7 research outputs found

    Taxonomic and functional metagenomic analysis of anodic communities in two pilot-scale microbial fuel cells treating different industrial wastewaters

    Get PDF
    Summary The combined processes of microbial biodegradation accompanied by extracellular electron transfer make microbial fuel cells (MFCs) a promising new technology for cost-effective and sustainable wastewater treatment. Although a number of microbial species that build biofilms on the anode surfaces of operating MFCs have been identified, studies on the metagenomics of entire electrogenic communities are limited. Here we present the results of wholegenome metagenomic analysis of electrochemically active robust anodic microbial communities, and their anaerobic digester (AD) sludge inocula, from two pilot-scale MFC bioreactors fed with different distillery wastewaters operated under ambient conditions in distinct climatic zones. Taxonomic analysis showed that Proteobacteria, Bacteroidetes and Firmicutes were abundant in AD sludge from distinct climatic zones, and constituted the dominant core of the MFC microbiomes. Functional analysis revealed species involved in degradation of organic compounds commonly present in food industry wastewaters. Also, accumulation of methanogenic Archaea was observed in the electrogenic biofilms, suggesting a possibility for simultaneous electricity and biogas recovery from one integrated wastewater treatment system. Finally, we found a range of species within the anode communities possessing the capacity for extracellular electron transfer, both via direct contact and electron shuttles, and show differential distribution of bacterial groups on the carbon cloth and activated carbon granules of the anode surface. Overall, this study provides insights into structural shifts that occur in the transition from an AD sludge to an MFC microbial community and the metabolic potential of electrochemically active microbial populations with wastewater-treating MFCs.</jats:p

    A METAGENOMIC ASSESSMENT OF BACTERIAL CONTAMINATION OF DUST EVENTS IN SENEGAL

    Get PDF
    Previous work in the Caribbean and West Africa have shown that air samples taken during dust events contain microorganisms (bacteria, fungi, viruses), including human pathogens that can cause many respiratory diseases. To better understand the potential downstream effect of bacteria dust on human health and public ecosystems, it is important to characterize the source population. In this study, we aimed to explore the bacterial populations of African dust samples collected between 2013-2017. The dust samples were collected using the spatula method, then the hypervariable regions (V3 and V4) of the 16S rRNA gene were amplified using PCR followed byMiSeq Illumina sequencing. Analysis of the sequencing data were performed using MG-RAST. At the phylum level, the proportions of Actinobacteria (22%), Firmicutes (20%), Proteobacteria (19%), and Bacteroidetes (13%) were respectively predominant in all dust samples. At the genus level, Bacillus(16%), Pseudomonas(10%), Nocardiodes and Exiguobacterium (5%) are the most dominated genera in African dust samples collected in this study.The study showed that molecular characterization of dust microbial population remains a very efficient method, also applicable to the search for viruses and fungi in this type of sample. It is important to note that the majority of microorganisms identified in this study can cause respiratory diseases.</jats:p

    Taxonomic and functional metagenomic analysis of anodic communities in two pilot-scale microbial fuel cells treating different industrial wastewaters

    No full text
    The combined processes of microbial biodegradation accompanied by extracellular electron transfer make microbial fuel cells (MFCs) a promising new technology for cost-effective and sustainable wastewater treatment. Although a number of microbial species that build biofilms on the anode surfaces of operating MFCs have been identified, studies on the metagenomics of entire electrogenic communities are limited. Here we present the results of wholegenome metagenomic analysis of electrochemically active robust anodic microbial communities, and their anaerobic digester (AD) sludge inocula, from two pilot-scale MFC bioreactors fed with different distillery wastewaters operated under ambient conditions in distinct climatic zones. Taxonomic analysis showed that Proteobacteria, Bacteroidetes and Firmicutes were abundant in AD sludge from distinct climatic zones, and constituted the dominant core of the MFC microbiomes. Functional analysis revealed species involved in degradation of organic compounds commonly present in food industry wastewaters. Also, accumulation of methanogenic Archaea was observed in the electrogenic biofilms, suggesting a possibility for simultaneous electricity and biogas recovery from one integrated wastewater treatment system. Finally, we found a range of species within the anode communities possessing the capacity for extracellular electron transfer, both via direct contact and electron shuttles, and show differential distribution of bacterial groups on the carbon cloth and activated carbon granules of the anode surface. Overall, this study provides insights into structural shifts that occur in the transition from an AD sludge to an MFC microbial community and the metabolic potential of electrochemically active microbial populations with wastewater-treating MFCs

    Nanostrukturēti kompozītmateriāli enerģijas uzkrāšanai un pārveidošanai: rakstu krājums.

    Get PDF
    Latvijas Universitātes Cietvielu fizikas institūta, Latvijas Valsts koksnes ķīmijas institūta, Rīgas Tehniskās universitātes Materiālzinātnes un lietišķās ķīmijas fakultātes Neorganiskās ķīmijas institūta, Latvijas Universitātes Ķīmijas fakultātes, Latvijas Universitātes Bioloģijas fakultātes zinātnieku pētnieciskie rezultāti LZP sadarbības projektā Nr. 666 2014.–2017. gadā
    corecore