6 research outputs found

    Aging-aware parallel execution

    Get PDF
    Computation has been pushed to the edge to decrease latency and alleviate the computational burden of the IoT applications in the cloud. However, the increasing processing demands of Edge Applications make necessary the employment of platforms that exploit thread-level parallelism (TLP). Yet, power and heat dissipation rise as TLP inadvertently increases or when parallelism is not cleverly exploited, which may be the result of the non-ideal use of a given PPI (Parallel Program Interface). Besides the common issues, such as the need for more robust power sources and better cooling, heat also adversely affects aging, accelerating phenomenons such as negative bias temperature instability (NBTI) and hot-carrier injection (HCI), which further reduces processor lifetime. Hence, considering that increasing the lifespan of an edge device is key, so the number of times the application set may execute until its end-of-life is maximized, we propose BALDER. It is a learning framework capable of automatically choosing optimal configuration executions (PPI and number of threads) according to the parallel application at hand, aiming to maximize the trade-off between aging and performance. When executing ten well-known applications on two multicore embedded architectures, we show that BALDER can find a nearly-optimal configuration for all our experiments.Peer ReviewedPostprint (author's final draft

    Modeling the Temperature Bias of Power Consumption for Nanometer-Scale CPUs in Application Processors

    Full text link
    We introduce and experimentally validate a new macro-level model of the CPU temperature/power relationship within nanometer-scale application processors or system-on-chips. By adopting a holistic view, this model is able to take into account many of the physical effects that occur within such systems. Together with two algorithms described in the paper, our results can be used, for instance by engineers designing power or thermal management units, to cancel the temperature-induced bias on power measurements. This will help them gather temperature-neutral power data while running multiple instance of their benchmarks. Also power requirements and system failure rates can be decreased by controlling the CPU's thermal behavior. Even though it is usually assumed that the temperature/power relationship is exponentially related, there is however a lack of publicly available physical temperature/power measurements to back up this assumption, something our paper corrects. Via measurements on two pertinent platforms sporting nanometer-scale application processors, we show that the power/temperature relationship is indeed very likely exponential over a 20{\deg}C to 85{\deg}C temperature range. Our data suggest that, for application processors operating between 20{\deg}C and 50{\deg}C, a quadratic model is still accurate and a linear approximation is acceptable.Comment: Submitted to SAMOS 2014; International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV

    Minimizing Peak Temperature for Pipelined Hard Real-time Systems

    Full text link

    Online Thermal Control Methods for Multi-Processor Systems

    Get PDF
    With technological advances, the number of cores integrated on a chip is increasing. This, in turn is leading to thermal constraints and thermal design challenges. Temperature gradients and hot-spots not only affect the performance of the system, but also lead to unreliable circuit operation and affect the life-time of the chip. Meeting temperature constraints and reducing hot-spots are critical for achieving reliable and efficient operation of complex multi-core systems. In this article we analyze the use of four of the most promising families of online control techniques for thermal management of multi-processors system-on-chip (MPSoC). In particular, in our exploration we aim at achieving an online smooth thermal control action that minimizes the performance loss as well as the computational and hardware overhead of embedding a thermal management system inside the MPSoC. The definition of the optimization problem to tackle in this work considers the thermal profile of the system, its evolution over time and current time-varying workload requirements. Thus, this problem is formulated as a finite-horizon optimal control problem and we analyze the control features of different on-line thermal control approaches. In addition, we implemented the policies on an MPSoC hardware simulation platform and performed experiments on a cycle-accurate model of the 8-core Niagara multi-core architecture using benchmarks ranging from web-accessing to playing multimedia. Results show different trade-offs among the analyzed techniques regarding the thermal profile, the frequency setting, the power consumption and the implementation complexity

    Coordinated power management in heterogeneous processors

    Get PDF
    Coordinated Power Management in Heterogeneous Processors Indrani Paul 164 pages Directed by Dr. Sudhakar Yalamanchili With the end of Dennard scaling, the scaling of device feature size by itself no longer guarantees sustaining the performance improvement predicted by Moore’s Law. As industry moves to increasingly small feature sizes, performance scaling will become dominated by the physics of the computing environment and in particular by the transient behavior of interactions between power delivery, power management and thermal fields. Consequently, performance scaling must be improved by managing interactions between physical properties, which we refer to as processor physics, and system level performance metrics, thereby improving the overall efficiency of the system. The industry shift towards heterogeneous computing is in large part motivated by energy efficiency. While such tightly coupled systems benefit from reduced latency and improved performance, they also give rise to new management challenges due to phenomena such as physical asymmetry in thermal and power signatures between the diverse elements and functional asymmetry in performance. Power-performance tradeoffs in heterogeneous processors are determined by coupled behaviors between major components due to the i) on-die integration, ii) programming model and the iii) processor physics. Towards this end, this thesis demonstrates the needs for coordinated management of functional and physical resources of a heterogeneous system across all major compute and memory elements. It shows that the interactions among performance, power delivery and different types of coupling phenomena are not an artifact of an architecture instance, but is fundamental to the operation of many core and heterogeneous architectures. Managing such coupling effects is a central focus of this dissertation. This awareness has the potential to exert significant influence over the design of future power and performance management algorithms. The high-level contributions of this thesis are i) in-depth examination of characteristics and performance demands of emerging applications using hardware measurements and analysis from state-of-the-art heterogeneous processors and high-performance GPUs, ii) analysis of the effects of processor physics such as power and thermals on system level performance, iii) identification of a key set of run-time metrics that can be used to manage these effects, and iv) development and detailed evaluation of online coordinated power management techniques to optimize system level global metrics in heterogeneous CPU-GPU-memory processors.Ph.D
    corecore