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Abstract
During 2015-2017 we have conducted experiments in Japan to test the capacity of microbial fuel cells (MFC) 

to treat different types of wastewaters (swine farm, domestic, yeast fermentation, winery, etc.) and concomitantly 
collecting DNA samples from MFC anodic and planktonic bacterial communities. W e  analyzed these 
metagenomes in UK, using our new bioinformatics tool (ASAR) that allow integration of phylogenetic and functional 
data. Characteristic MFC communities and the associated functional signatures were shown to reflect effective 
waste water treatment. We also found that the fraction of opportunistic pathogenic bacteria DNA was reduced 
in metagenomes from MFC communities during swine waste treatment. The highest loss was recorded for 
Enterobacteriaceae family (such as Yersinia, Vibrio, and Shigella). The abundance of virulent genes responsible 
for adhesion, secretion systems, invasion and intracellular survival, as well as antibiotic resistance, associated with 
Firmicutes and Actinobacteria phyla of Gram-positive bacteria, also decreased in the MFC residential metagenomes. 
Key metabolic functions were redistributed among bacteria on the anode and archaea in plankton. We propose 
to use MFC, inoculated with electroactive bacterial communities, for waste disinfection, and potentially for 
development of novel antibacterial therapies. This approach promises to be effective and economically justified, 
especially in cases of epidemics of enterobacteria-associated diseases, and common residential hospital pathogens 
such as Enterococcus.
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Introduction
The livestock industry around the world produces colossal amounts 

of wastes characterized by a high- loaded level of organic compounds 
and pathogenic microorganisms that are resistant to multiple antibiotics 
[1]. Pathogenic bacteria associated with fecal wastewaters and hospital 
wastes cause waterborne-disease outbreaks (typhoid and paratyphoid 
fever, salmonellosis, cholera, dysentery and other infections) [2]. 
Environmental issues attributed to remediation technologies and 
improvement of quality of treated wastes cause great public interest.

Among aerobic and anaerobic wastewater treatment systems 
microbial fuel cells (MFCs) representing novel electrochemical 
bioreactors efficiently convert organics directly into electricity has 
become one of the most promising technology for power generation 
and wastewater treatment [3-7]. The last decade the MFC design, 
anode and cathode materials, cation exchange membranes and 
oxygen reduction catalysts have been significantly advanced [5,7]. 
Different sources of inoculums (anaerobic digester sludge, food 
wastes, lignocellulose compost or brewery industrial sludge) were 
applied for the MFC aimed to electroactive microbial community 
adaptation and following wastewater treatment [3,8,9]. Among all, 
swine manure and wastewater are well studied as initial inoculum for 
electroactive community adaptation, treatment efficiency and power 
output [10].

Bacteria that are able to produce electricity are usually referred to 
as electroactive bacteria or ‘electrogens’ [3-10]. In addition to known 
electrogens (Geobacter, Shewanella and Arcobacter genera), MFCs 
contain other genera, among which are well known probiotics [3-
5,11,12]. From the other side, MFCs reportedly contain opportunistic 

pathogenic microbes, such as Corynebacterium diphtheria, Shigella sp., 
Yersinia pestis, and Mycobacterium sp. [3-5,13,14].

The composition of MFC populations can be manipulated by 
compounds involved in redox reactions or electron transfer. Ferric 
chelator compounds, for instance, enhance survival and growth of 
Lactobacillus plantarum, Streptococcus lactis, and Erwinia dissolvens 
[15-17]. In general, incubation in MFCs causes compositional shifts 
in bacterial communities [17-20]. The majority of pathogenic 
species are suggested to lose in competition to more MFC-adaptive 
electroactive bacteria or to bacteria that enter syntrophic interactions 
in the community [20-24]. Several microbial genera were shown 
to be dramatically reduced in MFC [18], including the phylum 
Actinobacteria (Schlegelella, P =0.045), and it was suggested, based 
on metagenome analysis, that MFCs could be directly used in more 
general waste disinfection [17,25].

Theoretically, MFCs can be used to improve bacterial community 
composition to favor probiotic and less pathogenic components on 
a large scale [15-17,19-21,24-26]. However, this concept still requires 
proof as there have been no systematic studies on composition and 
functional evolution of opportunistic pathogens in MFCs.
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Microbial fuel cells increasingly find application in technological 
spheres [26-29] and been suggested for wastes disinfection [25] to 
prevent bacterial resistance to the spectrum of chemical disinfectants 
in hospital settings [30-35]. We have previously reported changes 
in gene abundances in MFCs that were strongly characteristic of 
electroactive species [3,4]. Mechanisms underlying shifts in relevant 
gene abundances in bacterial communities are still not understood, 
however, we investigated potential traits of the dominating 
opportunistic pathogenic bacterial species, their virulent and selected 
antibiotic resistance genes [36-40] during MFC bacterial community 
incubation. Two different inocula have been used in a laboratory-
scale MFCs to generate communities for short incubation periods 
and for further metagenomic analysis. This study demonstrates a 
potential benefit of applying MFC to waste disinfection.

Methods
MFC

The MFC configuration and operation was described in our 
previous work (Figure 1) [3,4]. Briefly, we inoculated two pairs of 
laboratory-scale MFCs in Okinawa Institute Science and Technology 
(Japan) with sludge granules from a beer wastewater treating 
anaerobic digester (IGBS) and from sludge taken from the bottom of a 
tank receiving swine wastewater (SS). The MFC chamber contained two 
anodes and two air-facing side cathodes. The anodes (approximately 6 x 
8 cm), suspended 2-3 mm off the bottom of the chamber, composed of a 
layer of conductive carbon cloth to which 2 mm average size activated 
carbon granules were bound with conductive glue to provide more 
surface area. The granules had been prepared from birch precursor 
and were pre-treated with neutral red. We have been successfully using 
neutral red for many years and visible depletion or lack of performance 
have not been observed [41].

The cathodes were 3 mm thick graphite plates with 60% porosity. 
They were sprayed on the liquid -facing side of a plate with an aqueous 
5% Fumion membrane polymer (Fumatech, Bietigheim- Bissingen, 
Germany), while activated carbon granules (treated with iron(II) 
phthalocyanine) were mechanically pressed to the air-facing side 
using netting frame. The cathode extended into a bath containing an 
electrolyte solution (maintained at pH 3 with regular additions of 0.1 
N HCl. We are using wet cathodes since 2009 in different applications 
and never observed underperformance [42,43].

The MFC chambers were placed into a bath containing an electrolyte 
solution (1 M HCl, pH 3.0). The anode and cathode electrodes were 
connected with a multichannel logger (GraphtecMidi LOGGERGL820, 
Japan) for daily voltage measurements. The electric current was 
calculated using Ohm’s law (V=IR). Power density was obtained 
according to P=IV/A, where I is the current, V is the voltage, and A 
is the projected surface area of the cathode. The external resistance 
was 1000 Ω. Anode potential and coulombic efficiency data are shown 
in Supplementary Table 1, please also refer to Khilyas et al. [4].

MFC inoculation procedures and operating conditions have been 
described previously [4]. Briefly, SS was collected from a local pig 
farm (Okinawa Livestock and Grassland Centre, Nago, Japan) and 
IGBS- from a wastewater-treating UASB reactor (Orion Brewery, 
Nago, Japan). Inocula were not chemically modified or diluted, though 

the SW inoculum was filtered through a 1 mm stainless steel mesh to 
remove large particles. Swine waste (SW) for use as MFC feed was stored at 
4°C. Precautions were taken to keep the feed and inoculum anaerobic 
thus all the work was done in anaerobic cabinet.

Wastewater feed was diluted with distilled water to adjust the 
chemical oxygen demand (COD) to 3.5-7.4 g O2 L

-1. The MFCs microbial 
biofilm was formed for 3 days inoculation with SS and two with IGBS in 
open-circuit mode at room temperature. Wastewater was added to 
the MFCs semicontinuously using a peristaltic pump (HRT=24 h). 
After 67-day experiment swine wastewater, inoculum sludges, anodic 
biofilms (carbon felt and carbon granules) and planktonic samples of 
each MFC were used for DNA isolation (PowerMax soil DNA isolation 
kit (MO BIO laboratories, Inc.). A DNA library was constructed for 
shotgun sequencing and a 150 paired-end sequencing reaction was 
performed on MiSeq platform (Illumina, San-Diego, CA, USA). All 
experiments were set up in duplicate. The MFCs were disassembled 
after 67 days of the experiment and DNA was isolated in the same 
day. All experiments were set up in duplicate.

Data processing

The sequencing data were uploaded to the MG-RAST server as 
FASTAQ files for processing, primary analysis, and storage. Sus scrofa 
(pig) genome sequences were marked for exclusion during data 
submission. Primary submission data and results of the MG-RAST 
pipeline are available publicly (projectmgp19536). The MG-RAST 
representative hit organism abundances calculation was performed 
against the SEED database at the level of genera, based on a maximum 
e-value of 1 × 10−5, minimum identity cut-off of 60%, and minimum 
sequence alignment of 15. Abundance data were downloaded as TSV 
files for further analysis. The representative hit data were downloaded 
from MG-RAST server via MGRASTer package [44] in R 3.1 
environment. Abundance analysis was performed in metagenome Seq 
package [45] and ordination analysis was performed with phyloseq R 
packages [46]. Krona taxonomic community profiles were built by MG-
RAST and stored as an image.

Data visualization

Functional, taxonomic, and KEGG Orthology [47] data 
were obtained from Illumina reads via MG- RAST pipeline. The 
functional and taxonomic annotations were merged based upon 
identical md5’s corresponding to unique read sequences. Then read 
counts were aggregated for reads annotated with the same function 
and taxon. Functional and taxonomic read annotations to lowest level 
are matched to the lowest level annotations in their corresponding 
hierarchy trees to generate the whole phylogeny of each read. The 
result is the 3D dataset with axes of Functions, Taxonomy and 
Metagenome. Our post annotation analysis and visualization tool 
ASAR [48] uses data integration algorithm to merge taxonomic and 
functional data annotated at read level. The resulting 3D datasets with 
axes of Functions, Taxonomy and Metagenome samples were visualized 
via three heatmaps of each axis versus two others (F&T, F&M, T&M). 
Additionally, KEGG pathway enrichment sorting/heatmap and its 
map visualization were implemented. Advantages of the tool are: 1) 
Integrated functional and taxonomic analysis; 2) Comparative analysis 
of pathway enrichments; 3) KEGG pathway map visualization. The 
heatmaps show log abundance of reads annotated with selected 
functions in particular taxa within particular communities. On the 
KEGG map each functional box is split into sections corresponding 
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Figure 1: General schema of MFC.

to analyzed bacterial communities. The relative abundance of each 
function in each community is color coded from green (the lowest) 
to dark red (the highest proportion in the community). Taxonomical 
nomenclature is explained in Supplementary Table 2.

Results
Occurrence of pathogenic and opportunistic bacteria in MFC

We inoculated two pairs of laboratory-scale MFCs with sludge 
granules from a beer wastewater treatment anaerobic digester (IGBS) 
or with sludge (SS) taken from the bottom of a tank receiving 
swine wastewater (SW). The SS-inoculated MFC outperformed the 
IGBS-inoculated MFC with regard to volatile fatty acids removal, and 
electricity production [3,4]. Using a metagenomic approach we have 
previously described the microbial diversity of the MFC planktonic 
and anodic communities derived from two different inocula 
[3,4]. Along with electrogenic genus Geobacter, genera Pelobacter, 
Pseudomonas, Arcobacter, Syntrophus, Syntrophobacter, Bacteroides, 
and Clostridium and two acetoclastic methanogens (Methanosarcina 
and Methanothermobacter) were identified as the most highly 
abundant genera on both MFC anodes. Anodic communities of 
SS-inoculated MFCs had a higher proportion of Clostridium and 
Bacterioides genera relative to those of IGBS-inoculated MFCs, which 
were enriched with Pelobacter. Our results thus have shown a long-
term influence of inoculum type on the performance and microbial 
community composition of swine wastewater treating MFCs [4].

This study mainly focuses on impact of the MFC treatment 
against pathogenic and opportunistic bacteria which are the major 
constituents in swine wastes. Particularly, bacteria related to 
Gammaproteobacteria (Enterobacteriaceae family, Pseudomonadales 
order) and Firmicutes phylum were analyzed in detail. With the 
current focus on an opportunistic pathogenic fraction of the MFC 
bacterial communities, we have found that multiple opportunistic 
pathogenic organisms, like Shigella, Yersinia, Vibrio, Enterococcus, 
Haemophilus, Clostridium, Staphylococcus, Streptococcus and Bacillus 
genera representatives are present in inoculum (SS) or waste influent 
(SW). Populations of these potentially pathogenic genera are strongly 
reduced after several days of incubation (Figure 2).

At the species level, most known pathogens is swine waste (SS) were 
suppressed in MFCs, including Haemophilus influenza, Yersinia pestis, 
Vibrio cholerae, Clostridium difficile, Bacillus anthracis, Staphylococcus 
aureus, Bacillus cereus, Clostridium tetani, Shigella sonnei, Yersinia 
pseudotuberculosis, Streptococcus pneumonia, Streptococcus agalactiae, 
Streptococcus pyogenes, Enterococcus faecium, Yersinia enterocolitica, 
Staphylococcus epidermidis, Francisella tularensis, and Enterococcus 
faecaliis. On contrary, Campylobacter jejuni, Legionella sp., and Brucella 
sp. Slightly increased their relative abundances (Figure 2).

The changes were the most dramatic for Yersinia pestis, Yersinia 
pseudotuberculosis, Shigella sonnei, and Vibrio cholerae for all inocula 
and in both anodic and planktonic communities (Figure 2). For other 
species, such as Haemophilus influenzae, Yersinia enterocolitica, and 
Clostridium sp., the relative decline was strongly associated with SS 
inoculum and SW feedstock, with IGBS-inoculated MFC showing 
the poorest anti-pathogenic performance. Changes were not associated 
with a particular MFC compartment. The fact that species dynamics 
depend on inoculum source more than on MFC compartment 
suggests the role of community interactions/interspecies competition 
in the decline of certain bacterial groups. It also suggests that some 
species may be represented by differently adapted strains, depending 
upon the sample source. SW feedstock contains more vulnerable 
heterotrophs with limited metabolic capacity that cannot survive in 
the MFC environment. The ratio of Pseudomonas spp. increases in the 
MFC community is also reflected in an increase in the proportion of 
Pseudomonas-specific functions, such as biosynthesis of siderophores, 
for instance.

The general tendency of the observed community composition 
shift supports previous observations [16,19,27-29]. Though the 
MFC treatment is useful for Enterobacteriaceae (Shigella, Yersinia, 
Vibrio) disinfection, other groups of opportunistically pathogenic 
bacteria may be resistant to electroactive conditions, and for some of 
them (representatives of Spirochaeta, Clostridium, Corynobacteria, 
Legionella, Streptococcus, Brucella, and Pseudomonas genera) MFC may 
even constitute a stimulating environment. Propagation and evolution 
of virulent features of Streptococcus, Staphylococus, and Bacillus genera 
seem dependent on bacterial composition of the inoculum, as they 
had different tendencies in the two inocula. In general, disinfection/
weakening of the virulence of Gram-positive organisms in the MFC 
does not seem very efficient, or at least, its outcome cannot be fully 
predicted yet. Further experiments are required. However, growth of 
few probiotic representatives of Pseudomonades, Cyanobacteria and 
Streptococcus genera may be supported in MFC if the initial inoculum 
and incubation conditions are optimized.

A decline of Enterobacteriaceae family in an operated MFC may 
certainly be attributed not to only a communal fitness factors but also 
a number of chemical and physical factors associated with operated 
MFC, such as increase in temperature which takes place in proximity 
to electrodes, global and local changes in pH and osmolality (cathodic 
space) [30]. In our experiments we see enrichment in a number of 
stress-resistance genomic attributes in bacteria which abundancies 
increases with time of cultivation in MFC (unpublished data), which 
suggests indeed an important role for this functional component 
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Figure 2: Relative abundancies of reads mapped to genomes of the pathogenic bacteria MFC residents. Generated via ASAR taxons to samples function mapper. The 
log abundance is shown for reads annotated with a selected function in a particular taxon within a particular community. SS- swine sludge inoculum, IGBS - industrial 
sludge inoculum, SW swine waste inflow, SS plankton and SS anode - planktonic and anodic community in the swine sludge inoculated MFC, IGBS plankton and IGBS 
anode - planktonic and anodic community in the industrial sludge inoculated MFC.

in developing composition of the bacterial communities. It may 
therefore be tempting to correlate the increased stress with the loss 
of genes that are not facilitating the electron transfer or other redox 
pathways. Similarly, such environmental pressure seems to positively 
influence those virulence genes that are involved in redox pathways 
(pyocyanin, siderophore in Pseudomonas spp.), or ion transfer 
(antibiotic and toxin resistance genes). We also observed differences 
between open circuit and active MFC which is in a support of the 

rather physical/chemical factors associated with electricity production 
having a key role in the observed suppression of the particular groups 
of bacteria. This theme is in focus of our current research and is 
a corner stone for many industrial applications of MFC technique.

Dynamics of pathogenicity-related genomic features in 
MFC’s microbial community

The number of reads associated with the majority of functions 
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classified into bacterial ‘pathogenicity‘(merged virulence and antibiotics 
resistance) category diminished in MFC compared to initial inocula 
and are associated indiscriminately with all MFC compartments (Figure 
3). However, sequences associated with several types of function: 
regulation of virulence (from IGBS inoculum), bacterial cytostatics, 
differentiation factors, and antibiotics (anodic communities from 
IGBS and SS inocula), siderophores (for all inocula, and especially for 
anodic communities), increased in abundance in the MFC. Genomic 
presentation of such functional categories as ‘adhesion and secretion 
systems (III, IV, VI, ESAT)’, ‘invasion and intracellular resistance’, ‘cell 
wall of Mycobacteria’ and ‘NAD/NADP metabolism’ increased in the 
IGBS-based MFC community compared to their levels in the initial 
IGBS inoculum.

Relative genomic presentation of pathogenicity islands decreases 
in the bacterial communities developed from SS inoculum. However, 
due to decreased representation of nearly all functions associated 
with opportunistic pathogenic bacteria in SS-based MFC, it was 
hard to conclude if the pathogenicity islands decline was a result of 
a targeted negative selection. Interestingly, functions from the ‘toxins 
and superantigen’ functional virulence category did not decline 
compared with the initial SS inoculum but increased instead. Only a 
slight decrease was observed for this group of functions in the anodic 
bacterial community developed from IGBS inoculum.

Analysis of categories responsible for bacterial virulence and 
virulence-like factors (Figure 4) suggests a potential r o l e  of 
MFC conditions in suppression of antibiotic resistance, invasion, 
intracellular resistance, and adhesion. However, it is not clear 
from the method whether this decline is proportional to a general 
decline of opportunistic pathogenic bacterial groups, especially from 
Enterobacteria, in the MFC community developed from SS inoculum.

Data presented on Figure 5 show functions from the ‘antibiotic 
resistance’ category in more detail. Only ‘Multidrug resistance tripartile 
system’ and ‘Streptolysine biosynthesis and transport’ pathways show 
an obvious decline in all MFC chambers’ communities developed 
from IGBS inoculum. However, functions responsible for resistance 
to vancomycine, fostomycine, fluoroquinones and methicillin, as 
well as of beta-lactamase, cholera toxin, vibrio cytolysin, and the 
Streptococcus pyogenes virulome increased in IGBS MFC community. 
PhnB, vanR, vanI (genes for quorum sensing controlling biofilm 
formation and exopolysaccharide production in Clostridium) also 
declined after MFC incubation.

Given that antibiotic resistance mechanisms involve efflux pumps 
[36], as well as the role of cholera [37] and cytolysin [38] toxins in 
the ion flux, it is plausible that conditions within MFC favor those 
mechanisms.

In contrast to its dynamics in the IGBS-based MFC community, 
‘Multidrug resistance tripartile system’ genomic presentation increased 
in the community developed from SS inoculum. Resistance to 
vancomycine and beta-lactamase, as well as genes for streptolysin 
biosynthesis and transport also had positive dynamics in the MFC 
community developed from SS inoculum. Sequences mapped to genes 
encoding functions associated with resistance to fluoroquinones 
and methicillin, as well as Staphylococcus adhesins, Listeria surface 
proteins, and Streptococus pyogenes virulence functions were less 

enriched in MFC compared with SS inoculum. However, these negative 
dynamics may have been caused by the total decline in opportunistic 
pathogenic bacteria in MFC chambers and may not allow conclusions 
to be drawn regarding the influence of the electroactive chamber on 
negative drift of virulent genes.

Metabolic functions of pathogens with differential 
presentation in bacterial communities before and after 
cultivation in MFC

Analyses of the reads mapped to KEGG pathways (Figure 6) confirm 
results of functional analyses based on SEED/RAST subsystems. 
Sequences relevant to biofilm metabolism were enriched in the 
MFC community produced from IGBS inoculum. Interestingly, we 
saw a clear enrichment for genomic presentation of functions relevant 
to biosynthesis of sulfur-containing cofactors, lipoate and thiamine, 
participating in microbial sulfur oxidation [39] and oxidation-
reduction reactions of volatile acids [40] and pyruvate metabolism. 
The ratio of several thiamine biosynthetic genes increased in the MFC 
community developed from IGBS inoculum and the abundance of 
lipoate biosynthesis genes increased in MFC communities developed 
from IGBS, and for some bacteria (Brucella, Bordetella, Clostridium) 
also from SS inocula (Figures 6 and 7; Supplementary Figure 1). The 
results suggest engagement of redox-associated sulfur and/or pyruvate 
metabolic processes in MFC, particularly in the anodic community. At 
least for Spirochaete, Fracisella, Legionella and Brucella, these tendencies 
were strongly associated with increased genomic presentation of 
the TCA pathway (Supplementary Figure 2). Presentation of genes 
for biosynthesis of riboflavin, FMN, and glutathione metabolism 
are only slightly enriched in the MFC community compared to both 
inocula. Spirochaete (Treponema, Leptospira) and aerobic coccobacilli, 
Franciella and Legionella, became enriched in the MFC metagenomes 
of communities developed from both SW and IGBS inocula. 
Aerobic metabolism of bacteria that became abundant in MFCs, is 
reflected i n  a  continuous enrichment of sequences corresponding to 
particular lipoate (LplA) [39,40] and thiamine salvage genes.

A link of lipoate salvage to hydrogen metabolism in a number of 
electroactive bacteria possessing non-methanogenic heterodisulfide 
reductase [39,40] can explain particular importance of the LplA 
genomic abundance in operating MFC. Electroactive properties of the 
bacteria are also based on pyruvate metabolic conversions that would 
strongly depend on presence of thiamine as an enzymatic cofactor.

As shown on examples of KEGG depiction of the corresponding 
pathways (Figure 8), relative abundance of reads mapped to genes 
encoding hydroxymethylpyrimidine kinase (EC2.7.1.49) and 
phosphomethylpyrimidine kinase (EC 2.7.4.7) strongly increased in 
Spirochetes population in MFC in compare to the initial inoculum. 
Interestingly, these three gene is were also the most differentially 
presented in MFC of all genes encoding bacterial metabolic functions. 
H ydroxymethylpyrimidine kinase ensures an assimilation of thiamine 
degradation product, 4-amino-2-methyl-5-pyrimidinemethanol 
(HMP), into the de-novo pathway where phosphomethylpyrimidine 
kinase performs the following reaction. Therefore, we can suggest that 
bacteria successfully adapted to MFC environment relay on mainly 
extracellular source of a precursor for thiamine biosynthesis. With a 
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Figure 3: Relative abundancies of reads mapped to genomes (species level) of the pathogenic bacteria MFC residents. Generated via ASAR taxons to samples function 
mapper. The log abundance is shown for reads annotated with a selected function in a particular taxon within a particular community. SS- swine sludge inoculum, IGBS 
- industrial sludge inoculum, SW swine waste inflow, SS plankton and SS anode - planktonic and anodic community in the swine sludge inoculated MFC, IGBS plankton 
and IGBS anode - planktonic and anodic community in the industrial sludge inoculated MFC.

diminished survival of a fraction of groups of bacteria, and a potential 
accumulation of thiamine products in the media, adaptation of the 
Spirochetes may be of a competitive nature.

In contrast, a strong decline of the hydroxymethylpyrimidine kinase 
and phosphomethylpyrimidine kinase matching reads was observed for 
declining Enterobacteriaceae family and Haemophilus and Bordetella 

genera, with an example depicted in the KEGG maps (Figure 9). Another 
thiamine–biosynthetic gene, encoding for the function of thiamine-
phosphate pyrophosphorylase (EC 2.5.1.3), KEGG maps (Figure 8A 
and 9A) also showed specific pattern of enrichment, depending on 
bacterial genera and MFC chambers. For instance, increased number 
of the corresponding Neisseria and Vibrio reads was detected in the 
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Figure 5: Relative abundancies of reads mapped to genomes of the pathogenic bacteria (family level) MFC residents. Generated via ASAR taxons to samples function 
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Figure 6: Relative abundancies of reads mapped to KEGG functions associated with genomes of the pathogenic bacteria MFC residents. Generated via ASAR taxons to 
samples function mapper. The log abundance is shown for reads annotated with a selected function in a particular taxon within a particular community. SS- swine sludge 
inoculum, IGBS - industrial sludge inoculum, SW swine waste inflow, SS plankton and SS anode - planktonic and anodic community in the swine sludge inoculated MFC, 
IGBS plankton and IGBS anode - planktonic and anodic community in the industrial sludge inoculated MFC.
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Figure 7: Heatmap for normalized number of reads mapped to Lipoate biosynthesis genes across the pathogen’s bacteria species. Generated via ASAR taxons to 
samples function mapper. The log abundance is shown for reads annotated with a selected function in a particular taxon within a particular community. SS- swine sludge 
inoculum, IGBS - industrial sludge inoculum, SW swine waste inflow, SS plankton and SS anode - planktonic and anodic community in the swine sludge inoculated MFC, 
IGBS plankton and IGBS anode - planktonic and anodic community in the industrial sludge inoculated MFC.
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Figure 8: KEGG maps [47] presenting examples of differential relevant abundancies of reads from MFC anodic chamber (left section of a block) and inflow SW (right 
section of a block) metagenomes mapped to Spirochetes’ Lipoate (A) and Thiamine salvage (B) pathways. The Function boxes are split into sections corresponding to 
the analyzed metagenomes; color of each section encodes the proportion of the function provided by a selected taxon.
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Figure 9: KEGG maps [47] presenting examples of differential relevant abundancies of reads from MFC anodic chamber (left section of a block) and inflow SW (right 
section of a block) metagenomes mapped to Enterobacterial Lipoate (A) and Thiamine salvage (B) pathways. Function boxes are split into sections corresponding to the 
analyzed metagenomes; color of each section encodes the proportion of the function provided by a selected taxon.
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planktonic community metagenome, but strongly decreased number of 
the thiamine-phosphate pyrophosphorylase matching Vibrio reads was 
detected in the metagenome of the anodic community).

The data suggest that thiamine-based oxidative pyruvate metabolism 
is likely suppressed in bacteria selected against in the MFC chamber, 
especially in opportunistic pathogens: Shigella, Yersinia, Vibrio, and 
Haemophilus. However, those pathways seem to be of increasing 
metabolic significance for Spirochaete, and aerobic cocobacilli from 
Francisella and Legionella genera. Relative abundance of reads mapped 
to diverse Staphylococcus and Clostridium species, Streptococus 
agalactae and Enterococcus faecium lipoate pathway was also increased 
in the MFC community developed from IGBS inocula (Figure 6).

Conclusions
Our results support the suggestion to use of MFC to disinfect wastes 

enriched in Enterobacteriaceae (Shigella, Yersinia, Vibrio) species 
which would help to prevent bacterial resistance to the spectrum of 
chemical disinfectants. As our data show, it may be also effective against 
Haemophilus and a number of Gram-positive bacterial genera, such as 
Enterococcus, that recently comprise the leading causes of hospital-
associated infections as possessing resistance to multiple antibiotics.

However, for some groups of opportunistic pathogenic bacteria 
(representatives of Spirochaete, Clostridium, Corynobacteria, Legionella, 
Streptococcus, Brucella, and Pseudomonas genera) MFC may even 
constitute a stimulating environment. Propagation and evolution of 
virulent features of Streptococcus, Staphylococus, and Bacillus genera 
and a disinfection effectiveness of MFC in general, depend on the 
source or a bacterial composition of the original inoculum that suggests 
the role of community interactions/interspecies competition in the 
decline of certain bacterial groups. It also suggests that some species 
may be represented by differently adapted strains, depending upon the 
sample source.

A negative drift of genes for lipoate and thiamine salvage occurred 
to be characteristic for the declining enterobacterial groups, though 
strong enrichment of these genes was demonstrated for Spirochaeta, 
Clostridium, Fraciella and Legionella which abundancy increases during 
MFC incubation and also may be treated as a result of intracommunity 
competition. Those questions are subjected for more detailed 
interdisciplinary research with mathematical modeling of metabolic 
communal interactions and comparative genomics efforts involved.

A decline of Enterobacteriacae family in an operated MFC may 
certainly be attributed to not only a communal fitness factors but also 
a number of chemical and physical factors associated with operated 
MFC, which comprises a focus of our current investigation. With more 
data available, optimized MFC technology may become an efficient 
approach to be applied to disinfection of hospital wastewaters and 
medical wastes.
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