352 research outputs found

    Adaptive Multi-objective Optimization for Energy Efficient Interference Coordination in Multi-Cell Networks

    Full text link
    In this paper, we investigate the distributed power allocation for multi-cell OFDMA networks taking both energy efficiency and inter-cell interference (ICI) mitigation into account. A performance metric termed as throughput contribution is exploited to measure how ICI is effectively coordinated. To achieve a distributed power allocation scheme for each base station (BS), the throughput contribution of each BS to the network is first given based on a pricing mechanism. Different from existing works, a biobjective problem is formulated based on multi-objective optimization theory, which aims at maximizing the throughput contribution of the BS to the network and minimizing its total power consumption at the same time. Using the method of Pascoletti and Serafini scalarization, the relationship between the varying parameters and minimal solutions is revealed. Furthermore, to exploit the relationship an algorithm is proposed based on which all the solutions on the boundary of the efficient set can be achieved by adaptively adjusting the involved parameters. With the obtained solution set, the decision maker has more choices on power allocation schemes in terms of both energy consumption and throughput. Finally, the performance of the algorithm is assessed by the simulation results.Comment: 29 page

    Artificial Noise-Aided Biobjective Transmitter Optimization for Service Integration in Multi-User MIMO Gaussian Broadcast Channel

    Full text link
    This paper considers an artificial noise (AN)-aided transmit design for multi-user MIMO systems with integrated services. Specifically, two sorts of service messages are combined and served simultaneously: one multicast message intended for all receivers and one confidential message intended for only one receiver and required to be perfectly secure from other unauthorized receivers. Our interest lies in the joint design of input covariances of the multicast message, confidential message and artificial noise (AN), such that the achievable secrecy rate and multicast rate are simultaneously maximized. This problem is identified as a secrecy rate region maximization (SRRM) problem in the context of physical-layer service integration. Since this bi-objective optimization problem is inherently complex to solve, we put forward two different scalarization methods to convert it into a scalar optimization problem. First, we propose to prefix the multicast rate as a constant, and accordingly, the primal biobjective problem is converted into a secrecy rate maximization (SRM) problem with quality of multicast service (QoMS) constraint. By varying the constant, we can obtain different Pareto optimal points. The resulting SRM problem can be iteratively solved via a provably convergent difference-of-concave (DC) algorithm. In the second method, we aim to maximize the weighted sum of the secrecy rate and the multicast rate. Through varying the weighted vector, one can also obtain different Pareto optimal points. We show that this weighted sum rate maximization (WSRM) problem can be recast into a primal decomposable form, which is amenable to alternating optimization (AO). Then we compare these two scalarization methods in terms of their overall performance and computational complexity via theoretical analysis as well as numerical simulation, based on which new insights can be drawn.Comment: 14 pages, 5 figure

    Energy Efficiency in MIMO Underlay and Overlay Device-to-Device Communications and Cognitive Radio Systems

    Full text link
    This paper addresses the problem of resource allocation for systems in which a primary and a secondary link share the available spectrum by an underlay or overlay approach. After observing that such a scenario models both cognitive radio and D2D communications, we formulate the problem as the maximization of the secondary energy efficiency subject to a minimum rate requirement for the primary user. This leads to challenging non-convex, fractional problems. In the underlay scenario, we obtain the global solution by means of a suitable reformulation. In the overlay scenario, two algorithms are proposed. The first one yields a resource allocation fulfilling the first-order optimality conditions of the resource allocation problem, by solving a sequence of easier fractional problems. The second one enjoys a weaker optimality claim, but an even lower computational complexity. Numerical results demonstrate the merits of the proposed algorithms both in terms of energy-efficient performance and complexity, also showing that the two proposed algorithms for the overlay scenario perform very similarly, despite the different complexity.Comment: to appear in IEEE Transactions on Signal Processin

    Distributed Learning Policies for Power Allocation in Multiple Access Channels

    Full text link
    We analyze the problem of distributed power allocation for orthogonal multiple access channels by considering a continuous non-cooperative game whose strategy space represents the users' distribution of transmission power over the network's channels. When the channels are static, we find that this game admits an exact potential function and this allows us to show that it has a unique equilibrium almost surely. Furthermore, using the game's potential property, we derive a modified version of the replicator dynamics of evolutionary game theory which applies to this continuous game, and we show that if the network's users employ a distributed learning scheme based on these dynamics, then they converge to equilibrium exponentially quickly. On the other hand, a major challenge occurs if the channels do not remain static but fluctuate stochastically over time, following a stationary ergodic process. In that case, the associated ergodic game still admits a unique equilibrium, but the learning analysis becomes much more complicated because the replicator dynamics are no longer deterministic. Nonetheless, by employing results from the theory of stochastic approximation, we show that users still converge to the game's unique equilibrium. Our analysis hinges on a game-theoretical result which is of independent interest: in finite player games which admit a (possibly nonlinear) convex potential function, the replicator dynamics (suitably modified to account for nonlinear payoffs) converge to an eps-neighborhood of an equilibrium at time of order O(log(1/eps)).Comment: 11 pages, 8 figures. Revised manuscript structure and added more material and figures for the case of stochastically fluctuating channels. This version will appear in the IEEE Journal on Selected Areas in Communication, Special Issue on Game Theory in Wireless Communication
    • …
    corecore