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With technological advances, the number of cores integrated on a chip is increasing. This in turn is leading
to thermal constraints and thermal design challenges. Temperature gradients and hotspots not only affect
the performance of the system but also lead to unreliable circuit operation and affect the lifetime of the
chip. Meeting temperature constraints and reducing hotspots are critical for achieving reliable and efficient
operation of complex multi-core systems.

In this article, we analyze the use of four of the most promising families of online control techniques for
thermal management of multiprocessors system-on-chip (MPSoC). In particular, in our exploration, we aim
at achieving an online smooth thermal control action that minimizes the performance loss as well as the
computational and hardware overhead of embedding a thermal management system inside the MPSoC. The
definition of the optimization problem to tackle in this work considers the thermal profile of the system,
its evolution over time, and current time-varying workload requirements. Thus, this problem is formulated
as a finite-horizon optimal control problem, and we analyze the control features of different online thermal
control approaches. In addition, we implemented the policies on an MPSoC hardware simulation platform
and performed experiments on a cycle-accurate model of the eight-core Niagara multi-core architecture using
benchmarks ranging from Web-accessing to playing multimedia. Results show different trade-offs among
the analyzed techniques regarding the thermal profile, the frequency setting, the power consumption, and
the implementation complexity.
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1. INTRODUCTION

With technology scaling, the number of transistors available on a chip and their speed
of operation is increasing rapidly. Today, several commercial multi-core architectures
ranging from few cores to several tens of cores are available, such as Oracle’s Niagara
[Kongetira et al. 2005]. Power and thermal management are critical challenges for
multi-core systems [Borkar 1999]. Temperature gradients and hotspots not only affect
the performance of the system but also lead to unreliable circuit operation and reduce
the lifetime of the chip [Skadron et al. 2004].

Temperature gradients are a concern not only in space but also in time. Frequent
abrupt changes in working frequencies and voltages produce thermal cycles that raise
the failure rate of the system [Haase et al. 2006]. The effect of thermal cycling on the
reliability of a chip can be modeled by the Coffin-Manson relation, which links in an
exponential way the number of cycles to failure to the magnitude of thermal cycling
[JEDEC 2003]. In addition, abrupt power-mode transitions in voltage and frequency
scaling waste additional power [Jung and Pedram 2008].

In recent years, thermal management techniques have received a lot of attention.
Many state-of-the-art thermal control policies manage power consumption via dynamic
frequency and voltage scaling (DVFS) [Mukherjee and Memik 2006]. The structure of
state-of-the-art DVFS-based thermal management systems is reported in the diagram
of Figure 1.

The thermal management policy regulator monitors the multiprocessors system-on-
chip (MPSoC). Without loss of generality, we assume this MPSOC to be partitioned into
p islands (or subsystems), each with independent frequency and voltage settings. For
our purposes, we consider frequencies as inputs to the system, since we are abstracting
away the computation.

The regulator sets working frequencies according to a specific policy. The frequency
setting is performed by taking into account the current frequency setting, the thermal
profile coming from on-die thermal sensors, and the workload requirement coming from
the scheduler. For each functional unit i = 1..p, the workload is the minimum value of
the clock frequency for executing the required tasks within the specified system con-
straints. The regulator provides a frequency assignment that minimizes the difference
between the required and the achieved workload.

Several families of policies have been proposed in the literature for thermal manage-
ment in MPSoC designs [Zanini et al. 2009b, 2009a, 2010a, 2010b]. All these policies
have been developed and analyzed independently by developing specific problem formu-
lations. In this work, we propose for the first time a comprehensive, unified theoretical
formulation for the four main families of thermal management methods for MPSoCs.
Thus, this article provides the analytical and experimental basis for selecting among
the different state-of-the-art thermal control families based on the different require-
ments of the target MPSoC features (e.g., memory size, computing capabilities, etc.)
and constraints (e.g., peak temperature, thermal balancing, etc.). Our exploration has
shown that these different families are, in fact, closely related in the domain of model
predictive control (MPC) [Bemporad et al. 2002], which has received much attention
lately. In fact, all these policies aim at achieving an online smooth thermal control action
that minimizes, to a certain degree, the performance loss according to different com-
putational overhead and temperature observability accuracy constraints in the target
MPSoC. Hence, the different control models included in these thermal management
policies differ according to both the way architectural details (e.g., thermal models,
scheduling, etc.) are included in the problem formulation and the way the solution is
computed. On the one hand, distinctive key features in the problem formulation are the
workload history information and the predictive nature of the algorithm. On the other
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Fig. 1. Diagram of a generic DVFS-based thermal management system.

hand, distinctive key features in frequency assignment are the approximation error
and the way the solution is computed: explicitly or implicitly (i.e., pre-computed and
stored or calculated on the fly). To identify potential trade-offs among the compared
state-of-the-art techniques, we implemented the analyzed policies on a unified MPSoC
simulation platform. Results clearly show remarkably different trade-offs among the
analyzed techniques and highlight the potentials of the methods discussed in this work
for different types of thermal control requirements in MPSoC design.

The remainder of this article is organized as follows. Section 2 reviews the related
state-of-the-art work on thermal control techniques for MPSoC. Section 3 describes
the main thermal management policies under comparison. Section 4 describes the
mathematical model to represent the MPSoC state and working conditions, whereas
Section 5 presents our proposed unified thermal management formulation approach.
Our target eight-core MPSoC design and the complete experimental setup are
described in Section 6. Section 7 describes the results collected for the policies under
comparison from the MPSoC simulations. Finally, Section 8 summarizes the main
conclusions of this work.

2. RELATED WORK

Dynamic power management [Benini and De Micheli 1998] was developed first for sin-
gle processors and later extended to MPSoCs [Donald and Martonosi 2006; Mukherjee
and Memik 2006]. Most methods use dynamic voltage and frequency scaling (DVFS) for
processor power optimization and balancing [Mukherjee and Memik 2006]. The follow-
ing sections describe how DVFS has been embedded in different thermal management
policies to manage both the performance and the thermal profile of the MPSoC.

Early methods based on monitoring the idle time in processors have been presented in
Halfhill et al. [2000], where DVFS has been used to turn off functional units when they
were not being used. Later, more refined control policies working at the OS level were
proposed. Hanumaiah and Vrudhula [2012] and Xie and Hung [2006] present different
sets of scheduling mechanisms for MPSoCs that perform temperature management
at the system level. Donald and Martonosi [2006] obtain a significant reduction in
localized hotspots using thread migration techniques. In Lu et al. [1999] present a
software architecture that allows system designers to investigate power management
algorithms in a systematic fashion. Coskun et al. [2007] present a dynamic scheduling
algorithm with limited performance overhead. Simunic et al. [2004] discuss a methodol-
ogy for managing power consumption in networks on chip. Similarly, Ogras et al. [2004]
propose the control of power usage in processing elements (PEs) and routers by using
models predictive control at design time, and Bogdan et al. [2012] elaborate further on

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 1, Article 6, Pub. date: December 2012.



6:4 F. Zanini et al.

this approach by considering both PEs and routers in the control scheme for voltage and
frequency. However, they only consider power management and do not explore thermal
control aspects. Then, Merchant et al. [1996] present a variable speed processor that is
thermally controlled based on an estimation on the hottest junction temperature of the
chip. Bircher and John [2012] present processor counters that are used by the thermal
policy to get an online monitoring of the overall power consumption.

These methods exploit neither thermal nor computational history information. The
policy takes reactive decisions based on information related to the current thermal
profile and frequency setting of the MPSoC to control. In several recent works, his-
tory information has been exploited to improve thermal management policies. Coskun
et al. [2008a] exploits a temperature forecast technique based on an auto regressive
moving average model. Lee et al. [2010] and Kang et al. [2011] propose policies for 2D
and 3D MPSoC using autoregressive moving average applied to performance counters
to find the correlation between the applied voltage setting and the measured MPSoC
temperature. Coskun et al. [2008b] propose a novel technique that adapts the thermal
management policy to the current workload characteristics. The adaptation is done
online, exploiting information related to the workload history. Benini et al. [1999] and
Qiu et al. [1999] present a stochastic power management system. These methods take
power management decisions based on theories of discrete-time and continuous-time
Markov decision processes and stochastic networks. Two recent approaches [Cochran
and Reda 2010; Zhang and Srivastava 2010] describe two methodologies for achiev-
ing thermal prediction without completely relying on the thermal model—on thermal
sensors and on power consumption statistical properties.

More advanced solutions proposed in the last years have applied different concepts of
model-predictive control [Bemporad et al. 2002]. Wang et al. [2009] present a chip-level
power control algorithm based on optimal control theory. This algorithm can control the
power consumption of the MPSoC and can maintain the temperature of each core below
a specified threshold. Magno et al. [2009] tailor a similar concept for multimodal video
sensor nodes. In this article, we are considering and comparing four representative
policies of these advanced solutions.

Previous policies do not completely avoid hotspots, but simply reduce their frequency.
The main reason being that the interaction between the prediction method, the thermal
behavior of the MPSoC, and the frequency assignment of the MPSoC has not been ad-
dressed as a joint optimization problem. The action taken by the policy to avoid hotspots
does not address the problem from a global optimum perspective. This last point is the
common problem of all previously mentioned policies, and it will be more clear in the
following sections as the policies under comparison are described more in detail.

3. THEORETICAL ANALYSIS OF THERMAL MANAGEMENT POLICIES

In this section, we perform a comprehensive analysis of the four main families of ther-
mal management policies for MPSoCs and compare their main features with respect
to a wide set of metrics. In particular, the thermal policy techniques we consider are
the linear quadratic regulator [Kang et al. 2011; Coskun et al. 2008a; Zanini et al.
2009b] (i.e., unconstrained MPC with horizon equal to infinity), the explicit/implicit
model predictive control-based approach [Wang et al. 2009; Zanini et al. 2009a] (i.e.,
traditional MPC), the approximated explicit model predictive control policy [Zanini
et al. 2010a] (i.e., approximated MPC), and finally, the convex optimization-based ap-
proaches [Hanumaiah and Vrudhula 2012; Zanini et al. 2010b] (i.e., joint workload and
thermal profile prediction). This last technique is solved with a convex solver; however,
it is an MPC as well with a linear objective function.

In order to develop a complete approach to exploring the complete design space
of thermal management families, we have developed complete taxonomy and full
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Fig. 2. Overview of compared thermal management policies.

comparison of the features of the main four state-of-the-art control families using MPC
theory. Thus, we can perform a consistent classification regarding computation com-
plexity, future forecasting precision, memory requirements, adaptability to different
workload conditions at runtime, and smoothness in the peak temperature and thermal
balancing control. In particular, the two fundamental metrics we used to differentiate
the policies are complexity of the problem formulation and computational requirements
to reach a stable control solution. The table on Figure 2 locates the compared policies
graphically in this initial two-metric space.

The first row identifies thermal policies that do not take into account the workload
history to forecast the future workload. For instance, although the entire formulation
and solution of LQR is based on the idea of prediction, the prediction horizon (length
of the prediction) on the temperature profile of the system is fixed and equals infinity,
in this case. These policies only ensure that both power consumption and temperature
spatial gradients are minimized. Their objective function targets the minimization of
the difference between the target power consumption (required to get the work done)
and the real one, as well as temperature spatial gradients minimization.

The linear quadratic regulator (LQR) does not allow one to set any threshold con-
straint on the MPSoC maximum temperature. However, a threshold-based mechanism
is used to partially solve the problem.

The second row of Figure 2 identifies techniques that use prediction techniques to
forecast the MPSoC thermal profile. The approximated, explicit, and implicit MPC
belong to this family of policies. Their objective functions target the minimization of
undone work. Then, the constraints considered in the problem formulation are the
frequency range, the power-frequency relation, the thermal profile prediction horizon,
and the maximum accepted temperature.

The last row identifies techniques performing a prediction on the MPSoC thermal
profile by exploiting workload history information. An example is provided by convex
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optimization. The objective function targets the minimization of three objectives: un-
done work, temperature gradient, and power consumption. Then, two additional con-
straints are considered with respect to the first and second row, namely, workload
prediction and reliability of the workload prediction.

Each column of the table identifies a different level of computational requirement
needed to compute online the solution to the problem formulation. The policies be-
longing to the first column require only a lookup table and a small multiplier to be
implemented. The second column identifies techniques needing a lookup table and a
small computational unit to be implemented. Here, the level of complexity is higher.
For the third column, a lookup table and an average-to-large computational unit is
required. Algorithms requiring an online solver belong to the last column.

The most relevant trade-off policies are highlighted by the red squares. They cor-
respond to techniques taking into account the highest number of MPSoC properties
for a given computational requirement. They indeed perform the best in making the
problem formulation easy to solve, while exploiting the largest quantity of information
in the determination of the MPSoC frequency assignment.

4. MPSOC MODEL

In this section, we describe the MPSoC model used in the problem formulation for
thermal management and control. In particular, we propose models for the execution
frequency versus power consumption relationship, the workload requirements con-
straints, and the transient heat flow propagation within the MPSoC physical layout.

4.1. Frequency Input Model

Using the MPSoC structure described in Figure 1, we model synchronous MPSoCs
divided into p subsystems with p clocks that are viewed as the inputs to the system.
Vector fτ ε �p represents the value of the clock frequencies at time τ . The frequency
value of input i at time τ is (fτ )i. Clock frequencies are continuous, ranging from fmin
to a maximum frequency value fmax, and represent our optimization variable. The
previous statement is expressed by Equation (1).

fmin � fτ � fmax ∀ τ, (1)

where the symbol � means element-wise comparison, fmax ·1 = fmax, and 1 is a vector of
all ones of size p. The frequency vector represents our optimization variable. The value
of its element is assigned by solving the minimization problem described in following
sections. This minimization will try to achieve the desired performance requirements
while completely satisfying given constraints.

At time τ , the relation between the normalized value of power dissipation pτ ε �p

and the normalized frequency of operation fτ is expressed by Equation (2).
μfα

τ = pτ ∀ τ, (2)

where μ is a technology-dependent coefficient that adjusts the quadratic law of
Equation (2) with real power values of the MPSoC in a way that minimizes the
quadratic error between the two functions. The constant α depends on the technology
as well, and usually takes a value between 1 and 2. If α = 1, we have a linear depen-
dence (i.e., frequency scaling), while if 1 < α ≤ 2, we obtain a quadratic or subquadratic
dependence (i.e., DVFS). In the case study we used in this work, we used α = 2, because
we assumed that most of the devices are working in velocity saturation [Rabaey 2009].

4.2. Workload Model

The workload is generated from higher-level software layers (e.g., operating system).
In this article, we use a high-level abstraction of the workload. Using the MPSoC
structure described in Figure 1, for each of p islands, the workload is defined as the
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minimum value of the clock frequency that the functional unit should have to execute
the required tasks within the specified system constraints.

The workload requirement at time τ is defined as a vector wτ ε �p, where (wτ )i is the
workload requirement value for input i at time τ . In other word, the clock frequency
that cores associated with input i from time τ to time τ+1 should have in order to satisfy
the desired performance requirement coming from the scheduler is denoted by (wτ )i.

Our model is assumed to be continuous and ranging from zero to a maximum value
fmax—the maximum frequency at which the cores can process data—namely, the
following.

0 � wτ � fmax ∀ τ. (3)

When (wτ )i > (fτ )i, the workload cannot be processed, and so it needs to be stored
and rescheduled in the following clock cycles. The way we measure the performance of
the system in achieving the requested workload requirements at time τ is given by the
vector uτ ε �p.

uτ = wτ − fτ . (4)

We call uτ the undone workload at time τ , and it expresses the difference at time
τ between the requested workload and the workload that is actually executed by the
MPSoC.

4.3. Heat Propagation Model

Our thermal model is based on finite-element analysis, as it has been commonly used
by well-known system-level thermal analysis tools [Skadron et al. 2004; Atienza et al.
2008]. Two layers have been used in the vertical direction, namely, the silicon layer
and the copper layer. The first one models the heat dissipation of integrated devices,
while the second one models the metal wiring and the heat spreader. Though this
model is simple, it is widely used in state-of-the-art works [Murali et al. 2008; Coskun
et al. 2008a, 2008b]. Moreover, this modeling approach has been proven to be accurate
enough for system-level thermal characterization in the case of 3D MPSoC with liquid
cooling technologies [Coskun et al. 2010; Sabry et al. 2010].

The chip floorplan has been divided into several thermal cells of cubic shape, and
each functional unit in the floorplan can be represented by one or more thermal cells
of the silicon layer. Thermal modeling considers heat conductances and capacitances
of the cells, as computed and validated in Skadron et al. [2004], Atienza et al. [2008],
and Huang et al. [2008]. The discretization of the resulting differential equations can
be solved using a discrete-time, linear, and time-invariant system [Zanini et al. 2009a].

The considered finite-element analysis for thermal modeling can be represented in
a state-space form. In particular, in our case, by measuring all temperatures as offsets
from the room temperature, the heat propagation process can be represented in the
following way.

tτ+1 = Atτ + Bpτ , (5)

t̃τ = Ctτ , (6)

At time τ , the temperature of the next simulation step of cell i, that is, (tτ+1)i can be
computed thanks to Equation (5). The relationship between the frequency assignment
at time τ and the power consumption is expressed by Equation (2). Matrices A ε �2n×2n

and B ε �2n×p describe the heat propagation properties of the MPSoC. The total number
of cells in the silicon plus the copper layer is 2n. Equation (6) describes the choice on
the number of temperature sensors inside the MPSoC, which needs to be at least equal
to the minimum number of terms of the state-space form for each MPSoC to have a full
visibility of the temperature. Then, matrix C ε �s×2n relates the temperature value
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of each cell to the temperature measurement of a particular sensor. In this model,
we realistically assume that only a limited number of thermal sensors exists in the
final MPSoC, thus, the temperature can be measured only in that limited number of
locations or thermal cells. This number is different for each considered MPSoC, but the
proposed formulation is still valid and applicable.

In the model described in the previous paragraph, a state is required for every
block composing the floorplan. The reason being that we need 2n states to store n
temperatures for each of the 2 layers—each one composed of n cells. This requirement
is expensive in terms of computational requirements for high-accuracy MPSoC models.
The state of the system, to avoid inaccuracy mismatches between the model and the real
MPSoC, is estimated from real-time measurements. The larger the number of states
modeling the MPSoC, the larger the number of sensors required for its state estimation.

Indeed, as the model requires a state for every block composing the floorplan, it is
expensive in terms of computational requirements for high-accuracy thermal modeling
of MPSoC designs. Hence, to reduce the number of states, we perform a model order re-
duction using a Gramian-based balancing of state-space realizations [Laub et al. 1987].
We have selected this technique because it can perform an equivalent transformation
of the states of the system in order to produce a new set of modes ordered by their
importance. Therefore, in the context of thermal modeling, the modes with negligible
contribution to the input-output response (i.e., thermal response) are deleted by en-
forcing the matching of the steady-state thermal response (DC gains of the RC thermal
network representation) between the original system and the reduced one. Thus, the
number of states of the new reduced order model depends on the specific MPSoC being
modeled, and in our formulation, this number (l) is parameterized without any loss of
generality. Therefore, we can now describe the full MPSoC thermal model in a general
way using the following system of equations.

xτ+1 = Ãxτ + B̃pτ ; (7)

t̃τ = C̃xτ , (8)

with matrix Ã ε �l×l and matrix B̃ ε �l×p. The number of states of the new thermal
model is l, and p is the number of frequency island in the MPSoC. Then, Equation (7),
which is analogous to Equation (5), describes the state update for the reduced order
model of the MPSoC. However, in this case, the states do not directly represent tem-
perature values inside a cell, but accumulated thermal figures in groups of them.

Matrix C̃ ε �s×l in Equation (8) relates the value of the states to temperature mea-
surements in s specific locations inside the MPSoC. This equation is analogous to
Equation (6) and describes how the temperature measurements can be derived from
the state vector x. To this end, the thermal model is adjusted dynamically based on
the precise on-chip temperature measurements of the actual MPSoC thermal sensors.
Thus, on-chip thermal sensors are used to recalibrate at runtime for possible impreci-
sions of the MPSoC thermal model, which produces a fully accurate MPSoC thermal
management scheme.

5. UNIFIED PROBLEM FORMULATION FOR THERMAL MANAGEMENT FAMILIES

All the main classes of policies for thermal control target the fulfillment of a common
set of objectives in order to give bounds on MPSoC runtime performance and to prevent
thermal runaway due to thermal control instabilities. First, they try to ensure that the
maximum MPSoC temperature never exceeds a predefined threshold. Second, they try
to avoid abrupt frequency and temperature variations, both over time and over space.
Third, their objective is also to minimize the requested (but not executed) work from the
scheduler. Thus, the control problem to fulfill all these requirements can be formalized
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in the following way.

J =
h∑

τ=1

(‖Qxτ‖g + ‖Rpτ‖j + ‖Tuτ‖b
)
. (9)

min J; (10)
subject to : 0 � fτ � fmax ∀ τ ; (11)

xτ+1 = Ãxτ + B̃pτ ∀ τ ; (12)

C̃xτ+1 � tmax ∀ τ ; (13)
uτ � 0 ∀ τ ; (14)
uτ = wτ − fτ ∀ τ ; (15)
pτ � μfα

τ ∀ τ. (16)

Function J is expressed by three sums, where the summation index τ ranges from
1 to h. During these h future steps the system tries to minimize the cost function J
(Equation (10)) and computes the frequency assignment for these steps.

The first term ‖Qxτ‖g is the g norm of the state vector x weighted by matrix Q.
Matrix Q is related to hotspot minimization and thermal balancing, and its coefficients
can be tuned to give the relative important to one, with respect to the other factor.
The importance will be tuned accordingly for the different considered thermal control
policies, as shown in Section 6.4; otherwise, in our experiments we consider an equal
importance to both factors. The second term ‖Rpτ‖j is the j norm of the input power
vector p weighted by matrix R. Matrix R is diagonal and quantifies the importance that
power minimization has in the optimization process. The third term ‖Tuτ‖b is the b
norm of the amount of predicted required workload that has not been executed. Matrix
T is diagonal and quantifies the importance that executing the workload required from
the scheduler has in the optimization process.

Then, as optimization constraints in the interval with the same range as the
summation index τ , Equation (11) first defines the range of working frequencies that
can be used. It enables a continuous range of frequency settings, but this does not
prevent the optimization problem from adding in a limitation on the number of allowed
frequency values. Then, Equation (12) defines the evolution of the system according to
the present state and inputs. Next, Equation (13) states that temperature constraints
should be respected at all times and in all specified locations. The maximum allowed
temperature is T max. Then tmax = T max ·1. Since the system cannot execute jobs that
have not arrived, every entry of uτ has to be larger than or equal to 0, as stated by
Equation (14). The undone work at time τ , uτ , is subsequently defined by Equation (15).
To this end, the relation between the power vector p and the working frequencies is
expressed by Equation (2). Nonetheless, in Equation (16), we relax Equation (2) to
an inequality. Overall, it can be proven that the resulting relaxed convex problem is
equivalent to the original problem with the quadratic equality constraint (cf. [Boyd
and Vandenberge 2004], p. 191).

The control problem is formulated over an interval of h time steps, which starts at
current time τ . For this reason, the approach is said to be predictive. The result of the
optimization is an optimal sequence of future control moves (i.e., frequency settings for
the cores). Only the first sample of such a sequence is actually applied to the process; the
remaining moves are discarded. At the next time step, a new optimal control problem
based on new temperature measurements and required frequencies is solved over a
shifted prediction horizon. Such a receding-horizon [Bemporad et al. 2002] mechanism
represents a way of transforming an open-loop design methodology into a feedback
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Fig. 3. Linear quadratic regulator-based policy block diagram.

one, as at every time step, the input applied to the process depends on the most recent
measurements.

It is important to notice that the proposed problem formulation is applied to various
types of MPSoC architectures. User-defined parameters contained in matrices Q, R, T,
the prediction horizon h, and the norms indices g, j, and b have influence on the per-
formance of the implemented policy. These parameters indeed drive the optimization
target trade-offs between power minimization, satisfaction of user requirements, and
thermal gradients.

5.1. Linear Quadratic Regulator

The linear quadratic regulator targets temperature and power difference minimization
using a linear discrete time system.

We next show how the generic model can be specialized to be a LQR. When the
maximum MPSoC temperature is less than a certain threshold T max, the overall
system (presented in Figure 3) is a linear feedback system, where MPSoC frequencies
are calculated simply by subtracting from the workload requirement wτ , the product
of the state vector xτ and the controller matrix gain K. The state vector x is related
to the thermal profile by Equation (8). The emergency saturation block (in Figure 3)
just saturates the regulated frequencies to a certain value when the maximum MPSoC
temperature is higher than the threshold T max. This allows the MPSoC to cool down
and to reduce its maximum temperature in case of overheating.

5.1.1. Problem Formulation. By looking at the general model of Equations (9)–(16), the
problem can be formulated in the following way.

The horizon is infinite, and the reference (the requested workload wτ ) is assumed to
be constant over all this period. Matrix T is a zero matrix, and the norm g = j = 2.
Thus, the objective function in this case is a squared 2-norm (i.e., a quadratic function).
Since this method is defined only for linear regulation, it is not possible to include any
constraint inside the problem formulation. For this reason, no frequency, temperature
or undone work constraint can be added. However, all these constraints are considered
after the optimization. Frequencies outside the frequency range are discarded. A bias
signal wt is added to the control loop to force the system to execute the requested
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workload wt. Finally, an emergency saturation block is added to avoid the maximum
MPSoC temperature being higher than the threshold T max.

5.1.2. Design Phase. The state feedback controller gain K presented in Franklin et al.
[1997] can be computed using the infinite horizon solution of the discrete-time Riccati
equation associated with this system. The solution exists only if matrix Q is positive
semi-definite and matrix R is positive definite (i.e., identity matrix). According to the
way matrix Q and R have been defined (see Section 5), they always fulfill the require-
ments. While the original system is passive, the reduced system is not necessarily
passive. However, the reduced system is stabilizable, since it is passive and since bal-
anced reduction retains stabilizability. Consequently, all LQR controllers get properly
stabilized in the case of MPSoC floorplans that we are considering [Franklin et al. 1997].

5.1.3. Runtime Phase. If the MPSoC maximum temperature is under a predefined
threshold during the online optimization phase, the optimum frequency assignment
to achieve thermal balancing is calculated using the following equation.

fτ+1 = wτ − K · xτ , (17)

where at time τ , xτ is the current state and wτ is the workload required to fulfill
performance requirements. The number of multiplication and additions Nop required
every time the policy is applied at runtime is given by the following equation.

Nop = l · p, (18)

where l is the dimension of the state vector and p is the number of cores of the system.

5.2. Explicit/Implicit MPC

In general, MPC is an optimal control approach aimed at maximizing a performance
metric for a linear dynamic system under input/output constraints. The solution of
the optimization problem provides the feedback control actions that will determine
the frequency setting of the following clock cycles. The policy can be implemented by
embedding a numerical solver in the real-time control code (implicit solver), or can
be precomputed offline and evaluated through a lookup table of linear feedback gains
(explicit solver). Figure 4 shows the block diagram of an explicit MPC-based policy. The
plant to control is the MPSoC that we want to control. In the case of implicit MPC,
the orange dotted box is implemented using an embedded solver that solves online the
frequency assignment problem. The block diagram is shown in Figure 5.

5.2.1. Problem Formulation. According to the general model of Equations (9)–(16), the
formulation is the following.

The horizon is finite and equal to h, and the reference (the requested workload wτ )
is assumed to be constant over all this period. The state and the power cost function
matrices Q and R are set to be null matrices. Matrix T is the identity matrix and the
norm b = 2. Thus, the objective function is a quadratic form that minimizes the undone
workload. All the others constraints expressed by Equations (11)–(16) are considered
inside the problem formulation.

5.2.2. Implicit versus Explicit Regulator. The proposed control strategy can be implemented
in two different ways. The first one is called implicit and requires solving the mini-
mization problem online every time the policy is applied. Thus, a significant amount
of hardware resources are needed, since the result must be computed in a time frame
shorter than the thermal time constants of the MPSoC.

An alternative approach has been proposed [Bemporad et al. 2002]. In this case, the
problem is solved offline in a way that makes explicit the dependence of the solution to
the frequency assignment problem fα

τ on input vectors fα
τ , wα

τ , and xτ . The state space
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Fig. 4. Explicit model predictive control-based policy block diagram.

Fig. 5. Embedded solver-based policy block diagram.

can be divided into a set of regions bounded by linear inequalities (i.e., a polytope), and
in each region, a different linear controller can be specified and computed offline.

Then, the controller selection can be efficiently performed online by simply check-
ing region boundaries. The resulting controller structure is defined in any of the M
partitions as follows.

[
fα
τ+1

] = Fj

⎡
⎣

xτ

fα
τ

wα
τ

⎤
⎦ + gj if Hj

⎡
⎣

xτ

fα
τ

wα
τ

⎤
⎦ ≤ kj, (19)

where matrix Fj and vector gj are the gain and offset coefficients of the jth region (cf.
Figure 4). Each region is identified by affine inequalities defined by the matrix Hj and
vector kj in Equation (19) (see [Bemporad et al. 2002] for more details).
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If the partitions are properly stored, the number of operations depends logarithmi-
cally on the partitions [Tondel et al. 2003]. Nonetheless, while the computer code for
evaluating MPC in the explicit form is certainly simpler than the code embedding the
QP solver, from the point of view of memory requirements, the explicit form may be
more demanding, as M and the matrices to be stored in lookup tables may be large.

The state dimension and the length of the prediction horizon h affects the number
of regions. There is indeed (in a worst-case scenario) an exponential relation between
these last two parameters. However, the longer the prediction horizon is, the better the
policy performance is in most cases. Thus, for large horizons, an implicit implementa-
tion may be more convenient in terms of power dissipation and area consumption than
an explicit one or viceversa.

According to Equation (19), the number of coefficients Nc to implement the optimum
explicit approach of our method is given by the following expression.

Nc = Nreg · (

Fj︷ ︸︸ ︷
2p(p + l/2) +

gj︷︸︸︷
p +

Hj︷ ︸︸ ︷
2Navg · (p + l/2) +

kj︷︸︸︷
Navg). (20)

Nreg is the number of regions of the explicit controller, p is the number of processing
cores, and l is the dimension of the state vector x. NAV G is the average number of affine
inequalities that identifies each region. In this equation, the symbol ︷︸︸︷ highlights
contributions for each of the matrices in Equation (19).

The computational effort of the evaluation can be computed from Tondel et al.
[2003] and Equation (19) and, assuming an average-case scenario, is provided by the
following equation.

Ncomp = 1.7 · log2(Nreg); (21)
NMult−Add = 2p(p + l/2), (22)

where Ncomp is the number of required comparisons and NMult−Add is the number of
required multiplications/additions.

5.3. Approximated Explicit Predictive Policy

This method solves with an approximate algorithm the region partitioning of the op-
timum explicit approach presented in Section 5.2. This method has similarities to the
explicit approach, and both its block diagram and problem formulation are shown in
Figure 4. Compared with the optimum approach (see Section 5.2), it provides a signif-
icant reduction in hardware requirements and computational cost at the expense of a
small loss in accuracy. This enables an increase of the prediction length and the accu-
racy of the MPSoC model and, therefore, the performance of the method. This policy is
based on the work of Zanini et al. [2010b].

The solution to the optimization problem is computed offline in a way that makes
explicit the dependence of the solution to the frequency assignment problem fτ+1 on
input parameters wτ and xτ . The resulting explicit controller is piece-wise polynomial.
In other words, the state space can be divided by a set of regions bounded by linear
inequalities (i.e., a polytope), and in each region, a different polynomial controller
can be specified and computed offline [Jones and Morari 2010]. Then, the controller
selection can be efficiently performed online by simply checking region boundaries.

5.3.1. Approximation Algorithm. The proposed method begins by computing an approx-
imate convex piece-wise affine (PWA) lower bound of the optimal cost function J de-
scribed in Equations (9)–(16). Since the approach proceeds in an incremental greedy-
optimal fashion, it is possible to stop the process when any desired level of complexity,
or approximation accuracy, is reached. The control law is then derived from this lower
bound using the barycentric technique proposed in Warren et al. [2007]. The result is
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a nonlinear and smooth piece-wise polynomial control law. In particular, the algorithm
is divided into two main phases.

In this algorithm, we first compute the approximation level by selecting a number
of regions to distinguish in the thermal response and control of the system. Then, the
bounds of that particular region are extended with the thermal response corner cases
so that the approximation level is maximally reduced in the considered region and the
whole design space is covered. It can be shown that a specific desired approximation
error can be achieved in finite time for any convex function [Boyd and Vandenberge
2004]. The final result is a smooth and piece-wise polynomial thermal control approach.

5.4. Convex Optimization-Based Policies

Figure 5 shows the block diagram of this family of policies. In this case, there is an
embedded solver that computes online the problem formulation.

5.4.1. Problem Formulation. According to the general model of Equations (9)–(16), the
formulation is the following.

The horizon is finite and equal to h. The state cost matrix Q is set to be a null matrix.
Matrix R, responsible for the power minimization, is an identity matrix, and the norm
j = 1. All the other constraints expressed by Equations (11)–(16) are considered inside
the problem formulation.

The major differences with respect to previous problem formulations is due to the
fact that in this case, the predicted profile is asummed to be time-varying, whereas
before it was considered constant. Therefore, in this case, matrix T is time varying, the
norm b = 1, and the reference (i.e., the requested workload wτ ) is time varying as well.
The algorithm indeed dynamically predicts the future workload requirements wτ , and
the reliability of the estimation is embedded in the problem formulation by matrix T.
Matrix T relates to the accuracy of the estimation and it is updated online according to
the predicted workoad. The more the prediction error, the less the undone work will be
considered in the optimization process. Thus, the better the prediction, the higher the
weight on the undone workload for time horizons τ > 1 far from the current one of τ = 0.

5.4.2. Workload Prediction and Its Reliability. To increase the performance of the proposed
policy, history information about the task arrival process is exploited by the algorithm.
These data are used to make predictions on future workload requirements. Reliability
information on how good the prediction is are also considered in the optimization
process.

The prediction is done by using a linear model to perform a best dth order polyno-
mial fit. This polynomial fit is performed by minimizing the error within the observed
window of temperatures by using the following function.

‖wτ − Ǎeτ‖2
2, (23)

where wτ contains the frequency requirements ∀τ = 1..N, where N is the length of
the observation window of historical data. Vector eτ ε �d+1 and Ǎ ε �d+1,N+h are used
in the polynomial interpolation process. Equation (23) can be solved as a least squares
minimization problem to derive vector eτ . The prediction on the future workload re-
quirement is performed by assuming that the linear model just derived will hold for
the next h data samples. With this assumption, the future workload requirement is
given by following equation.

ŵτ = Ǎeτ , ∀ N ≤ τ ≤ N + h, (24)

where ŵτ ε �p for τ > N is the predicted workload requirement at time τ .
The way we take into account the accuracy of this prediction is embedded in the

weighting matrix T. This matrix is chosen according to the reliability of the workload
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Fig. 6. Floorplan used of the Niagara-1 multi-core case study.

prediction. We have chosen these parameters to achieve a good prediction according
to empirical studies performed on different benchmarks [Coskun et al. 2008a] for
representative examples of the MPSoCs under study in this work.

6. EXPERIMENTAL SETUP

In this section, we summarize the target MPSoC architecture, where the different
families of thermal control algorithms are evaluated, as well as how we interface the
cycle-accurate MPSoC simulator of the target architecture with the various control
modules we have developed to implement the different algorithms.

6.1. MPSoC Model and Workloads

The MPSoC architecture we are considering models the eight-core Niagara-1
(UltraSparc T1) architecture from Oracle [Kongetira et al. 2005]. The floorplan of
the Niagara-1 multi-core architecture is presented in Figure 6. The size of the state
vector after the model order reduction is 12 elements. Thus, the minimum amount
of sensors to fully characterize the Niagara-1 floorplan is 12. However, in order to
evaluate the degradation of the thermal measurements due model order reduction, we
have evaluated configurations ranging from this minimum number of sensors up to
having one sensor per element in the silicon layer, namely, a total of 30 sensors. Our
results indicate that there is a negligible benefit in accuracy when more sensors are
used. Similarly, the floorplan has been modeled using blocks of 3mm side each, and in
case a specific floorplan unit has a larger size, it has been decomposed into multiple
blocks. Then, the values of technological parameters and coefficients have been derived
from Sabry [2005] and Kongetira et al. [2005]. Silicon conductivity and capacitance
are, respectively, 130W/(m · K) and 1635660J/(m3 · K). Wiring layer conductivity and
capacitance are, respectively, 2.25W/(m· K) and 2174502J/(m3 · K). The heat spreader
resistance is set to 2W/◦K. This architecture has a maximum operating frequency of
1.2GHz, and the maximum power consumption of each processor core at this frequency
is 4W [Kongetira et al. 2005]. The interconnect power consumption for each block has
been assumed to be proportional to the frequency setting of that specific block. To
implement the voltage and frequency scaling techniques, we use frequencies ranging
from 171MHz to 1.2GHz. In this range, only specific values of frequencies are allowed;
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Table I. Comparative Table of Workload Characteristics

Benchmark Average CPU Load L2 I-Miss L2 D-Miss FP unit

1 Web-med 53.12% 12.9 167.7 31.2
2 Web high 92.87% 67.6 288.7 31.2
3 Database 17.75% 6.5 102.3 5.9
4 Web+DB 75.12% 21.5 115.3 24.1
5 gcc 15.25% 31.7 96.2 18.1
6 gzip 9 2 57 0.2
7 Mplayer 6.5% 9.6 136 1
8 Mplayer+Web 26.62% 9.1 66.8 29.9

thus, the values for the frequencies are expressed by Equation (25).

f = 6 · 109

Df
∀ Df , subj. to : 5 ≤ Df ≤ 35, (25)

where Df is the integer division factor needed by the clock tree generator.
During the execution of the policies at runtime, the frequency from continuous to

discrete-time is mapped according to a round half up strategy. Thus, the processor
can operate at a higher frequency than the required one in order to meet the current
workload deadline. In this case, the processor would be dissipating more energy than
the theoretical minimum required to execute a specific workload.

We modeled the different workloads of a mix of different benchmarks, ranging
from Web-accessing to playing multimedia [Coskun et al. 2008a, 2008b]. To this end,
we analyzed the percentage of CPU load, I/O utilization, and memory access rates
of these different workloads, and we implemented in the job scheduler the different
observed workloads features by varying the load of a set of large multiplication
matrices and memory accesses intervals. The recorded execution characteristics are
shown in Table I. Moreover, using cpustat, we recorded the cache misses and floating
point (FP) instructions per 100K instructions in our cycle-accurate MPSoC simulation
framework (Section 6.1), and they are also reported in Table I.

The average CPU load is 62% and ranges during the runtime execution from 10%
to 100%. Jobs have an average duration of 2ms but oscillate from 0.1ms to 10ms. The
experiments are conducted using a large trace with around 60,000 tasks, which include
the behaviors of the workloads shown in Table I, in order to have several hundreds of
seconds for realistic thermal behavior simulation during actual system execution. As
an initial condition, we assumed the system to be in off state and at room temperature
(300◦K).

We compute the leakage power of processing cores and functional units as a function
of their area and specific temperature. We assume a base leakage power density of
0.25W/mm2 at 383◦K for 90nm, as in Bose [2003]. To accounts for the temperature
effects on leakage power, and we use the model proposed in Coskun et al. [2010]. In
this case, the leakage power at a temperature To, ◦K, is given by: P(T ) = Po · eβ(T −383),
where Po is the leakage power at 383◦K and β is a technology dependent coefficient.
Finally, we set β = 0.017 [Sabry et al. 2010]. For the techniques under comparison,
the error by neglecting the leakage power in the problem formulation is less than 0.3
degrees (see Figure 10).

The cycle-accurate thermal simulation framework we extended to validate the results
presented in this work is described in Atienza et al. [2008] and Murali et al. [2008]. This
framework includes a validated thermal model for 90nm technology using a 3D finite
element method simulator. We have chosen this framework due to the high thermal
accuracy achieved by this framework due to its previous calibration for the target
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Fig. 7. Simulation infrastructure block diagram.

MPSoC architecture technology versus other (more generic) state-of-the-art MPSoC
thermal simulation approaches.

6.2. Virtual Platform Environment and DVFS Support

The block diagram of our Niagara-1 MPSoC (UltraSparc T1 [Kongetira et al. 2005]) sim-
ulation infrastructure is shown in Figure 7. The simulation architecture is a SystemC-
based simulation platform. The main device consists of eight 32-bit cores, and four
shared memories (L2 Cache Banks(0..3)). Private memories are assumed to be inside
each core (by core, we refer to a processing unit and a private memory). All these units
communicate with each other by a crossbar interconnect. A floating point unit is also
connected to it. A DRAM interface connects to main memory. The virtual platform
environment also provides power statistics for the several hardware modules in the
simulated platform. The simulation is based on real applications generating functional
data traffic on the target architecture.

The virtual platform supports different working frequencies and voltages for each
processor core. For this purpose, a variable clock tree generator (see Equation (25)),
programmable registers, and a synchronization module have been integrated in the
simulation platform. The clock tree generator feeds the hardware modules of the plat-
form (processors, memories, etc.) with independent and frequency-scaled clock trees.
The frequency-scaled clock trees are generated by means of frequency dividers (shift
counters), whose delay can be configured by users at design time. The scheduling al-
gorithm simply gives the queuing job to the first available functional unit that has
enough resources to execute it.

Scaling the clock frequency of the processors creates a synchronization issue with the
system bus, which is assumed to work at the maximum frequency. The processing cores
and the bus interface communicate by means of a handshaking protocol which assumes
the same working frequency at both sides. Therefore, a synchronization module was
designed, containing two dual-ported FIFOs wherein data and addresses sent by the
bus interface to the processor and vice versa are stored. This module works with a dual
clock: one feeding the core side and one feeding the bus interface side. Finally, as shown
in Figure 7, the module also takes care of properly interfacing processor to bus signals,
and a dedicated sub-module is implemented for this purpose.
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6.3. Support for Thermal Management Policies

To simulate thermal management policies, we added a thermal management (TM) unit
to the network of Figure 7. This unit is a SystemC module that supports intercom-
munication between the thermal policies written in Matlab with the SystemC-based
platform. This collects information related to current runtime power consumption,
freezes the SystemC simulation, and starts a Matlab-based function that implements
the thermal management policies. Just collected information is passed to this func-
tion. The Matlab function analyzes these data and solves the frequency assignment
problem. The solution represents the frequency setting for the next cycles, until the
thermal policy is applied again after Tpol seconds. Once the solution is computed, the
TM unit unfreezes the simulation and waits a specific amount of time Tcp before setting
frequencies and voltages among the cores and the interconnect. Tcp models the time
needed by the actual hardware implementation of the policy to solve the frequency
assignment problem.

In our case, we assumed a worse case scenario by setting Tcp equal to 50μs. In
this case, to make this assumption real, we assume that all policies are executed in
optimized software implementations and that all the frequency transition overheads
are included. Optimized implementations of this software take a few microseconds (for
the case study described in the experimental set up section) to run on a state-of-the-
art computing machine [Eldar et al. 2010; Boyd and Wegbreit 2007], which is at least
three orders of magnitude less than the interval between two consequent applications
of the policy (from 10ms to 100ms). For the previously mentioned reasons, most of the
Tcp re-synchronization penalty is related to the DVFS setup time. However, according
to the technology used, it is possible to increase or decrease this time to any value
from 0 to the time between two consecutive applications of the policy. In this work, we
were mostly focused on comparing the policies rather than optimizing them with an
extremely fine granularity tuning of all their parameters.

6.4. Policy Setups

In all our experiments, the thermal management policies are applied every Tpol = 10ms,
while the simulation step for the discrete time integration of the RC thermal model
(Section 3) has been set to 200μs. The maximum temperature limit is set to 370◦K. The
room temperature is set to 300◦K. In the problem formulation, we used α = 2 [Murali
et al. 2008] to establish the relation between the frequency setting and the power
consumption, because we assumed that devices are working in velocity saturation
[Rabaey 2009].

—No thermal control (no policy). In this case, there is no thermal control strategy being
applied to the MPSoC under consideration. Thus, the MPSoC operates always at
the required frequency to optimize performance according to the required workload
at each moment in time, without considering any possible temperature constraint.
Although this is not a realistic situation, we include it in our experiments as the ideal
situation in case no thermal concerns were to outline the severity of the thermal
problem.

—Threshold-based DVFS (TB-DVFS). This policy sets the frequencies of the cores
according to the requirements coming from the scheduler. If the maximum chip
temperature goes above a specified threshold (in this case study, set to 370◦K), the
policy sets the frequency up to 62.5% of the maximum [Murali et al. 2008].

—Linear quadratic regulator (LQR). This setting tries to keep a uniform thermal profile
rather than minimizing power consumption. Thus, in the problem formulation, we
minimize thermal unbalance while respecting the power limit. According to our
experimental model, where the number of cores p equals 8 and n equals 30, the
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Table II. Table of MPC-Based Thermal Approaches Having Different Approximation Complexities

Controller Number Number Comp. effort Storage Space Time Time
of of (#operations) (#coefficients) Design Run

Regions Vertices Search Control Law Total Search Control Law Total [s] [ms]
MPC-100 1 66 0 858 858 0 366 366 40.13 4.29
MPC-200 14 136 30 1,025 1,055 204 915 119 46.92 5.27
MPC-300 32 233 50 1,184 1,234 1560 1,770 3,330 50.75 6.17
MPC-400 51 328 60 1,286 1,346 3186 2,778 5,964 55.90 6.73
MPC-500 72 431 60 1,335 1,395 4986 3,771 8,757 63.61 6.97
MPC-600 87 528 65 1,354 1,419 7212 4,683 11,859 71.46 7.09
MPC-opt 3,770 89,552 16 89,568 89,552 60,320 149,872 196.32 447.84

number of required coefficients to store multiplications and additions equal to 30·8 =
240. These operations need to be performed every Tpol.

—Model predictive control-based policy (MPC). To design the regulator, we used a
Matlab-based development platform provided by Kvasnica et al. [2004]. Table II
compares the approximated approach with the optimum approach proposed in Zanini
et al. [2009a]. With the optimum approach, we refer to the control policy presented
in Section 5.2, while with the approximated approach, we refer to the control policy
presented in Section 5.3. The resulting polynomial control laws range, from 100 to
600 vertices. The penultimate column reports the time in seconds that a MacBook
Pro (2.8GHz, Core 2 Duo, 4GB RAM) took to design the controllers. By comparing
with the optimal controller, we get a reduction in the computation time ranging from
2.7x to 4.9x. The last column reports the time needed to runtime execute the policy,
assuming a processor able to execute 200K FLOPs. A reduction versus the optimum
approach ranging from 63.1x to 104.4x can be achieved.

—Convex optimization-based policy (Convex-opt). The linear predictor has been de-
signed using a 3rd order polynomial equation [Zanini et al. 2010a], an observation
window of 600ms, and a prediction length equal to 50ms in the future. We assumed
two frequency inputs controlling the MPSoC. The first frequency input controls cores
1, 4, 5, and 8. The second input sets the frequency value for cores 2, 3, 6, and 7.
We suppose that the scheduler performs a workload balancing strategy on the cores
to have all the cores running with potentially the same (or very similar) active fre-
quency. By doing this, we assume that the power consumption of the cores depends
mostly on their frequency setting. To solve the problem formulation, we use CVX
[Grant et al. 2012], an efficient convex optimization solver. Optimized implementa-
tions of this software take a few microseconds (for the case study described in the
experimental setup section) to run on a state-of-the-art computing machine [Eldar
et al. 2010; Boyd and Wegbreit 2007], which is at least three orders of magnitude
less than the interval between two consequent applications of the policy (from 10ms
to 100ms). The computation overhead of the online controller has no effect on the
workload performance, because this overhead is really small (less than 1%) com-
pared to the 10ms period between two consequent executions of the online controller.
Moreover, any modification to the threshold temperature will also not increase the
overhead of the online controller, because the number of variables remains the same
in the optimization problem.

7. EXPERIMENTAL RESULTS

This section compares the four families of proposed thermal control methods. The
executed workload and working temperature trade-offs are shown in Section 7.1, while
Section 7.2 shows the analysis of thermal and frequency variations for each policy.
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Fig. 8. No thermal control (no policy). Temperature vs. executed workload normalized to the one that can
be executed by the MPSoC running with the highest possible frequency setting. The maximum temperature
limit is set to 370◦K, except in the case when no thermal control (no policy) is applied.

7.1. Executed Workload and Working Temperature

Figure 8 compares the performance of the policies by plotting the normalized exe-
cuted workload versus the thermal profile. The normalized executed workload is the
workload executed by the policies normalized to the one that can be executed by the
MPSoC running with the highest allowable frequency setting. The top plot analyzes
the average maximum chip temperature, while the bottom shows the maximum MP-
SoC temperature peak. The average maximum chip temperature is the average of the
maximum temperature over all the MPSoC.

As these figures show, in the case that no thermal policy is used (upper-right circle),
even for an average workload of less than 65%, the maximum chip temperature gets to
almost 398o K. However, all the thermal policies compared in this work are able to avoid
this problem. Indeed, the punctual maximum temperature peak of all the policies is
less than 370.46o K. The reason for this extra 0.46o K (above the predefined maximum
temperature threshold 370◦K) is the mismatch between the detailed thermal model
used in the MPSoC thermal simulation framework [Atienza et al. 2008; Murali et al.
2008] and the model used by the thermal control strategies definition.

The best performance in terms of executed workload is provided by convex
optimization-based policy. This policy outperforms the TB-DVFS in terms of executed
workload by a factor of 50%, by having approximately the same average tempera-
ture. The approximated MPCs (with 200–300 vertices) provide almost the same per-
formance with very small differences in temperatures. The optimum MPC provides
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(a) Normalized executed workload vs. temporal temperature gradient.

(b) Normalized executed workload vs. spatial temperature gradient.

(c) Spatial vs. temporal temperature gradient.

Fig. 9. Temperature gradients analysis.

approximately 5% lower performance. The reason being that the optimum MPC
changes the frequency values more often than its approximated versions. The change
in the frequency setting has an overhead in terms of additional power dissipation that
is not considered in the problem formulation. However, our results show that this effect
leads to a loss of performance less than 6% when compared with the approximated MPC.

The TB-DVFS and the LQR policies show lower performances as they provide 50%
and 25% less executed workload than the convex-optimization approach and the ap-
proximated MPCs policies, respectively. The LQR policy shows an executed workload
that is a few percent lower than the same, compared with the TB-DVFS that is much
simpler. Advantages of the LQR are shown in Figure 9. Temperature gradients are a
concern not only in space, but also in time. The frequent abrupt change in working

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 1, Article 6, Pub. date: December 2012.



6:22 F. Zanini et al.

frequencies and voltages produces thermal cycles that raise the failure rate of the sys-
tem [Haase et al. 2006]. In addition, abrupt power-mode transitions in voltage and
frequency scaling waste additional power [Jung and Pedram 2008].

Figure 9 consists of three plots. The top plot compares the policies according to
the executed workload and changes of temperature. On the y-axis, it shows that the
workload executed by the policies normalized to the one that can be executed by the
MPSoC running with the highest allowable frequency setting. On the x-axis, it shows
the temperature rate of change. This metric represents the mean of the maximum
absolute temperature difference in degrees for the same MPSoC location between two
consecutive applications of the policy. Thus, its dimension is o K/(Tpol = 10ms). The
middle plot compares the policies according to their executed workload and spatial
temperature difference. This metric represents the mean of the maximum absolute
temperature difference in degrees Kelvin between two neighboring units. Overall, these
two plots compare the policies according to the executed workload and temperature
variations. The first considers variations in the time domain, while the second outlines
variations in the space domain. Finally, the bottom plot of the figure analyzes the
correlation between time and space temperature gradients for all the compared thermal
control policies.

As the plots of Figure 9 show, both the spatial temperature difference and the tem-
perature rate of change are reduced in all the policies by a factor up to 2x with respect
to the case in which no thermal control is applied. Moreover, this is achieved by keeping
the maximum temperature under the maximum threshold (370◦K) that ensures the
reliable operation of the target eight-core MPSoC.

In all the plots of Figure 9, the convex optimization approach shows the highest vari-
ations in both the time and the space domain. The convex optimization-based approach
indeed does not target the minimization of space and time temperature gradient, but
it targets only the minimization of the power consumption and the difference between
the workload requested and the one executed by the MPSoC. Therefore, it provides the
best performance in terms of executed workload at the cost of a less uniform and a
more rapidly changing thermal profile.

The policy with the smallest thermal variations (both in time and space) is the
approximated MPC with 300 vertices and the LQR. In all graphs, the LQR shows a
performance comparable with those of more complex techniques, like the MPC-300. The
LQR, in terms of keeping the temperature under the predefined threshold, works with
the same principle as the TB-DVFS. If we compare these two policies, a reduction of
up to 15% and 45% in time and space temperature variations is achieved, respectively.
Moreover, the LQR performs the best in minimizing spatial temperature gradients,
because the LQR policy directly addresses thermal gradients as the main priority. This
policy makes the thermal profile more uniform.

7.2. Thermal and Frequency Variations

The frequent abrupt change in working frequencies and voltages produces thermal
cycles that raise the failure rate of the system [Haase et al. 2006]. The effect of thermal
cycling on the reliability of a chip can be modeled by the Coffin-Manson relation, which
relates, in an exponential way, the number of cycles to failure to the magnitude of
thermal cycling [JEDEC 2003].

This section makes a study about thermal and frequency variations generated dur-
ing the runtime execution of the compared thermal management policies. The more
the policy acts smoothly while responding to workload demand, the more both these
variations are small.

Figure 10 compares the policies according to the average frequency rate of change
(x-axis) and the average temperature rate of change (y-axis). These two metrics
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Fig. 10. Temperature rate of change vs. frequency rate of change.

represent, respectively, the average frequency and temperature variation that occur
between two consequent applications of the thermal control method. In our case study,
the policies are applied every 10ms, and so the metrics dimensions are [10ms−1] and
[◦K/10ms], respectively.

Figure 10 shows that thermal management policies are reduced up to 6x and 1.8x
frequency and temperature variations, respectively, compared with the case where
no thermal management policies are used. However, differences are observed in the
average temperature oscillations due to the different control policies. The worst overall
performance vs. temperature oscillations value is provided by the convex optimization-
based approach policy. Moreover, Figure 10 outlines that the optimum MPC changes
the operating frequency more often than the approximated MPC options, in order to
control the temperature variations. This situation occurs because the approximated
MPC policies have fewer regions, thus they change the frequency settings less often.

In addition, although the explicit MPC regulators do not consider temperature gra-
dients in their optimization, the MPSoC shows lower gradients than the LQR policy,
which directly considers the importance of gradient minimization in its problem for-
mulation. This is due to the nonlinear saturation block that has been added to the
LQR regulator to avoid the temperature exceeding the threshold temperature. In fact,
this nonlinear block degrades the performance of the linear regulator in cases of heavy
workload scenarios, like the one we are simulating.

8. CONCLUSIONS

In this article, we have proposed a new unified problem formulation using model pre-
dictive control (MPC) theory to explore the main features of four main thermal control
algorithms for thermal management of MPSoCs. Our formulation has shown that it
is possible to expose, from a theoretical viewpoint, the distance between the differ-
ent control techniques regarding computation complexity, heat forecasting precision,
memory requirements, adaptability to different workload conditions at runtime, and
smoothness in peak temperature and thermal balancing control. Therefore, it is pos-
sible to identify the specific thermal policy that provides the necessary trade-offs to
achieve the best online smooth thermal control for a specific set of constraints in a
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concrete MPSoC architecture target. Finally, we have implemented the policies on
an MPSoC-simulation platform and performed experiments on a model of the eight-
core Niagara-1 multi-core architecture using benchmarks ranging from Web-accessing
to playing multimedia. Our results have shown that the theoretical strengths and
weaknesses between the compared thermal policies are effectively followed by real-life
setups. Thus, the proposed unified MPC-based thermal control formulation provides
MPSoC designers with a theoretical basis and analytical relations between speed, volt-
age, power, and temperature, as well as thermal management horizon, to select the
most appropriate thermal control family for specific working constraints of each target
MPSoC into its early-phase definition.
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