71,575 research outputs found

    Review and Outlooks of the Means for Visualization of Syntax Semantics and Source Code. Procedural and Object Oriented Paradigm – Differences

    Get PDF
    In the article, we have reviewed the means for visualization of syntax, semantics and source code for programming languages which support procedural and/or object-oriented paradigm. It is examined how the structure of the source code of the structural and object-oriented programming styles has influenced different approaches for their teaching. We maintain a thesis valid for the object-oriented programming paradigm, which claims that the activities for design and programming of classes are done by the same specialist, and the training of this specialist should include design as well as programming skills and knowledge for modeling of abstract data structures. We put the question how a high level of abstraction in the object-oriented paradigm should be presented in simple model in the design stage, so the complexity in the programming stage stay low and be easily learnable. We give answer to this question, by building models using the UML notation, as we take a concrete example from the teaching practice including programming techniques for inheritance and polymorphism

    Introducing Java : the case for fundamentals-first

    Get PDF
    Java has increasingly become the language of choice for teaching introductory programming. In this paper, we examine the different approaches to teaching Java (Objects-first, Fundamentals-first and GUI-first) to ascertain whether there exists an agreed ordering of topics and difficulty levels between nine relatively basic Java topics. The results of our literature survey and student questionnaire suggests that the Fundamentals-first approach may have benefits from the student's point of view and an agreed ordering of the Java topics accompanying this approach has been established

    Blue - A Language for Teaching Object-Oriented Programming

    Get PDF
    Teaching object-oriented programming has clearly become an important part of computer science education. We agree with many others that the best place to teach it is in the CS1 introductory course. Many problems with this have been reported in the literature. These mainly result from inadequate languages and environments. Blue is a new language and integrated programming environment, currently under development explicitly for object-oriented teaching. We expect clear advantages from the use of Blue for first year teaching compared to using other available languages. This paper describes the design principles on which the language was based and the most important aspects of the language itself

    A game-based approach to the teaching of object-oriented programming languages

    Get PDF
    Students often have difficulties when trying to understand the concepts of object-oriented programming (OOP). This paper presents a contribution to the teaching of OOP languages through a game-oriented approach based on the interaction with tangible user interfaces (TUIs). The use of a specific type of commercial distributed TUI (Sifteo cubes), in which several small physical devices have sensing, wireless communication and user-directed output capabilities, is applied to the teaching of the C# programming language, since the operation of these devices can be controlled by user programs written in C#. For our experiment, we selected a sample of students with a sufficient knowledge about procedural programming, which was divided into two groups: The first one had a standard introductory C# course, whereas the second one had an experimental C# course that included, in addition to the contents of the previous one, two demonstration programs that illustrated some OOP basic concepts using the TUI features. Finally, both groups completed two tests: a multiple-choice exam for evaluating the acquisition of basic OOP concepts and a C# programming exercise. The analysis of the results from the tests indicates that the group of students that attended the course including the TUI demos showed a higher interest level (i.e. they felt more motivated) during the course exposition than the one that attended the standard introductory C# course. Furthermore, the students from the experimental group achieved an overall better mark. Therefore, we can conclude that the technological contribution of Sifteo cubes – used as a distributed TUI by which OOP basic concepts are represented in a tangible and a visible way – to the teaching of the C# language has a positive influence on the learning of this language and such basic concepts

    Python for teaching introductory programming: A quantitative evaluation

    Get PDF
    This paper compares two different approaches of teaching introductory programming by quantitatively analysing the student assessments in a real classroom. The first approach is to emphasise the principles of object-oriented programming and design using Java from the very beginning. The second approach is to first teach the basic programming concepts (loops, branch, and use of libraries) using Python and then move on to oriented programming using Java. Each approach was adopted for one academic year (2008-09 and 2009-10) with first year undergraduate students. Quantitative analysis of the student assessments from the first semester of each year was then carried out. The results of this analysis are presented in this paper. These results suggest that the later approach leads to enhanced learning of introductory programming concepts by students

    A gentle transition from Java programming to Web Services using XML-RPC

    Get PDF
    Exposing students to leading edge vocational areas of relevance such as Web Services can be difficult. We show a lightweight approach by embedding a key component of Web Services within a Level 3 BSc module in Distributed Computing. We present a ready to use collection of lecture slides and student activities based on XML-RPC. In addition we show that this material addresses the central topics in the context of web services as identified by Draganova (2003)

    Teaching programming with computational and informational thinking

    Get PDF
    Computers are the dominant technology of the early 21st century: pretty well all aspects of economic, social and personal life are now unthinkable without them. In turn, computer hardware is controlled by software, that is, codes written in programming languages. Programming, the construction of software, is thus a fundamental activity, in which millions of people are engaged worldwide, and the teaching of programming is long established in international secondary and higher education. Yet, going on 70 years after the first computers were built, there is no well-established pedagogy for teaching programming. There has certainly been no shortage of approaches. However, these have often been driven by fashion, an enthusiastic amateurism or a wish to follow best industrial practice, which, while appropriate for mature professionals, is poorly suited to novice programmers. Much of the difficulty lies in the very close relationship between problem solving and programming. Once a problem is well characterised it is relatively straightforward to realise a solution in software. However, teaching problem solving is, if anything, less well understood than teaching programming. Problem solving seems to be a creative, holistic, dialectical, multi-dimensional, iterative process. While there are well established techniques for analysing problems, arbitrary problems cannot be solved by rote, by mechanically applying techniques in some prescribed linear order. Furthermore, historically, approaches to teaching programming have failed to account for this complexity in problem solving, focusing strongly on programming itself and, if at all, only partially and superficially exploring problem solving. Recently, an integrated approach to problem solving and programming called Computational Thinking (CT) (Wing, 2006) has gained considerable currency. CT has the enormous advantage over prior approaches of strongly emphasising problem solving and of making explicit core techniques. Nonetheless, there is still a tendency to view CT as prescriptive rather than creative, engendering scholastic arguments about the nature and status of CT techniques. Programming at heart is concerned with processing information but many accounts of CT emphasise processing over information rather than seeing then as intimately related. In this paper, while acknowledging and building on the strengths of CT, I argue that understanding the form and structure of information should be primary in any pedagogy of programming
    • 

    corecore