44,418 research outputs found

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    Empowering citizens' cognition and decision making in smart sustainable cities

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Advances in Internet technologies have made it possible to gather, store, and process large quantities of data, often in real time. When considering smart and sustainable cities, this big data generates useful information and insights to citizens, service providers, and policy makers. Transforming this data into knowledge allows for empowering citizens' cognition as well as supporting decision-making routines. However, several operational and computing issues need to be taken into account: 1) efficient data description and visualization, 2) forecasting citizens behavior, and 3) supporting decision making with intelligent algorithms. This paper identifies several challenges associated with the use of data analytics in smart sustainable cities and proposes the use of hybrid simulation-optimization and machine learning algorithms as an effective approach to empower citizens' cognition and decision making in such ecosystemsPeer ReviewedPostprint (author's final draft

    Modeling Taxi Drivers' Behaviour for the Next Destination Prediction

    Full text link
    In this paper, we study how to model taxi drivers' behaviour and geographical information for an interesting and challenging task: the next destination prediction in a taxi journey. Predicting the next location is a well studied problem in human mobility, which finds several applications in real-world scenarios, from optimizing the efficiency of electronic dispatching systems to predicting and reducing the traffic jam. This task is normally modeled as a multiclass classification problem, where the goal is to select, among a set of already known locations, the next taxi destination. We present a Recurrent Neural Network (RNN) approach that models the taxi drivers' behaviour and encodes the semantics of visited locations by using geographical information from Location-Based Social Networks (LBSNs). In particular, RNNs are trained to predict the exact coordinates of the next destination, overcoming the problem of producing, in output, a limited set of locations, seen during the training phase. The proposed approach was tested on the ECML/PKDD Discovery Challenge 2015 dataset - based on the city of Porto -, obtaining better results with respect to the competition winner, whilst using less information, and on Manhattan and San Francisco datasets.Comment: preprint version of a paper submitted to IEEE Transactions on Intelligent Transportation System

    The State of Adaptation in the United States: An Overview

    Get PDF
    Over the past two decades the adaptation landscape has changed dramatically. From its early days as a vague theoretical concept, which was often viewed as a threat to advocating for the reduction of greenhouse gas emissions, it has developed into a widely, albeit not universally, recognized governmental mandate to reduce societal vulnerability to climate change. While it is important to appreciate the progress that we are making on this issue, it is impossible to ignore the urgent need to do more. Smart investment can be made by reflecting on what is already underway in order to determine where to build on existing efforts and where to innovate new approaches to fill the gaps in the path forward. In this report we provide illustrative examples of the variety of work on climate change adaptation that is underway in the United States. This is by no means an exhaustive survey of the field; however it does provide insight into the dominant focus of work to date, the resultant gaps, and the opportunities available for advancing this essential aspect of sustainability. We focus on four areas of activity -- agriculture, natural resources, human communities, and policy. The general trends relevant to these sectors can be applied more broadly to other sectors and countries. Adaptation can be thought of as a cycle of activities that ultimately -- if successful -- reduces vulnerability to climate change. This process starts with identifying the impacts of climate change to determine the types of problems climate change might pose. This includes all of the research on the causes and the global, regional, and local manifestations of climate change, often referred to as impacts assessments

    Learning and Management for Internet-of-Things: Accounting for Adaptivity and Scalability

    Get PDF
    Internet-of-Things (IoT) envisions an intelligent infrastructure of networked smart devices offering task-specific monitoring and control services. The unique features of IoT include extreme heterogeneity, massive number of devices, and unpredictable dynamics partially due to human interaction. These call for foundational innovations in network design and management. Ideally, it should allow efficient adaptation to changing environments, and low-cost implementation scalable to massive number of devices, subject to stringent latency constraints. To this end, the overarching goal of this paper is to outline a unified framework for online learning and management policies in IoT through joint advances in communication, networking, learning, and optimization. From the network architecture vantage point, the unified framework leverages a promising fog architecture that enables smart devices to have proximity access to cloud functionalities at the network edge, along the cloud-to-things continuum. From the algorithmic perspective, key innovations target online approaches adaptive to different degrees of nonstationarity in IoT dynamics, and their scalable model-free implementation under limited feedback that motivates blind or bandit approaches. The proposed framework aspires to offer a stepping stone that leads to systematic designs and analysis of task-specific learning and management schemes for IoT, along with a host of new research directions to build on.Comment: Submitted on June 15 to Proceeding of IEEE Special Issue on Adaptive and Scalable Communication Network

    Managing ubiquitous eco cities: the role of urban telecommunication infrastructure networks and convergence technologies

    Get PDF
    A successful urban management system for a Ubiquitous Eco City requires an integrated approach. This integration includes bringing together economic, socio-cultural and urban development with a well orchestrated, transparent and open decision making mechanism and necessary infrastructure and technologies. Rapidly developing information and telecommunication technologies and their platforms in the late 20th Century improves urban management and enhances the quality of life and place. Telecommunication technologies provide an important base for monitoring and managing activities over wired, wireless or fibre-optic networks. Particularly technology convergence creates new ways in which the information and telecommunication technologies are used. The 21st Century is an era where information has converged, in which people are able to access a variety of services, including internet and location based services, through multi-functional devices such as mobile phones and provides opportunities in the management of Ubiquitous Eco Cities. This paper discusses the recent developments in telecommunication networks and trends in convergence technologies and their implications on the management of Ubiquitous Eco Cities and how this technological shift is likely to be beneficial in improving the quality of life and place. The paper also introduces recent approaches on urban management systems, such as intelligent urban management systems, that are suitable for Ubiquitous Eco Cities
    corecore