397 research outputs found

    Field-driven dynamics of nematic microcapillaries

    Get PDF
    Polymer-dispersed liquid crystal (PDLC) composites have long been a focus of study for their unique electro-optical properties which have resulted in various applications such as switchable (transparent/translucent) windows. These composites are manufactured using desirable "bottom-up" techniques, such as phase separation of a liquid crystal/polymer mixture, which enable production of PDLC films at very large scales. LC domains within PDLCs are typically spheroidal, as opposed to rectangular for an LCD panel, and thus exhibit substantially different behaviour in the presence of an external field. The fundamental difference between spheroidal and rectangular nematic domains is that the former results in the presence of nanoscale orientational defects in LC order while the latter does not. Progress in the development and optimization of PDLC electro-optical properties has progressed at a relatively slow pace due to this increased complexity. In this work, continuum simulations are performed in order to capture the complex formation and electric field-driven switching dynamics of approximations of PDLC domains. Using a simplified elliptic cylinder (microcapillary) geometry as an approximation of spheroidal PDLC domains, the effects of geometry (aspect ratio), surface anchoring, and external field strength are studied through the use of the Landau--de Gennes model of the nematic LC phase.Comment: 22 pages, 9 figures, Physical Review

    Fast, Scalable, and Interactive Software for Landau-de Gennes Numerical Modeling of Nematic Topological Defects

    Get PDF
    Numerical modeling of nematic liquid crystals using the tensorial Landau-de Gennes (LdG) theory provides detailed insights into the structure and energetics of the enormous variety of possible topological defect configurations that may arise when the liquid crystal is in contact with colloidal inclusions or structured boundaries. However, these methods can be computationally expensive, making it challenging to predict (meta)stable configurations involving several colloidal particles, and they are often restricted to system sizes well below the experimental scale. Here we present an open-source software package that exploits the embarrassingly parallel structure of the lattice discretization of the LdG approach. Our implementation, combining CUDA/C++ and OpenMPI, allows users to accelerate simulations using both CPU and GPU resources in either single- or multiple-core configurations. We make use of an efficient minimization algorithm, the Fast Inertial Relaxation Engine (FIRE) method, that is well-suited to large-scale parallelization, requiring little additional memory or computational cost while offering performance competitive with other commonly used methods. In multi-core operation we are able to scale simulations up to supra-micron length scales of experimental relevance, and in single-core operation the simulation package includes a user-friendly GUI environment for rapid prototyping of interfacial features and the multifarious defect states they can promote. To demonstrate this software package, we examine in detail the competition between curvilinear disclinations and point-like hedgehog defects as size scale, material properties, and geometric features are varied. We also study the effects of an interface patterned with an array of topological point-defects.Comment: 16 pages, 6 figures, 1 youtube link. The full catastroph

    Nlcviz: Tensor Visualization And Defect Detection In Nematic Liquid Crystals

    Get PDF
    Visualization and exploration of nematic liquid crystal (NLC) data is a challenging task due to the multidimensional and multivariate nature of the data. Simulation study of an NLC consists of multiple timesteps, where each timestep computes scalar, vector, and tensor parameters on a geometrical mesh. Scientists developing an understanding of liquid crystal interaction and physics require tools and techniques for effective exploration, visualization, and analysis of these data sets. Traditionally, scientists have used a combination of different tools and techniques like 2D plots, histograms, cut views, etc. for data visualization and analysis. However, such an environment does not provide the required insight into NLC datasets. This thesis addresses two areas of the study of NLC data---understanding of the tensor order field (the Q-tensor) and defect detection in this field. Tensor field understanding is enhanced by using a new glyph (NLCGlyph) based on a new design metric which is closely related to the underlying physical properties of an NLC, described using the Q-tensor. A new defect detection algorithm for 3D unstructured grids based on the orientation change of the director is developed. This method has been used successfully in detecting defects for both structured and unstructured models with varying grid complexity

    Liquid Crystal Anchoring Control and its Applications in Responsive Materials

    Get PDF
    Liquid crystals (LCs), owing to their anisotropy in molecular ordering, are of interests not only in the display industry, but also in the soft matter community, e.g., to direct colloidal assembly and phase separation of surfactants, and to actuate two-dimensional (2D) sheets into three-dimension (3D). The functionality and performance of LC materials extensively rely on the molecular ordering and alignment of LCs, which are dictated by LC anchoring at various boundaries. Therefore, this thesis focuses on the study of LC anchoring from both small molecule LCs and liquid crystal monomers (LCMs), which in turn guides my design of surface topography and surface chemistry to control formation of uniform LC defect structures over cm2 samples under complex boundary conditions. The ability to precisely embed defect structures in a LC material also allows me to exploit the responsiveness of LCs to create actuators and scaffolds to (dis)assemble nano- and micro-objects. Specifically, by exploiting the bulk disclinations formed in the nematic phase of 4-octyl-4’-cyanobiphenyl (8CB) surrounding the micropillar arrays, we demonstrate (dis)assembly of gold nano-rods (AuNRs) for dynamic tuning of surface plasmon resonance (SPR). Due to the highly temperature-sensitive elastic anisotropy of 8CB, the bulk disclinations and consequently the AuNR assemblies and SPR properties can be altered reversibly by heating and cooling the LC system. Then we design and synthesize a new type of nematic LCMs with a very large nematic window. Therefore, they can be faithfully aligned at various boundary conditions, analogous to that of small molecule LCs. After crosslinking LCMs into liquid crystal polymers (LCPs), we are able to study the LC assembly, director field, and topological defects using scanning electronic microscopy (SEM) at the 100 nm resolution. We then turn our attention to direct LCM alignment through controlling of surface chemistry and topography. We demonstrate the essential role of surface chemistry in the fabrication of liquid crystal elastomer (LCE) micropillar arrays during soft lithography. A monodomain LCM alignment is achieved in a poly(2-hydroxyethyl methacrylate) coated polydimethylsiloxane (PDMS) mold. After crosslinking, the resultant LCE micropillars display a large radial strain (~30%) when heated across the nematic-isotropic phase transition temperature (TNI). The understanding of surface alignment in LCMs is then transferred to LCEs with embedded topological defects. On micron-sized one-dimensional channels with planar surface chemistry, LCMs can be faithfully oriented along the local channel direction. After crosslinking, the 2D LCE sheets show pre-programmed shape transformation to complex 3D structures through bending and stretching of local directors when heated above TNI. Last, we control LC alignment and defect formation on a flat surface simply by using chemical patterns. Planar anchored SU8 is photopatterned on homoetropically anchored dimethyloctadecyl[3-(trimethoxysilyl)propyl] ammonium chloride (DMOAP) coated glass. By exploiting the pattern geometry, thus, boundary conditions, in combination with anisotropy of LC elasticity, we show that LC orientation can be precisely controlled over a large area and various types of topological defects are generated. Such defect structures can be further used to trap micro- and nanoparticles
    • …
    corecore