13,286 research outputs found

    Teams organization and performance analysis in autonomous human-robot teams

    Get PDF
    This paper proposes a theory of human control of robot teams based on considering how people coordinate across different task allocations. Our current work focuses on domains such as foraging in which robots perform largely independent tasks. The present study addresses the interaction between automation and organization of human teams in controlling large robot teams performing an Urban Search and Rescue (USAR) task. We identify three subtasks: perceptual search-visual search for victims, assistance-teleoperation to assist robot, and navigation-path planning and coordination. For the studies reported here, navigation was selected for automation because it involves weak dependencies among robots making it more complex and because it was shown in an earlier experiment to be the most difficult. This paper reports an extended analysis of the two conditions from a larger four condition study. In these two "shared pool" conditions Twenty four simulated robots were controlled by teams of 2 participants. Sixty paid participants (30 teams) were recruited to perform the shared pool tasks in which participants shared control of the 24 UGVs and viewed the same screens. Groups in the manual control condition issued waypoints to navigate their robots. In the autonomy condition robots generated their own waypoints using distributed path planning. We identify three self-organizing team strategies in the shared pool condition: joint control operators share full authority over robots, mixed control in which one operator takes primary control while the other acts as an assistant, and split control in which operators divide the robots with each controlling a sub-team. Automating path planning improved system performance. Effects of team organization favored operator teams who shared authority for the pool of robots. © 2010 ACM

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    RoboCup 2D Soccer Simulation League: Evaluation Challenges

    Full text link
    We summarise the results of RoboCup 2D Soccer Simulation League in 2016 (Leipzig), including the main competition and the evaluation round. The evaluation round held in Leipzig confirmed the strength of RoboCup-2015 champion (WrightEagle, i.e. WE2015) in the League, with only eventual finalists of 2016 competition capable of defeating WE2015. An extended, post-Leipzig, round-robin tournament which included the top 8 teams of 2016, as well as WE2015, with over 1000 games played for each pair, placed WE2015 third behind the champion team (Gliders2016) and the runner-up (HELIOS2016). This establishes WE2015 as a stable benchmark for the 2D Simulation League. We then contrast two ranking methods and suggest two options for future evaluation challenges. The first one, "The Champions Simulation League", is proposed to include 6 previous champions, directly competing against each other in a round-robin tournament, with the view to systematically trace the advancements in the League. The second proposal, "The Global Challenge", is aimed to increase the realism of the environmental conditions during the simulated games, by simulating specific features of different participating countries.Comment: 12 pages, RoboCup-2017, Nagoya, Japan, July 201

    Analysis and Observations from the First Amazon Picking Challenge

    Full text link
    This paper presents a overview of the inaugural Amazon Picking Challenge along with a summary of a survey conducted among the 26 participating teams. The challenge goal was to design an autonomous robot to pick items from a warehouse shelf. This task is currently performed by human workers, and there is hope that robots can someday help increase efficiency and throughput while lowering cost. We report on a 28-question survey posed to the teams to learn about each team's background, mechanism design, perception apparatus, planning and control approach. We identify trends in this data, correlate it with each team's success in the competition, and discuss observations and lessons learned based on survey results and the authors' personal experiences during the challenge

    Extending Feynman's Formalisms for Modelling Human Joint Action Coordination

    Full text link
    The recently developed Life-Space-Foam approach to goal-directed human action deals with individual actor dynamics. This paper applies the model to characterize the dynamics of co-action by two or more actors. This dynamics is modelled by: (i) a two-term joint action (including cognitive/motivatonal potential and kinetic energy), and (ii) its associated adaptive path integral, representing an infinite--dimensional neural network. Its feedback adaptation loop has been derived from Bernstein's concepts of sensory corrections loop in human motor control and Brooks' subsumption architectures in robotics. Potential applications of the proposed model in human--robot interaction research are discussed. Keywords: Psycho--physics, human joint action, path integralsComment: 6 pages, Late
    corecore