient flows, current modelling standards do not offer any formal mechanism, so healthcare relies on critical path method (CPM) and program evaluation review technique (PERT), that also have limitations, i.e. finish-start barrier. It is imperative to specify the temporal constraints between the start and/or end of a process, e.g., the beginning of a process A precedes the start (or end) of a process B. However, these approaches failed to provide us with a mechanism for handling these temporal situations. If provided, a formal representation can assist in effective knowledge representation and quality enhancement concerning a process. Also, it would help in uncovering complexities of a system and assist in modelling it in a consistent way which is not possible with the existing modelling techniques. The above issues are addressed in this thesis by proposing a framework that would provide a knowledge base to model patient flows for accurate representation based on point interval temporal logic (PITL) that treats point and interval as primitives. These objects would constitute the knowledge base for the formal description of a system. With the aid of the inference mechanism of the temporal theory presented here, exhaustive temporal constraints derived from the proposed axiomatic system’ components serves as a knowledge base. The proposed methodological framework would adopt a model-theoretic approach in which a theory is developed and considered as a model while the corresponding instance is considered as its application. Using this approach would assist in identifying core components of the system and their precise operation representing a real-life domain deemed suitable to the process modelling issues specified in this thesis. Thus, I have evaluated the modelling standards for their most-used terminologies and constructs to identify their key components. It will also assist in the generalisation of the critical terms (of process modelling standards) based on their ontology. A set of generalised terms proposed would serve as an enumeration of the theory and subsume the core modelling elements of the process modelling standards. The catalogue presents a knowledge base for the business and healthcare domains, and its components are formally defined (semantics). Furthermore, a resolution theorem-proof is used to show the structural features of the theory (model) to establish it is sound and complete. After establishing that the theory is sound and complete, the next step is to provide the instantiation of the theory. This is achieved by mapping the core components of the theory to their corresponding instances. Additionally, a formal graphical tool termed as point graph (PG) is used to visualise the cases of the proposed axiomatic system. PG facilitates in modelling, and scheduling patient flows and enables analysing existing models for possible inaccuracies and inconsistencies supported by a reasoning mechanism based on PITL. Following that, a transformation is developed to map the core modelling components of the standards into the extended PG (PG*) based on the semantics presented by the axiomatic system. A real-life case (from the King’s College hospital accident and emergency (A&E) department’s trauma patient pathway) is considered to validate the framework. It is divided into three patient flows to depict the journey of a patient with significant trauma, arriving at A&E, undergoing a procedure and subsequently discharged. Their staff relied upon the UML-AD and BPMN to model the patient flows. An evaluation of their representation is presented to show the shortfalls of the modelling standards to model patient flows. The last step is to model these patient flows using the developed approach, which is supported by enhanced reasoning and scheduling

    Adaptive Time- and Process-Aware Information Systems

    Get PDF
    For the digitized enterprise the proper handling of the temporal aspects of its business processes is vital. Delivery times, appointments and deadlines must be met, processing times and durations be monitored, and optimization objectives shall be pursued. However, contemporary Process-Aware Information Systems (PAISs)--the go-to solution for the computer-aided support of business processes—still lack a sophisticated support of the time perspective. Hence, there is a high demand for a more profound support of temporal aspects in PAISs. Accordingly, both the specification and the operational support of temporal aspects constitute fundamental challenges for the further development and dissemination of PAISs. The aim of this thesis is to propose a framework for supporting the time perspective of business processes in PAISs. As PAISs enable the design, execution and evolution of business processes, the designated framework must support these three fundamental phases of the process life cycle. The ATAPIS framework proposed by this thesis essentially comprises three major com-ponents. First, a universal and comprehensive set of time patterns is provided. Respective time patterns represent temporal concepts commonly found in business processes and are based on empirical evidence. In particular, they provide a universal and comprehensive set of notions for describing temporal aspects in business processes. Moreover, a precise formal semantics for each of the time patterns is provided based on an in-depth analysis of a large set of real-world use cases. Respective formal semantics enable the proper integration of the time patterns into PAISs. In turn, the latter will allow for the specification of time-aware process schemas. Second, a generic framework for implementing the time patterns based on their formal semantics is developed. The framework and its techniques enable the verification of time-aware process schemas regarding their temporal consistency, i. e., their ability to be successfully executed without violating any of their temporal constraints. Subsequently, the framework is extended to consider advanced aspects like the contingent nature of activity durations and alternative execution paths as well. Moreover, an algorithm as well as techniques for executing and monitoring time-aware process instances in PAISs is provided. Based on the presented concepts, it becomes possible to ensure that a time-aware process instance may be executed without violating any of its temporal constraints. Third, a set of change operations for dynamically modifying time-aware process instances during run time is suggested. Respective change operations ensure that a modified time-aware process instance remains temporally consistent after the respective modification. Moreover, to reduce the complexity involved when applying multiple change operations a sophisticated approximation-based technique is presented. Overall, the developed change operations allow providing the flexibility required by business processes in practice. Altogether, the ATAPIS framework provides fundamental concepts, techniques and algorithms for integrating the time perspective into PAISs. As beauty of this framework the specification, execution and evolution of business processes is supported by an integrated approach
    corecore