2,201 research outputs found

    Rate Splitting for MIMO Wireless Networks: A Promising PHY-Layer Strategy for LTE Evolution

    Get PDF
    MIMO processing plays a central part towards the recent increase in spectral and energy efficiencies of wireless networks. MIMO has grown beyond the original point-to-point channel and nowadays refers to a diverse range of centralized and distributed deployments. The fundamental bottleneck towards enormous spectral and energy efficiency benefits in multiuser MIMO networks lies in a huge demand for accurate channel state information at the transmitter (CSIT). This has become increasingly difficult to satisfy due to the increasing number of antennas and access points in next generation wireless networks relying on dense heterogeneous networks and transmitters equipped with a large number of antennas. CSIT inaccuracy results in a multi-user interference problem that is the primary bottleneck of MIMO wireless networks. Looking backward, the problem has been to strive to apply techniques designed for perfect CSIT to scenarios with imperfect CSIT. In this paper, we depart from this conventional approach and introduce the readers to a promising strategy based on rate-splitting. Rate-splitting relies on the transmission of common and private messages and is shown to provide significant benefits in terms of spectral and energy efficiencies, reliability and CSI feedback overhead reduction over conventional strategies used in LTE-A and exclusively relying on private message transmissions. Open problems, impact on standard specifications and operational challenges are also discussed.Comment: accepted to IEEE Communication Magazine, special issue on LTE Evolutio

    Massive MIMO Multicasting in Noncooperative Cellular Networks

    Full text link
    We study the massive multiple-input multiple-output (MIMO) multicast transmission in cellular networks where each base station (BS) is equipped with a large-scale antenna array and transmits a common message using a single beamformer to multiple mobile users. We first show that when each BS knows the perfect channel state information (CSI) of its own served users, the asymptotically optimal beamformer at each BS is a linear combination of the channel vectors of its multicast users. Moreover, the optimal combining coefficients are obtained in closed form. Then we consider the imperfect CSI scenario where the CSI is obtained through uplink channel estimation in timedivision duplex systems. We propose a new pilot scheme that estimates the composite channel which is a linear combination of the individual channels of multicast users in each cell. This scheme is able to completely eliminate pilot contamination. The pilot power control for optimizing the multicast beamformer at each BS is also derived. Numerical results show that the asymptotic performance of the proposed scheme is close to the ideal case with perfect CSI. Simulation also verifies the effectiveness of the proposed scheme with finite number of antennas at each BS.Comment: to appear in IEEE JSAC Special Issue on 5G Wireless Communication System

    Massive MIMO Performance - TDD Versus FDD: What Do Measurements Say?

    Full text link
    Downlink beamforming in Massive MIMO either relies on uplink pilot measurements - exploiting reciprocity and TDD operation, or on the use of a predetermined grid of beams with user equipments reporting their preferred beams, mostly in FDD operation. Massive MIMO in its originally conceived form uses the first strategy, with uplink pilots, whereas there is currently significant commercial interest in the second, grid-of-beams. It has been analytically shown that in isotropic scattering (independent Rayleigh fading) the first approach outperforms the second. Nevertheless there remains controversy regarding their relative performance in practice. In this contribution, the performances of these two strategies are compared using measured channel data at 2.6 GHz.Comment: Submitted to IEEE Transactions on Wireless Communications, 31/Mar/201

    Achieving Large Multiplexing Gain in Distributed Antenna Systems via Cooperation with pCell Technology

    Full text link
    In this paper we present pCellTM technology, the first commercial-grade wireless system that employs cooperation between distributed transceiver stations to create concurrent data links to multiple users in the same spectrum. First we analyze the per-user signal-to-interference-plus-noise ratio (SINR) employing a geometrical spatial channel model to define volumes in space of coherent signal around user antennas (or personal cells, i.e., pCells). Then we describe the system architecture consisting of a general-purpose-processor (GPP) based software-defined radio (SDR) wireless platform implementing a real-time LTE protocol stack to communicate with off-the-shelf LTE devices. Finally we present experimental results demonstrating up to 16 concurrent spatial channels for an aggregate average spectral efficiency of 59.3 bps/Hz in the downlink and 27.5 bps/Hz in the uplink, providing data rates of 200 Mbps downlink and 25 Mbps uplink in 5 MHz of TDD spectrum.Comment: IEEE Asilomar Conference on Signals, Systems, and Computers, Nov. 8-11th 2015, Pacific Grove, CA, US
    • …
    corecore