6,890 research outputs found

    Multi-learner based recursive supervised training

    Get PDF
    In this paper, we propose the Multi-Learner Based Recursive Supervised Training (MLRT) algorithm which uses the existing framework of recursive task decomposition, by training the entire dataset, picking out the best learnt patterns, and then repeating the process with the remaining patterns. Instead of having a single learner to classify all datasets during each recursion, an appropriate learner is chosen from a set of three learners, based on the subset of data being trained, thereby avoiding the time overhead associated with the genetic algorithm learner utilized in previous approaches. In this way MLRT seeks to identify the inherent characteristics of the dataset, and utilize it to train the data accurately and efficiently. We observed that empirically, MLRT performs considerably well as compared to RPHP and other systems on benchmark data with 11% improvement in accuracy on the SPAM dataset and comparable performances on the VOWEL and the TWO-SPIRAL problems. In addition, for most datasets, the time taken by MLRT is considerably lower than the other systems with comparable accuracy. Two heuristic versions, MLRT-2 and MLRT-3 are also introduced to improve the efficiency in the system, and to make it more scalable for future updates. The performance in these versions is similar to the original MLRT system

    Feature Selection via Binary Simultaneous Perturbation Stochastic Approximation

    Full text link
    Feature selection (FS) has become an indispensable task in dealing with today's highly complex pattern recognition problems with massive number of features. In this study, we propose a new wrapper approach for FS based on binary simultaneous perturbation stochastic approximation (BSPSA). This pseudo-gradient descent stochastic algorithm starts with an initial feature vector and moves toward the optimal feature vector via successive iterations. In each iteration, the current feature vector's individual components are perturbed simultaneously by random offsets from a qualified probability distribution. We present computational experiments on datasets with numbers of features ranging from a few dozens to thousands using three widely-used classifiers as wrappers: nearest neighbor, decision tree, and linear support vector machine. We compare our methodology against the full set of features as well as a binary genetic algorithm and sequential FS methods using cross-validated classification error rate and AUC as the performance criteria. Our results indicate that features selected by BSPSA compare favorably to alternative methods in general and BSPSA can yield superior feature sets for datasets with tens of thousands of features by examining an extremely small fraction of the solution space. We are not aware of any other wrapper FS methods that are computationally feasible with good convergence properties for such large datasets.Comment: This is the Istanbul Sehir University Technical Report #SHR-ISE-2016.01. A short version of this report has been accepted for publication at Pattern Recognition Letter

    Estimating a semi-parametric duration model without specifying heterogeneity

    Get PDF
    This paper presents a new estimator for the mixed proportional hazard model that allows for a nonparametric baseline hazard and time-varying regressors. In particular, this paper allows for discrete measurement of the durations as happens often in practice.

    Geometric Properties of Isostables and Basins of Attraction of Monotone Systems

    Get PDF
    In this paper, we study geometric properties of basins of attraction of monotone systems. Our results are based on a combination of monotone systems theory and spectral operator theory. We exploit the framework of the Koopman operator, which provides a linear infinite-dimensional description of nonlinear dynamical systems and spectral operator-theoretic notions such as eigenvalues and eigenfunctions. The sublevel sets of the dominant eigenfunction form a family of nested forward-invariant sets and the basin of attraction is the largest of these sets. The boundaries of these sets, called isostables, allow studying temporal properties of the system. Our first observation is that the dominant eigenfunction is increasing in every variable in the case of monotone systems. This is a strong geometric property which simplifies the computation of isostables. We also show how variations in basins of attraction can be bounded under parametric uncertainty in the vector field of monotone systems. Finally, we study the properties of the parameter set for which a monotone system is multistable. Our results are illustrated on several systems of two to four dimensions.Comment: 12 pages, to appear in IEEE Transaction on Automatic Contro

    GOGMA: Globally-Optimal Gaussian Mixture Alignment

    Full text link
    Gaussian mixture alignment is a family of approaches that are frequently used for robustly solving the point-set registration problem. However, since they use local optimisation, they are susceptible to local minima and can only guarantee local optimality. Consequently, their accuracy is strongly dependent on the quality of the initialisation. This paper presents the first globally-optimal solution to the 3D rigid Gaussian mixture alignment problem under the L2 distance between mixtures. The algorithm, named GOGMA, employs a branch-and-bound approach to search the space of 3D rigid motions SE(3), guaranteeing global optimality regardless of the initialisation. The geometry of SE(3) was used to find novel upper and lower bounds for the objective function and local optimisation was integrated into the scheme to accelerate convergence without voiding the optimality guarantee. The evaluation empirically supported the optimality proof and showed that the method performed much more robustly on two challenging datasets than an existing globally-optimal registration solution.Comment: Manuscript in press 2016 IEEE Conference on Computer Vision and Pattern Recognitio
    corecore