8,127 research outputs found

    Object Reconfiguration with Dextrous Robot Agents

    Get PDF
    This paper addresses an object manipulation planning algorithm for dextrous robot systems consisting a multifingered hand and a robotic manipulator. A method has been developed for object reconfiguration design. The result is a new algorithm using artificial intelligence based on simulated annealing and A* search. The upper level of the manipulation system, the global planner generates the motion of the object. The lower level, the local planner deals with the motion of the agents relative to the object and the design of the contact forces. The local planner is based on simulated annealing, thus the the local minima can be avoided in the energy function of the motion with high probability. Application of the algorithm has been discussed for three robot arms

    Safe Robotic Grasping: Minimum Impact-Force Grasp Selection

    Full text link
    This paper addresses the problem of selecting from a choice of possible grasps, so that impact forces will be minimised if a collision occurs while the robot is moving the grasped object along a post-grasp trajectory. Such considerations are important for safety in human-robot interaction, where even a certified "human-safe" (e.g. compliant) arm may become hazardous once it grasps and begins moving an object, which may have significant mass, sharp edges or other dangers. Additionally, minimising collision forces is critical to preserving the longevity of robots which operate in uncertain and hazardous environments, e.g. robots deployed for nuclear decommissioning, where removing a damaged robot from a contaminated zone for repairs may be extremely difficult and costly. Also, unwanted collisions between a robot and critical infrastructure (e.g. pipework) in such high-consequence environments can be disastrous. In this paper, we investigate how the safety of the post-grasp motion can be considered during the pre-grasp approach phase, so that the selected grasp is optimal in terms applying minimum impact forces if a collision occurs during a desired post-grasp manipulation. We build on the methods of augmented robot-object dynamics models and "effective mass" and propose a method for combining these concepts with modern grasp and trajectory planners, to enable the robot to achieve a grasp which maximises the safety of the post-grasp trajectory, by minimising potential collision forces. We demonstrate the effectiveness of our approach through several experiments with both simulated and real robots.Comment: To be appeared in IEEE/RAS IROS 201

    Simulation-based intelligent robotic agent for Space Station Freedom

    Get PDF
    A robot control package is described which utilizes on-line structural simulation of robot manipulators and objects in their workspace. The model-based controller is interfaced with a high level agent-independent planner, which is responsible for the task-level planning of the robot's actions. Commands received from the agent-independent planner are refined and executed in the simulated workspace, and upon successful completion, they are transferred to the real manipulators

    Evolution of Prehension Ability in an Anthropomorphic Neurorobotic Arm

    Get PDF
    In this paper we show how a simulated anthropomorphic robotic arm controlled by an artificial neural network can develop effective reaching and grasping behaviour through a trial and error process in which the free parameters encode the control rules which regulate the fine-grained interaction between the robot and the environment and variations of the free parameters are retained or discarded on the basis of their effects at the level of the global behaviour exhibited by the robot situated in the environment. The obtained results demonstrate how the proposed methodology allows the robot to produce effective behaviours thanks to its ability to exploit the morphological properties of the robot’s body (i.e. its anthropomorphic shape, the elastic properties of its muscle-like actuators, and the compliance of its actuated joints) and the properties which arise from the physical interaction between the robot and the environment mediated by appropriate control rules
    • …
    corecore