4,622 research outputs found

    AI-Based Sustainable and Intelligent Offloading Framework for IIoT in Collaborative Cloud-Fog Environments

    Get PDF
    The cloud paradigm is one of the most trending areas in today’s era due to its rich profusion of services. However, it fails to serve the latency-sensitive Industrial Internet of Things (IIoT) applications associated with automotives, robotics, oil and gas, smart communications, Industry 5.0, etc. Hence, to strengthen the capabilities of IIoT, fog computing has emerged as a promising solution for latency-aware IIoT tasks. However, the resource-constrained nature of fog nodes puts forth another substantial issue of offloading decisions in resource management. Therefore, we propose an Artificial Intelligence (AI)-enabled intelligent and sustainable framework for an optimized multi-layered integrated cloud fog-based environment where real-time offloading decisions are accomplished as per the demand of IIoT applications and analyzed by a fuzzy based offloading controller. Moreover, an AI based Whale Optimization Algorithm (WOA) has been incorporated into a framework that promises to search for the best possible resources and make accurate decisions to ameliorate various Quality-of-Service (QoS) parameters. The experimental results show an escalation in makespan time up to 37.17%, energy consumption up to 27.32%, and execution cost up to 13.36% in comparison to benchmark offloading and allocation schemes

    Satellite-MEC Integration for 6G Internet of Things: Minimal Structures, Advances, and Prospects

    Full text link
    The sixth-generation (6G) network is envisioned to shift its focus from the service requirements of human beings' to those of Internet-of-Things (IoT) devices'. Satellite communications are indispensable in 6G to support IoT devices operating in rural or disastrous areas. However, satellite networks face the inherent challenges of low data rate and large latency, which may not support computation-intensive and delay-sensitive IoT applications. Mobile Edge Computing (MEC) is a burgeoning paradigm by extending cloud computing capabilities to the network edge. By utilizing MEC technologies, the resource-limited IoT devices can access abundant computation resources with low latency, which enables the highly demanding applications while meeting strict delay requirements. Therefore, an integration of satellite communications and MEC technologies is necessary to better enable 6G IoT. In this survey, we provide a holistic overview of satellite-MEC integration. We first discuss the main challenges of the integrated satellite-MEC network and propose three minimal integrating structures. For each minimal structure, we summarize the current advances in terms of their research topics, after which we discuss the lessons learned and future directions of the minimal structure. Finally, we outline potential research issues to envision a more intelligent, more secure, and greener integrated satellite-MEC network

    A review on green caching strategies for next generation communication networks

    Get PDF
    © 2020 IEEE. In recent years, the ever-increasing demand for networking resources and energy, fueled by the unprecedented upsurge in Internet traffic, has been a cause for concern for many service providers. Content caching, which serves user requests locally, is deemed to be an enabling technology in addressing the challenges offered by the phenomenal growth in Internet traffic. Conventionally, content caching is considered as a viable solution to alleviate the backhaul pressure. However, recently, many studies have reported energy cost reductions contributed by content caching in cache-equipped networks. The hypothesis is that caching shortens content delivery distance and eventually achieves significant reduction in transmission energy consumption. This has motivated us to conduct this study and in this article, a comprehensive survey of the state-of-the-art green caching techniques is provided. This review paper extensively discusses contributions of the existing studies on green caching. In addition, the study explores different cache-equipped network types, solution methods, and application scenarios. We categorically present that the optimal selection of the caching nodes, smart resource management, popular content selection, and renewable energy integration can substantially improve energy efficiency of the cache-equipped systems. In addition, based on the comprehensive analysis, we also highlight some potential research ideas relevant to green content caching

    Resource Management in Multi-Access Edge Computing (MEC)

    Get PDF
    This PhD thesis investigates the effective ways of managing the resources of a Multi-Access Edge Computing Platform (MEC) in 5th Generation Mobile Communication (5G) networks. The main characteristics of MEC include distributed nature, proximity to users, and high availability. Based on these key features, solutions have been proposed for effective resource management. In this research, two aspects of resource management in MEC have been addressed. They are the computational resource and the caching resource which corresponds to the services provided by the MEC. MEC is a new 5G enabling technology proposed to reduce latency by bringing cloud computing capability closer to end-user Internet of Things (IoT) and mobile devices. MEC would support latency-critical user applications such as driverless cars and e-health. These applications will depend on resources and services provided by the MEC. However, MEC has limited computational and storage resources compared to the cloud. Therefore, it is important to ensure a reliable MEC network communication during resource provisioning by eradicating the chances of deadlock. Deadlock may occur due to a huge number of devices contending for a limited amount of resources if adequate measures are not put in place. It is crucial to eradicate deadlock while scheduling and provisioning resources on MEC to achieve a highly reliable and readily available system to support latency-critical applications. In this research, a deadlock avoidance resource provisioning algorithm has been proposed for industrial IoT devices using MEC platforms to ensure higher reliability of network interactions. The proposed scheme incorporates Banker’s resource-request algorithm using Software Defined Networking (SDN) to reduce communication overhead. Simulation and experimental results have shown that system deadlock can be prevented by applying the proposed algorithm which ultimately leads to a more reliable network interaction between mobile stations and MEC platforms. Additionally, this research explores the use of MEC as a caching platform as it is proclaimed as a key technology for reducing service processing delays in 5G networks. Caching on MEC decreases service latency and improve data content access by allowing direct content delivery through the edge without fetching data from the remote server. Caching on MEC is also deemed as an effective approach that guarantees more reachability due to proximity to endusers. In this regard, a novel hybrid content caching algorithm has been proposed for MEC platforms to increase their caching efficiency. The proposed algorithm is a unification of a modified Belady’s algorithm and a distributed cooperative caching algorithm to improve data access while reducing latency. A polynomial fit algorithm with Lagrange interpolation is employed to predict future request references for Belady’s algorithm. Experimental results show that the proposed algorithm obtains 4% more cache hits due to its selective caching approach when compared with case study algorithms. Results also show that the use of a cooperative algorithm can improve the total cache hits up to 80%. Furthermore, this thesis has also explored another predictive caching scheme to further improve caching efficiency. The motivation was to investigate another predictive caching approach as an improvement to the formal. A Predictive Collaborative Replacement (PCR) caching framework has been proposed as a result which consists of three schemes. Each of the schemes addresses a particular problem. The proactive predictive scheme has been proposed to address the problem of continuous change in cache popularity trends. The collaborative scheme addresses the problem of cache redundancy in the collaborative space. Finally, the replacement scheme is a solution to evict cold cache blocks and increase hit ratio. Simulation experiment has shown that the replacement scheme achieves 3% more cache hits than existing replacement algorithms such as Least Recently Used, Multi Queue and Frequency-based replacement. PCR algorithm has been tested using a real dataset (MovieLens20M dataset) and compared with an existing contemporary predictive algorithm. Results show that PCR performs better with a 25% increase in hit ratio and a 10% CPU utilization overhead

    Mobile cloud computing and network function virtualization for 5g systems

    Get PDF
    The recent growth of the number of smart mobile devices and the emergence of complex multimedia mobile applications have brought new challenges to the design of wireless mobile networks. The envisioned Fifth-Generation (5G) systems are equipped with different technical solutions that can accommodate the increasing demands for high date rate, latency-limited, energy-efficient and reliable mobile communication networks. Mobile Cloud Computing (MCC) is a key technology in 5G systems that enables the offloading of computationally heavy applications, such as for augmented or virtual reality, object recognition, or gaming from mobile devices to cloudlet or cloud servers, which are connected to wireless access points, either directly or through finite-capacity backhaul links. Given the battery-limited nature of mobile devices, mobile cloud computing is deemed to be an important enabler for the provision of such advanced applications. However, computational tasks offloading, and due to the variability of the communication network through which the cloud or cloudlet is accessed, may incur unpredictable energy expenditure or intolerable delay for the communications between mobile devices and the cloud or cloudlet servers. Therefore, the design of a mobile cloud computing system is investigated by jointly optimizing the allocation of radio, computational resources and backhaul resources in both uplink and downlink directions. Moreover, the users selected for cloud offloading need to have an energy consumption that is smaller than the amount required for local computing, which is achieved by means of user scheduling. Motivated by the application-centric drift of 5G systems and the advances in smart devices manufacturing technologies, new brand of mobile applications are developed that are immersive, ubiquitous and highly-collaborative in nature. For example, Augmented Reality (AR) mobile applications have inherent collaborative properties in terms of data collection in the uplink, computing at the cloud, and data delivery in the downlink. Therefore, the optimization of the shared computing and communication resources in MCC not only benefit from the joint allocation of both resources, but also can be more efficiently enhanced by sharing the offloaded data and computations among multiple users. As a result, a resource allocation approach whereby transmitted, received and processed data are shared partially among the users leads to more efficient utilization of the communication and computational resources. As a suggested architecture in 5G systems, MCC decouples the computing functionality from the platform location through the use of software virtualization to allow flexible provisioning of the provided services. Another virtualization-based technology in 5G systems is Network Function Virtualization (NFV) which prescribes the instantiation of network functions on general-purpose network devices, such as servers and switches. While yielding a more flexible and cost-effective network architecture, NFV is potentially limited by the fact that commercial off-the-shelf hardware is less reliable than the dedicated network elements used in conventional cellular deployments. The typical solution for this problem is to duplicate network functions across geographically distributed hardware in order to ensure diversity. For that reason, the development of fault-tolerant virtualization strategies for MCC and NFV is necessary to ensure reliability of the provided services
    corecore