1,333 research outputs found

    Technology Roadmap for Beyond 5G Wireless Connectivity in D-band

    Get PDF
    International audienceWireless communication in millimeter wave bands, namely above 20 GHz and up to 300 GHz is foreseen as a key enabler technology for the next generation of wireless systems. The huge available bandwidth is contemplated to achieve high data rate wireless communications, and hence, to fulfill the requirements of future wireless networks. Several Beyond 5G applications are considered for these systems: high capacity back-haul, enhanced hot-spot kiosk as well as short-range Device-to-Device communications. In this paper we propose to discuss the trade-offs between scenario requirements and current silicon technologies limits to draw a technology roadmap for the next generation of wireless connectivity in D-band

    A baseline roadmap for advanced wireless research beyond 5G

    Get PDF
    This paper presents a baseline roadmap for the evolution of 5G new radio over the next decade. Three timescales are considered, namely short-term (2022-ish), medium-term (2025-ish), and long-term (2030-ish). The evolution of the target key performance indicators (KPIs) is first analyzed by accounting for forecasts on the emerging use cases and their requirements, together with assumptions on the pace of technology advancements. The baseline roadmap is derived next by capturing the top-10 and next the top-5 technology trends envisioned to bring significant added value at each timescale. Being intrinsically predictive, our proposed baseline roadmap cannot assert with certainty the values of the target KPIs and the shortlisting of the technology trends. It is, however, aimed at driving discussions and collecting feedback from the wireless research community for future tuning and refinement as the 5G evolution journey progresses.This research was funded by the European Union's Horizon 2020 research and innovation programme under grant number No 824994

    The edge cloud: A holistic view of communication, computation and caching

    Get PDF
    The evolution of communication networks shows a clear shift of focus from just improving the communications aspects to enabling new important services, from Industry 4.0 to automated driving, virtual/augmented reality, Internet of Things (IoT), and so on. This trend is evident in the roadmap planned for the deployment of the fifth generation (5G) communication networks. This ambitious goal requires a paradigm shift towards a vision that looks at communication, computation and caching (3C) resources as three components of a single holistic system. The further step is to bring these 3C resources closer to the mobile user, at the edge of the network, to enable very low latency and high reliability services. The scope of this chapter is to show that signal processing techniques can play a key role in this new vision. In particular, we motivate the joint optimization of 3C resources. Then we show how graph-based representations can play a key role in building effective learning methods and devising innovative resource allocation techniques.Comment: to appear in the book "Cooperative and Graph Signal Pocessing: Principles and Applications", P. Djuric and C. Richard Eds., Academic Press, Elsevier, 201

    European leadership in 5G. CEPS Special Report, December 2016

    Get PDF
    Prepared by Policy Department A at the request of the European Parliament’s Committee on Industry, Research and Energy (ITRE), this report examines the concept for 5G, how it might fit in the future telecommunications landscape, the state of play in R&D in the EU and globally, the possible business models and the role of standards and spectrum policy, to assess the EU’s strategic position

    LEO Satellite Constellations for 5G and Beyond: How Will They Reshape Vertical Domains?

    Get PDF
    The rapid development of communication technologies in the past decades has provided immense vertical opportunities for individuals and enterprises. However, conventional terrestrial cellular networks have unfortunately neglected the huge geographical digital divide, since high bandwidth wireless coverage is concentrated to urban areas. To meet the goal of ``connecting the unconnected'', integrating low Earth orbit (LEO) satellites with the terrestrial cellular networks has been widely considered as a promising solution. In this article, we first introduce the development roadmap of LEO satellite constellations (SatCons), including early attempts in LEO satellites with the emerging LEO constellations. Further, we discuss the unique opportunities of employing LEO SatCons for the delivery of integrating 5G networks. Specifically, we present their key performance indicators, which offer important guidelines for the design of associated enabling techniques, and then discuss the potential impact of integrating LEO SatCons with typical 5G use cases, where we engrave our vision of various vertical domains reshaped by LEO SatCons. Technical challenges are finally provided to specify future research directions.Comment: 4 figures, 1 table, accepted by Communications Magazin
    • …
    corecore