1,925 research outputs found

    Invariance of fluid limits for the Shortest Remaining Processing Time and Shortest Job First policies

    Full text link
    We consider a single-server queue with renewal arrivals and i.i.d. service times, in which the server employs either the preemptive Shortest Remaining Processing Time (SRPT) policy, or its non-preemptive variant, Shortest Job First (SJF). We show that for given stochastic primitives (initial condition, arrival and service processes), the model has the same fluid limit under either policy. In particular, we conclude that the well-known queue length optimality of preemptive SRPT is also achieved, asymptotically on fluid scale, by the simpler-to-implement SJF policy. We also conclude that on fluid scale, SJF and SRPT achieve the same performance with respect to response times of the longest-waiting jobs in the system.Comment: 24 page

    On the Gittins index in the M/G/1 queue

    Get PDF
    For an M/G/1 queue with the objective of minimizing the mean number of jobs in the system, the Gittins index rule is known to be optimal among the set of non-anticipating policies. We develop properties of the Gittins index. For a single-class queue it is known that when the service time distribution is of type Decreasing Hazard Rate (New Better than Used in Expectation), the Foreground-Background (First-Come-First-Served) discipline is optimal. By utilizing the Gittins index approach, we show that in fact, Foreground-Background and First-Come-First-Served are optimal if and only if the service time distribution is of type Decreasing Hazard Rate and New Better than Used in Expectation, respectively. For the multi-class case, where jobs of different classes have different service distributions, we obtain new results that characterize the optimal policy under various assumptions on the service time distributions. We also investigate distributions whose hazard rate and mean residual lifetime are not monotonic. © Springer Science+Business Media, LLC 2009

    Priority Auctions and Queue Disciplines that Depend on Processing Time

    Get PDF
    Lecture on the first SFB/TR 15 meeting, Gummersbach, July, 18 - 20, 2004We analyze the allocation of priority in queues via simple bidding mechanisms. In our model, the stochastically arriving customers are privately informed about their own processing time. They make bids upon arrival at a queue whose length is unobservable. We consider two bidding schemes that differ in the definition of bids (these may reflect either total payments or payments per unit of time) and in the timing of payments (before, or after service). In both schemes, a customer obtains priority over all customers (waiting in the queue or arriving while he is waiting) who make lower bids. Our main results show how the convexity/concavity of the function expressing the costs of delay determines the queue-discipline (i.e., SPT, LPT) arising in a bidding equilibrium

    Priority Auctions and Queue Disciplines that Depend on Processing Time

    Get PDF
    Lecture on the first SFB/TR 15 meeting, Gummersbach, July, 18 - 20, 2004We analyze the allocation of priority in queues via simple bidding mechanisms. In our model, the stochastically arriving customers are privately informed about their own processing time. They make bids upon arrival at a queue whose length is unobservable. We consider two bidding schemes that differ in the definition of bids (these may reflect either total payments or payments per unit of time) and in the timing of payments (before, or after service). In both schemes, a customer obtains priority over all customers (waiting in the queue or arriving while he is waiting) who make lower bids. Our main results show how the convexity/concavity of the function expressing the costs of delay determines the queue-discipline (i.e., SPT, LPT) arising in a bidding equilibrium.

    Age-Optimal Updates of Multiple Information Flows

    Full text link
    In this paper, we study an age of information minimization problem, where multiple flows of update packets are sent over multiple servers to their destinations. Two online scheduling policies are proposed. When the packet generation and arrival times are synchronized across the flows, the proposed policies are shown to be (near) optimal for minimizing any time-dependent, symmetric, and non-decreasing penalty function of the ages of the flows over time in a stochastic ordering sense
    • 

    corecore