1,217 research outputs found

    Multiform Adaptive Robot Skill Learning from Humans

    Full text link
    Object manipulation is a basic element in everyday human lives. Robotic manipulation has progressed from maneuvering single-rigid-body objects with firm grasping to maneuvering soft objects and handling contact-rich actions. Meanwhile, technologies such as robot learning from demonstration have enabled humans to intuitively train robots. This paper discusses a new level of robotic learning-based manipulation. In contrast to the single form of learning from demonstration, we propose a multiform learning approach that integrates additional forms of skill acquisition, including adaptive learning from definition and evaluation. Moreover, going beyond state-of-the-art technologies of handling purely rigid or soft objects in a pseudo-static manner, our work allows robots to learn to handle partly rigid partly soft objects with time-critical skills and sophisticated contact control. Such capability of robotic manipulation offers a variety of new possibilities in human-robot interaction.Comment: Accepted to 2017 Dynamic Systems and Control Conference (DSCC), Tysons Corner, VA, October 11-1

    The evaluation of educational service integration in integrated virtual courses

    Get PDF
    The effectiveness of an integrated virtual course is determined by factors such as the navigability of the system. We argue that in a virtual course, which offers different educational services for different learning activities, the integration of services is a good indicator for the effectiveness of a virtual course infrastructure. We develop a set of metrics to measure the degree of integration of a virtual course. We combine structural metrics and an analysis of the student usage of the system in order to measure integration

    Timed colored Petri Net generating Arrays

    Get PDF
    Motivated by Interval Timed Colored Petri Net and two dimensional Array generating Petri nets, this paper defines an Array Generating Timed Colored Petri Net. In this paper time has been associated with the tokens of the net. Time associated with tokens will delay its availability as a resource. The introduction of time as an attribute of the token has an additional control over the firing sequence of the net. The focus of this paper is on the array language generated by such timed colored Petri net model.Publisher's Versio

    A Petri Nets-based Scheduling Methodology forMultipurpose Batch Plants.

    Get PDF
    This article presents an optimization methodology of batch production processes assembled by shared resources which rely on a mapping of state-events into time-events allowing in this way the straightforward use of a well consolidated scheduling policies developed for manufacturing systems. A technique to generate the timed Petri net representation from a continuous dynamic representation (Differential-Algebraic Equations systems (DAEs)) of the production system is presented together with the main characteristics of a Petri nets-based tool implemented for optimization purposes. This paper describes also how the implemented tool generates the coverability tree and how it can be pruned by a general purpose heuristic. An example of a distillation process with two shared batch resources is used to illustrate the optimization methodology proposed

    Robot Composite Learning and the Nunchaku Flipping Challenge

    Full text link
    Advanced motor skills are essential for robots to physically coexist with humans. Much research on robot dynamics and control has achieved success on hyper robot motor capabilities, but mostly through heavily case-specific engineering. Meanwhile, in terms of robot acquiring skills in a ubiquitous manner, robot learning from human demonstration (LfD) has achieved great progress, but still has limitations handling dynamic skills and compound actions. In this paper, we present a composite learning scheme which goes beyond LfD and integrates robot learning from human definition, demonstration, and evaluation. The method tackles advanced motor skills that require dynamic time-critical maneuver, complex contact control, and handling partly soft partly rigid objects. We also introduce the "nunchaku flipping challenge", an extreme test that puts hard requirements to all these three aspects. Continued from our previous presentations, this paper introduces the latest update of the composite learning scheme and the physical success of the nunchaku flipping challenge

    Backward Reachability Analysis of Colored Petri Nets

    Get PDF
    International audienceThis paper deals with a formal method for the study of the backward reachability analysis applied on Colored Petri Nets (CPN). The proposed method proceeds in two steps : 1) it translates CPN to terms of the Multiplicative Intuitionistic Linear Logic (MILL); 2) it proves sequents by constructing proof trees. The translation from CPN to MILL must respect some properties such as the semantic associated to tokens. That is why, the First-Order MILL (MILL1) is used for translation. The reachability between two markings, the initial marking and the final marking, is expressed by a sequent which can be proven (if the initial marking is backward-reachable from the final one) using first-order terms unification and/or marking enhancement

    A hazard analysis via an improved timed colored petri net with time–space coupling safety constraint

    Get PDF
    AbstractPetri nets are graphical and mathematical tools that are applicable to many systems for modeling, simulation, and analysis. With the emergence of the concept of partitioning in time and space domains proposed in avionics application standard software interface (ARINC 653), it has become difficult to analyze time–space coupling hazards resulting from resource partitioning using classical or advanced Petri nets. In this paper, we propose a time–space coupling safety constraint and an improved timed colored Petri net with imposed time–space coupling safety constraints (TCCP-NET) to fill this requirement gap. Time–space coupling hazard analysis is conducted in three steps: specification modeling, simulation execution, and results analysis. A TCCP-NET is employed to model and analyze integrated modular avionics (IMA), a real-time, safety-critical system. The analysis results are used to verify whether there exist time–space coupling hazards at runtime. The method we propose demonstrates superior modeling of safety-critical real-time systems as it can specify resource allocations in both time and space domains. TCCP-NETs can effectively detect underlying time–space coupling hazards

    New Software Tool for Modelling and Control of Discrete-Event and Hybrid Systems Using Petri Nets

    Get PDF
    The main aim of the proposed paper is to design a new software tool for modelling and control of discrete-event and hybrid systems using Arduino and similar microcontrollers. To accomplish these tasks a new tool called PN2ARDUINO based on Petri nets is proposed which is able to communicate with the microcontroller. Communication with the microcontroller is based on the modified Firmata protocol hence the control algorithm can be implemented on all microcontrollers that support this type of protocol. The developed software tool has been successfully verified in control of laboratory systems. It can also be used for education and research purposes as it offers a graphical environment for designing control algorithms for hybrid and mainly discrete-event systems. The proposed tool can improve education and practice in the field of cyber-physical systems (Industry 4.0)
    corecore