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 Abstract— The cloud paradigm is one of the most trending 

areas in today’s era due to its rich profusion of services. 

However, it fails to serve the latency-sensitive Industrial Internet 

of Things (IIoT) applications associated with automotives, 

robotics, oil and gas, smart communications, Industry 5.0, etc. 

Hence, to strengthen the capabilities of IIoT, fog computing has 

emerged as a promising solution for latency-aware IIoT tasks. 

However, the resource-constrained nature of fog nodes puts forth 

another substantial issue of offloading decisions in resource 

management. Therefore, we propose an Artificial Intelligence 

(AI)-enabled intelligent and sustainable framework for an 

optimized multi-layered integrated cloud fog-based environment 

where real-time offloading decisions are accomplished as per the 

demand of IIoT applications and analyzed by a fuzzy based 

offloading controller. Moreover, an AI based Whale 

Optimization Algorithm (WOA) has been incorporated into a 

framework that promises to search for the best possible resources 

and make accurate decisions to ameliorate various Quality-of-

Service (QoS) parameters. The experimental results show an 

escalation in makespan time up to 37.17%, energy consumption 

up to 27.32%, and execution cost up to 13.36% in comparison to 

benchmark offloading and allocation schemes. 

 

Index Terms—Task offloading, Internet of Things (IoT), Fog 
computing, Resource Allocation, Artificial Intelligence (AI) 

I. INTRODUCTION 

With the digital infrastructure revolutionizing the world at 

an expeditious rate, the Industrial Internet of Things (IIoT) is 

emerging rapidly, embracing applications such as 

automotives, smart cities, healthcare, waste and water 

management, robotics, smart communication, smart power 

grids etc. These Industry 5.0 based use cases thrive on 

resources to process, analyze and store this colossal amount of 

data generated by IIoT applications. In contrast to IoT 

applications such as handheld devices which are consumer-

centric in nature, IIoT applications emphasize more on 
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achieving sustainability, ensuring health and safety, and 

ameliorating overall system efficiency.  

However, the unprecedented advancement in terms of 

high-speed networking capabilities such as 5G and beyond, 

pervasive computing devices, mobile applications, and IoT 

sensors are generating tremendous amounts of data that 

require real-time analytics. For instance, consider the Industry 

5.0 scenario, which is emerging with the concept of 

Collaborative Robots (COBOTS) which learn to work with 

humans in a collaborative manner. In contrast to industrial 

robots which are designated to perform specific tasks, 

COBOTS are equipped with intelligence to perform a diverse 

range of tasks with humans in a cooperative manner, ensuring 

safety and ameliorating the productivity of enterprises. 

Despite its eminent capabilities, any robotic malfunction due 

to delayed response could make the situation worse. Hence, 

sending the data perceived from IIoT sensors to centralized 

cloud datacenters is not a practical solution. 

Henceforth, a novel distributed paradigm known as Fog 

Computing (FC) has emerged, which leverages cloud 

characteristics with new features like location awareness and 

edge datacenter deployment. It refers to computing at the edge 

of the network, enabling distributed computing solutions in 

order to maximize scalability, elasticity, resiliency, 

minimizing computational costs, and efficient information 

sharing, among other things. [1]. However, its complicated 

decentralized architecture imposes various challenges in order 

to effectively utilize the underlying heterogeneous resources. 

The resource management issues in the fog landscape 

comprise resource provisioning, task offloading, task 

mapping, and service placement. In recent works, some of the 

researchers have proposed solutions for optimal resource 

surveillance and management mechanisms. However, ensuring 

optimality of task offloading decisions is quite crucial in a 

collaborative Fog-Cloud environment for Industry 5.0 use 

cases. The complexity of this decision comprises many factors 

such as which task to offload, finalizing the offloading 

destination (Fog Nodes or a cloud datacenter instance) and, 

when to offload the task [2]. The delay intensive tasks are 

offloaded to Fog Nodes (FNs), consequently the processing 

and transmission delays arereduced to meet the Quality of 

Service (QoS) constraints. To serve these capabilities, our 

work aims to propose an effective task offloading strategy 
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which satisfy the QoS parameters such as optimizing 

makespan, cost and task rejection ratio. 
A. MOTIVATION  

Offloading incoming tasks over an optimal paradigm 

becomes a significant aspect of resource management issues in 

an IIoT-enabled collaborative cloud-fog environment which 

directly impacts sustainability, resilience and other QoS 

parameters. The offloading decision is based upon several 

factors like incoming task demand, size, deadline and 

availability of fog resources. When, why and where to offload 

the upcoming IIoT task is a challenging issue due to the 

unpredictability, fluctuation, and diverse nature of the IoT 

workload. Communication cost and mobility of nodes in a 

dynamic environment make it a harder problem that does not 

provide the guarantee of optimized QoS parameters [3]. 

Hence, there is a dire need for an intelligent and dynamic 

algorithm to address the mentioned issues and evaluate the 

cost after offloading decisions (locally or remotely execution) 

[4]. In addition, the issue of sustainability remains a 

challenging task in Industry 5.0 due to ever-increasing energy 

costs and their never-ending escalating demands, which thrive 

on novel techniques for smart energy systems [5]. To ensure 

that the challenges are met, our work envisions proposing a 

fuzzy-based task offloading decision and a meta-heuristic 

based Whale Optimization Algorithm (WOA) has been 

applied for IIoT workload allocation. The proposed technique 

overcomes the drawbacks of traditional metaheuristic 

algorithms: getting trapped in local optimality, slow 

convergence, and poor exploration and exploitation. 

Moreover, our suggested task offloading scheme addresses the 

issue of sustainability along with optimizing significant QoS 

parameters.  

 

B. OUR CONTRIBUTIONS 

The primary contributions of this work are: 

• To formulate a task offloading problem for Industry 5.0 

deadline-aware workloads that need to be serviced in a 

collaborative Cloud-Fog computing environment. The 

problem takes into account the dynamics of the incoming 

request and aims to minimize the long-term cost 

associated with the optimal task offloading decision. 

• To achieve expected cost minimization, an AI-enabled 

decision-making offloading framework based on fuzzy 

models and metaheuristics is proposed. The former 

intelligently decides whether to execute tasks locally 

(Edge device) or remotely (on a FN or cloud datacenter). 

A metaheuristic approach known as the Whale 

Optimization Algorithm (WOA) is incorporated for 

optimal task-to-resource mapping in a collaborative cloud 

fog scenario.  

• The extensive experimental analysis justifies that the 

proposed approach shows significant improvements 

procured in terms of makespan, execution cost, rejection 

ratio, and energy consumption in comparison with  

benchmark techniques.  

The rest of the paper is organized as follows: Section II 

discusses the state-of-the-art work done in the arena of 

offloading and resource allocation. Section III depicts the 

problem formulation of the proposed framework. The detailed 

architectural framework along with the proposed offloading 

and resource allocation algorithms of our study have been 

illustrated in Section IV and V, respectively. Section VI 

discusses the simulation results considering distinctive 

performance attributes along with the experimental setup. 

Section VII represents a summary of the proposed work along 

with future work. 

II. RELATED WORK  

This section illustrates the work done in the arena of 

resource scheduling and monitoring utilizing AI and non-AI 

based techniques. In the work done by Nan et al. [6], an 

algorithm known as Lyapunov Optimization on Time and 

Energy Cost (LOTEC) is proposed to investigate energy-

efficient data processing to balance the time it takes to analyze 

the information vs. the cost incurred in running the system. 

Based on the simulation results, the proposed strategy looks 

promising.  

The fog paradigm is envisioned as a practicable solution 

for extending the resource-constrained domain of IIoT devices 

and concurrently, improving dynamic workload performance. 

This paper demonstrates task prioritization using fuzzy logic 

based on resource requirements and the deadline to be met. 

The suggested technique reduces waiting time by 35% and 

service latency by 28%, respectively [7]. Nevertheless, task 

deadlines play a vital role in making optimal task offloading 

decisions. In this context, Adhikari et al. [8], discussed the 

importance of completing hard-deadline tasks on time as 

having mission criticality. Hence, such tasks need to be 

processed in close proximity to the service requestor node, for 

which a rule-based task scheduling strategy is proposed to 

frame an apt task sequence while minimizing waiting time.   

The latest research in fog computing utilizes nature-

inspired metaheuristic algorithms. These are computationally  

intelligent algorithms that are effectively capable of solving 

sophisticated optimization problems. Goyal S. et al. [9] used 

PSO, CSO, BAT, CSA and WOA to improve multiple QoS 

parameters. This study emphasized load balancing which 

implements uniform distribution of load over multiple servers 

to satisfy consumers' growing demands. In another study [10] 

authors proposed the usage of the Crow Search Algorithm 

(CSA) with the Deep Auto Encoder (DAE) in order to perform 
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autonomic workload prediction and allocate resources to 

incoming IIoT requests. The authors in [11] emphasized the 

importance of task offloading in smart vehicular systems, 

comprise of multiple Roadside Units (RSUs) near fog servers 

and are placed to serve a variety of incoming traffic such as 

infotainment, emergency, and traffic management using a 

knapsack-based task scheduling algorithm. Abdel-Basset et al. 

[12] proposed the Modified Marine Predators Algorithm 

(MMPA) for tackling Task Scheduling in Fog Computing 

(TSFC) amongst IoT applications. Another work implemented 

DDN task partitioning and offloading in Vehicular Edge 

Computing (VEC), however the work did not emphasize the 

sustainability aspect in the considered scenario [13]. Apart 

from VEC, a fog-assisted framework has been proposed for 

data aggregation at FNs in order to ensure prompt delivery in 

the Internet of Medical Things(IoMT) [14]. 

As depicted from the literature surveyed, it has been 

observed that majority of studies failed to achieve an efficient 

offloading decision and were unable to propose a plausible 

solution for optimal resource allocation to the upcoming IIoT 

use cases. In addition, the majority of the works have 

proposed offloading approaches either for cloud or fog, an 

integrated environment has not been considered for real-time 

use cases. 

III. PRELIMINARIES  

This section equips the researchers with the list of notations 

used in problem formulation and computational models as 

depicted in Table 2. 

Table 2: Preliminaries for Work 

Notation Description 

𝔇 , 𝓕 Set of IoT devices and FNs 

ß𝐖𝛋
𝐈𝐅 Bandwidth between IoT device and Fog Node 

ß𝐖𝛋
𝐂𝐈   Bandwidth between cloud and IoT device 

𝓣𝜿 Task size of incoming smooth and bursty workload 

𝕽𝓜 Total resources of comprising ℳ computational units 

𝝆𝒌
𝒆𝒙→𝑰𝒐𝑻 Power for executing task at local device 

𝝆𝒌
𝒆𝒙→𝓒𝓓 Power for executing task at cloud datacenter 

𝝆𝒌
𝒆𝒙→𝓕𝓝 Power for executing task at FN 

𝑻𝑫𝑳𝑨𝑵 Transmission Delay between IoT and FN 
𝑻𝑫𝑾𝑨𝑵 Transmission Delay between IoT and cloud 

ℇ𝚪
𝓣𝒌

𝑰𝒐𝑻 Time spent to execute  𝒯𝜅 at Fog node 

ℇ𝚪
𝓣𝒌

𝓒𝓓  Time spent to execute  𝒯𝜅 at Cloud datacenter 

ℇ𝚪
𝓣𝒌

𝓕𝓝 Time spent to execute  𝒯𝜅 at FN 

𝝃𝒌
𝑰𝒐𝑻 EC in processing 𝜅𝑡ℎtask at IoT  device 

𝝃𝒌
𝓕𝓝 EC in processing  task at ℱ𝒩 

𝝃𝒌
𝓒𝓓    EC in processing 𝜅𝑡ℎ task at 𝒞𝒟 

ℂ𝒅𝑻𝒐𝒕𝒂𝒍 (t) Total processing cost 

𝝃𝓭𝑻𝒐𝒕𝒂𝒍 (𝒕) Total Energy Consumption 

A. MODEL FOR OFFLOADING DECISION 

          The fog layer bridges the gap between the IoT and 

cloud layers by reducing the round-trip time (RTT) in order 

to satisfy the user experience of real time IIoT applications. 

Here, the time is discretized into T time slots, where t depicts 

a specific time slot. The set of computational requests 

generated by IoT devices can be depicted into a series of 

input tasks 𝒯 = {𝒯1, 𝒯2 , 𝒯3 , … 𝒯𝑛  } where 𝒯𝜅(𝑡)  represents size 

of 𝒦th task in bits. The task sources are symbolized as 𝔇 

constituting set of n devices 𝔇 = {𝔇1, 𝔇2, 𝔇3, … , 𝔇𝑛} and 

FNs are expressed as 𝓕= {ℱ1, ℱ2, ℱ3, … , ℱ𝑚} which are 

geographically distributed around the fog layer. In addition, 

the sum total of resources available is denoted by ℛℳ , where 

ℳ represents number of computational units. Hence, the 

work aims to predict optimal task offloading decision which 

allocates set of incoming tasks 𝒯𝑛  to the IIoT devices, FNs 

and cloud servers. The decision ensures that IIoT devices 

consume a minimal amount of energy and that  QoS 

parameters constituting makespan time, task rejection, and 

cost are minimized. An integer task offloading indictor φ𝑘  is 

used to represent offloading decision corresponding to  𝜅𝑡ℎ 

task generated by IoT device, which is mathematically 

defined as follows: 

φ𝑘(𝑡)={

 
    0 ; 𝑤ℎ𝑒𝑛  𝒯𝑘  𝑖𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 𝑎𝑡 𝐼𝑜𝑇 𝑑𝑒𝑣𝑖𝑐𝑒    

1 ;   𝑤ℎ𝑒𝑛 𝒯𝑘  𝑖𝑠 𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑒𝑑 𝑡𝑜 ℱj

−1; 𝑤ℎ𝑒𝑛 𝒯𝑘  𝑖𝑠 𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑒𝑑 𝑡𝑜 𝒞𝒟 
        (1)                      

Where, φ𝑘(𝑡) =  0 signifies task 𝒯𝑘  is processed at IoT 

device itself. The case of  φ𝑘(𝑡) =  1 means request is 

offloaded to local server for latency-sensitive task whereas   

φ𝑘(𝑡) = −1 represents request being offloaded to central 

server for compute and resource-intensive task.  

B. COMPUTATIONAL MODEL 

Local Computation Model: Sensors and actuators embedded 

in various things including cameras, wearables etc. have 

computational bottlenecks due to their resource-constrained 

nature. Moreover, these devices are battery driven, hence 

acquiring limited processing capabilities and limited storage 

[15]. The execution time of task 𝒯𝜅  measures the time spent 

by IIoT device for processing the incoming task locally, is 

represented as 

ℇΓ𝒯𝜅

𝐼𝑜𝑇(𝑡)= 
𝒯𝜅  (𝑡)

𝜔𝐼𝑜𝑇
 ; ∀𝒯𝜅 ∈  𝒯                                      (2)                                                                                                     

where  𝒯𝜅  represents the incoming task size of incoming and 
𝜔𝐼𝑜𝑇 depicts the CPU frequency of local processing unit. 

Correspondingly, the energy consumption constitutes the 

energy engrossed by IIoT device while processing the task 𝒯𝜅  

is expressed as:  

𝜉𝜅
𝐼𝑜𝑇 (𝑡) =   𝜌𝜅

𝑒𝓍→𝐼𝑜𝑇(𝑡) ∗  ℇΓ𝒯𝜅
𝐼𝑜𝑇 (𝑡)                            (3)                                                                                                    
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Where 𝜌𝜅
𝑒𝓍→𝐼𝑜𝑇

 denotes power consumed while executing 

task at local device. The total processing cost is calculated 

as, 

ℂ𝜅
𝐼𝑜𝑇 (𝑡)= 𝜃1 ∗  ℇΓ𝒯𝜅

𝐼𝑜𝑇(𝑡) + 𝜃2 * 𝜉𝜅
𝐼𝑜𝑇(𝑡)                      (4)                                                                                         

Where 𝜃1 and 𝜃2 are weight coefficients, in such a way that 

𝜃1 + 𝜃2 = 1.  

Fog Computational Model: In case the local IIoT device is 

incompetent to handle the incoming workload, the tasks are 

offloaded to the fog layer. The execution time of offloading 

task 𝒯𝜅  to FN can be calculated as:  

ℇΓ𝒯𝜅
𝐹𝒩 (𝑡) = 

𝒯𝜅(𝑡)

𝜔𝐹𝒩
 + 𝑇𝐷𝐿𝐴𝑁 (𝑡)  ; ∀𝒯𝜅 ∈  𝒯                             (5)                                                                                              

Here,  𝒯𝜅  signifies the task length and 𝜔𝐹𝒩 represents the 

computing frequency of FN. Another delay known as 

transmission delay, 𝑇𝐷𝐿𝐴𝑁 is added to denote delay by 

transmission medium, which is as follows:  

             𝑇𝐷𝐿𝐴𝑁(𝑡) =  𝒯𝜅(𝑡)

ßWκ
IF                                                     (6)           

In addition, the Energy Consumed (EC) during offloading 

task from IIoT to FN is computed as follows: 

𝜉𝜅
𝐹𝒩 

(𝑡) =  𝜌𝜅
𝑒𝓍→𝐹𝒩(𝑡) ∗  ℇΓ𝒯𝜅

𝐹𝒩 (𝑡)                               (7)    

The total processing cost at this layer is calculated as, 

ℂ𝜅
𝐹𝒩 (𝑡) = 𝜃1 ∗  ℇΓ𝒯𝜅

𝐹𝒩 (𝑡) + 𝜃2 * 𝜉𝜅
𝐹𝒩(𝑡)                      (8)   

Cloud Computational Model: prominent for its limitless 

resource capabilities, the compute intensive high-end tasks 

are forwarded to cloud layer. The time spent while 

offloading task 𝒯𝜅  to cloud datacenter. 

ℇΓ𝒯𝜅
𝒞𝒟(𝑡)= 

𝒯𝜅(𝑡)

𝜔𝒞𝒟
 + 𝑇𝐷𝑊𝐴𝑁(𝑡) + 𝒫𝒟𝑊𝐴𝑁(𝑡);  ∀𝒯𝜅 ∈  𝒯    (9) 

Where 𝜔𝒞𝒟 represents computational frequency of cloud 

datacenter and 𝒯𝒟𝑊𝐴𝑁 represents transmission delay of 

underlying network, whereas propagation delay of medium is 

demoted as 𝒫𝒟𝑊𝐴𝑁. 

where 𝑇𝐷𝑊𝐴𝑁(𝑡) =  𝒯𝜅(𝑡)

ßWκ
F𝒞                                              (10)        

 The EC at this layer while executing offloading decision is 

computed as:  
𝜉𝜅

𝒞𝒟(𝑡) =  𝜌𝜅
𝑒𝓍→𝒞𝒟(𝑡) ∗  ℇΓ𝒯𝜅

𝒞𝒟(𝑡)                                       (11) 

The total processing time at this layer is calculated as, 

ℂ𝜅
𝒞𝒟

(t)= 𝜃1 ∗ ℇΓ𝒯𝜅
𝒞𝒟

 (t)+ 𝜃2 * 𝜉𝜅
𝒞𝒟(𝑡)                                (12)     

Finally, computation of overall cost to service task generated 

by device d, is computed based upon the offloading decision 

variable φ𝑘   , and is represented as follows in the form of eq 

(13): 

ℂ𝒹 𝑇𝑜𝑡𝑎𝑙(𝑡) = ∑(1 − φ𝑘
2 (t)) ℂ𝜅

𝐼𝑜𝑇(𝑡)

𝑛

𝑘=1

+ 

∑ φ𝑘  (t)(φ𝑘 (t) − 1)ℂ𝜅
𝐹𝒩(𝑡)

𝑛

𝑘=1

+ 

 ∑ φ𝑘 (t)(1 + φ𝑘(t)) ℂ𝜅
𝒞𝒟(t)𝑛

𝑘=1                               (13)                             

In a similar manner, the total energy consumption from eq. 

(3), (7) and (11) can be combined using offloading decision 

variable as: 

𝜉𝒹 𝑇𝑜𝑡𝑎𝑙(𝑡) = ∑(1 − φ𝑘
2 (t)) 𝜉𝜅

𝐼𝑜𝑇(𝑡)

𝑛

𝑘=1

+ 

∑ φ𝑘 (t)(φ𝑘 (t) − 1)𝜉𝜅
𝐹𝒩(𝑡)

𝑛

𝑘=1

+ ∑ φ𝑘 (t)(1 + φ𝑘(t)) 𝜉𝜅
𝒞𝒟(t)

𝑛

𝑘=1

  (14) 

Now, combining (13) and (14) results in formulating total 

cost corresponding to device d at time slot t, which is 

represented as:  

∁𝑑 (𝑡) =  Φ1ℂ𝑑𝑇𝑜𝑡𝑎𝑙(t)  + Φ2𝜉𝑑𝑇𝑜𝑡𝑎𝑙 (𝑡)                             (15)                                                                                           

Here, Φ1 and Φ2 signifies weight parameters, which weighs 

processing cost and energy consumption respectively, in 

accordance with their weight factors.  

C. PROBLEM FORMULATION 

Makespan Time (MST): The aim of our work is to minimize 

the makespan time of IIoT requests, the total execution time 

at various layers corresponding to task 𝒯𝜅  and jth resource is 

computed as follows 

ℇΓ
Total

𝒯𝜅,𝑗 =  ℇΓ𝒯𝜅
𝐼𝑜𝑇 (𝑡) + ℇΓ𝒯𝜅

𝐹𝒩 (𝑡)+ ℇΓ𝒯𝜅
𝒞𝒟(𝑡)                       (16) 

Finally, maximum completion time corresponding to 

resource set ℜℳ , is computed as follows: 

MST(ℜℳ)=𝑚𝑎𝑥 ∑ ∑ ℇΓ
Total

𝒯𝜅,𝑗ℳ
𝑗=1

𝑛
𝑘=1                                    (17) 

To sum up with, we aim to establish a task offloading 

optimization function by formulating total cost minimization 

function, which is defined as follows:  

𝒻 = min
          φ

∑ ϖd ∁d (t)𝑛
𝑑=1                                                     (18) 

Where 𝜛𝑑  depicts the task priority corresponding to each 

device d to be considered for offloading and hence (18) 

validates the following constraints: 

φ𝑘(𝑡) ∈ {−1,0,1}                                                              (19)                                                                                                                                    

ßWκ
F𝒞 ≤ ßWMax

F𝒞                                                                (20)                                                                                                                                       

ßWκ
IF  ≤ ßWMax

IF                                                                 (21)                                                                                                                                       
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𝜔𝐼𝑜𝑇 <  𝜔𝐹𝒩 < 𝜔𝒞𝒟                                                          (22)                                                                                                                           

∀𝑡 ∈ 𝑇, ∀𝑑 ∈ 𝔇, 𝑘 ∈ 𝒯                                                    (23) 

Fig 1: Proposed Resource Offloading and Allocation 

Framework in IIoT scenario 

Φ1 + Φ2 = 1 ; 0 ≤ Φ1 ≤ 1; 0 ≤ Φ2 ≤  1                        (24) 

IV. PROPOSED FRAMEWORK FOR 

OFFLOADING DECISION AND RESOURCE 

ALLOCATION 

Our proposed framework highlights the industry 5.0 

scenario which is emerging with modern computing 

paradigms such as collaborative cloud-fog landscapes, which 

deliver a distributed environment comprising various 

resources scattered across consumer devices, FNs and cloud 

servers. The consumer devices constitute the IIoT layer, which 

covers a multitude of use cases such as Industry 5.0, smart 

healthcare, smart agriculture, automated locomotives, smart 

power, grids and so on, and generates requests for underlying 

resources in a collaborative cloud-fog environment. 

Furthermore, such applications thrive for prompt service 

delivery, which can’t be fulfilled by edge devices. Hence, 

resource allocation becomes a predominant issue for 

optimizing the system’s overall performance, ensuring 

sustainable usage of resources. This multi-layer architectural 

building block of our work has been put forward in the form 

of distinct layers. 

1) IIoT Layer: It comprises sensors and actuators which collect 

the data in distinctive formats and rates, which are 

subsequently passed to upper layers via Access Points (APs), 

which can be located across various locations such as railway 

stations, airports, educational and healthcare institutions etc. 

These APs are connected to FNs and cloud instances via high-

speed transmission channels.  

2) Fog Layer: a distributed service responsible for imparting 

data processing, aggregation, processing, and analytics in 

close proximity to the task source.  This layer is incorporated 

with the autonomic request allocation module, which maps 

and allocates requests to the apt fog node, 𝓕n. However, 

complex tasks can’t be processed at this layer and hence need 

to be forwarded to resource-affluent cloud datacenters. Fig. 1 

illustrates an AI-enabled autonomic framework for task 

offloading and request allocation in a multilayer fog cloud 

environment.  

3) Cloud Layer: It offers limitless storage, processing, and 

networking capabilities in the form of database, storage, and 

management servers. The virtual instances of physical 

resources are accessible in the form of virtual instances known 

as VMs, that run in remote datacenters. In addition, a 

metaheuristic Job allocator module was proposed that 

optimally places the incoming job to the best possible FN (in 

the case of tasks offloaded to the fog layer) or cloud instance 

(in the case of tasks offloaded to cloud datacenter virtualized 

instances). 

 

V. PROPOSED TASK OFFLOADING 

ALGORITHM 

Herein, a task offloading algorithm along with its 

scheduling model are presented, incorporating AI-based 

techniques comprising fuzzy inference and metaheuristics. 

A. FUZZY-BASED TASK OFFLOADING 

ALGORITHM 

 Each incoming tasks 𝒯𝜅 , where  𝒯𝜅 ∈ 𝒯  contains a 

priority and a deadline associated with it. To accomplish the 

QoS objectives, it becomes critical to classify jobs according 

to their necessities and define the layers for offloading IoT 

requests. The proposed offloading module analyses the task 

perceived based on 𝓣𝜿(𝑡)<High, Low> and 𝓣𝒅(𝒕) <High, 

Low>. Accordingly, the task offloading destination is decided. 

        Our proposed algorithm categorizes each incoming task 

𝒯𝜅 (𝑡) into two classes as class 1 (C1) and class 2 (C2), using 

fuzzy inference logic. This grouping of tasks allows their 

concurrent execution at distinct layers, avoiding ageing, and 

being preemptive in a multiprocessing environment [16]. All 

tasks with a long length and a tight deadline or a low length 

with a hard deadline fall into class, C1.  
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For processing, these jobs typically require more 

computationally intensive resources. As a result, cloud VMs 

handle this type of workload, because of the resource-

intensive nodes, and reduce processing time. On the other 

hand, lower-value deadline tasks are considered best suited for 

forwarding to local servers due to their low latency. 

Algorithm 1: Task Offloading algorithm for device d 

Input:     The total amount of tasks 𝒯𝜅  generated by device d 

Output:  Offloading decision  φ𝑘(𝑡)  

1 Initialize: Number of tasks(n); Number of Fog Nodes(m) 

;Maximum working period of FN (𝑇𝑤𝑝);  

Current time (𝑇𝑐𝑢𝑟) 

2 while 𝑇𝑐𝑢𝑟 < 𝑇𝑤𝑝  do 

3    for t=1,2,3 …T do  

4    Compute Total Computational Length;  

      𝒯𝜅𝑇𝑜𝑡𝑎𝑙=  ∑ 𝒯𝜅(𝑡) 𝑛
𝑘=1  

5 Compute Average computational Length; 𝒯𝜅𝐴𝑣𝑔
 =

𝒯𝜅𝑇𝑜𝑡𝑎𝑙

𝑚
 

6 Compute Average task Deadline; 𝒯𝜅𝐴𝑣𝑔𝑑
 = 

∑ 𝒯𝑑(𝑡)  𝑛
𝑘=1

𝑚
 

7     for k = 1 to m do 

8       if ( 𝒯𝜅  (𝑡) ≤ 𝒯𝜅𝐴𝑣𝑔   and 𝒯𝜅  (𝑡)  ≤ 𝒯𝜅𝐴𝑣𝑔𝑑
 )  

9     Or ( 𝒯𝜅  (𝑡) > 𝒯𝜅 𝐴𝑣𝑔   and 𝒯𝜅  (𝑡)  ≤ 𝒯𝜅𝐴𝑣𝑔𝑑
 ) Then 

10            Set φ𝑘(𝑡)= 1; Offload to Local Server (FN)  

11        end if 

12         else (𝒯𝜅  (𝑡) ≤ 𝒯𝜅𝐴𝑣𝑔  and 𝒯𝜅  (𝑡) > 𝒯𝜅𝐴𝑣 𝑔𝑑
)  

13          Or (𝒯𝜅  (𝑡) > 𝒯𝜅𝐴𝑣𝑔  and 𝒯𝜅  (𝑡) > 𝒯𝜅 𝐴𝑣𝑔𝑑
)  Then 

14        Set φ𝑘(𝑡)= -1; Offload to Cloud Server  

15            end for 

16      end for 

17   end while  

B. WOA-BASED RESOURCE ALLOCATION 

After the offloading decision, it becomes significant to 

allocates best attainable resources for requests. We propose to 

exploit the functionality of a prominent metaheuristic 

technique known as the Whale Optimization Algorithm 

(WOA), an evolutionary and stochastic technique influenced 

by humpback whale hunting strategies used for the 

optimization of computationally hard problems for efficient 

resource allocation [7].  

Encircling phase: It involves encircling the prey once the 

agent becomes location aware. Once the best candidate 

solution is assigned, other agents update their position, 𝒟 as 

per the following equations [17]: 

𝒟 = |𝐶 𝒳∗(𝑡)  − 𝒳(𝑡) |                                                    (25)                                                                                                                                  

𝒳(𝑡 + 1) =  𝒳∗(𝑡) − Å 𝒟                                                 (26)                                                                                                      

Where Å, 𝐶 are coefficient vectors and 𝒳∗(𝑡) represents 

position vector of best solution.  

Exploitation phase: It depicts the formulation for calculating 

the distance between whale location and its prey, and hence a 

helix-shaped movement of humpback is created as follows: 

𝒳(𝑡 + 1) =  𝒟′ ⋅ 𝑒𝑥𝑦 ⋅ 𝑐𝑜𝑠(2𝜋𝑙) + 𝒳∗(𝑡)                       (27)                                                                                      

Where 𝒟′ = | 𝒳∗(𝑡) −  𝒳(𝑡)|                                           (28)    

And 𝒴 ∈ [−1,1]                                                                (29)                                                                                                            

Bubble-net Attacking phase: It comprises of two 

mechanisms with which the humpback whales update their 

position as they swim around the prey. The mathematical 

equation of this phase is given as: 

𝒳(𝑡 + 1) = {
𝒳∗(𝑡) −  Å ⋅ 𝒟                            𝑖𝑓 ρ < 0.5

 𝒟′ ⋅ 𝑒𝑥𝑦 ⋅ 𝑐𝑜𝑠(2𝜋𝑙) +  𝒳∗(𝑡)    𝑖𝑓 ρ ≥ 0.5
                                                                              

                                                                                          (30) 

Here, ρ represents a random number ranging [0,1]. Finally, 𝛼 

is utilized in order to measure the proximity of search agent, 

from reference whale. 

𝒟 = 𝐶 ∗ 𝒳ℜ(𝑡) − 𝒳                                                          (31)                                                                                                                    

𝒳(𝑡 + 1) = 𝒳ℜ(𝑡) −  𝛼 ∗ 𝒟                                             (32)                                                                                                                                                                                                    

Where constant, 𝐶 = 2 ∗ 𝔯 ∀ 𝔯 ∈ [0,1]                              (33)                                                                                                     

And 𝛼 < 1 𝑜𝑟 𝛼 > 1                                                          (34) 

 

VI. PERFORMANCE EVALUATION 

This section discusses the performance of the 

proposed AI based task offloading and incoming request 

allocation schemes for IoT devices that have been evaluated in 

dynamic cloud-fog environments.  

Experimental Setup: The simulation experimentation scenario 

has been hosted on a system with an AMD Ryzen 5 5500U 

processor with Radeon Graphics, 2.10 GHz, Windows 11 x64 

bit operating system, 256GB SSD and 12GB RAM. The 

impact of crucial QoS parameters of the proposed algorithm, 

including makespan, execution cost, task rejection and energy 

consumption are mainly investigated. We have considered a 

scenario where the number of tasks, 𝒯𝜅  (𝑡) varies from 100-

900 in range with a requirement for a distinct number of VMs 

in a multilayer architecture to service incoming IoT requests. 

In order to effectuate the proposed methodology, a synthetic 

dataset has been generated, comprising the task length and 

deadline for offloading decisions. Authors have set up a 

prescribed range for smooth and bursty i.e., 10,000 to 50,000 

instructions per task with a deadline of 50 to 70 seconds. The 

dataset corresponding to VMs contains 2 parameters i.e., the 

execution speed of VMs and their cost.  The range for VM 

speed varies between 1000-2000 MIPS and cost is dependent 

upon the computational capability of resources. The entire 

resource whether a fog device or a cloud datacenter, is 

heterogeneous in nature. When offloading the task to the 

cloud, transmission delay has been considered in the 

simulation experiment. 
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The proposed technique uses fuzzy logic-based intelligent 

decision making for task offloading and the whale 

optimization algorithm, written in Java for the allocation of 

resources to the upcoming IoT applications. To assess the 

proposed framework’s performance, the author chose a 

diverse umbrella of approaches comprising static, dynamic 

and metaheuristics in the form of state-of-the-art work.  

• RR: Round Robin algorithm is the most prominent static 

algorithm comprising procedural planning of CPU 

computing capabilities by incoming requests for fixed 

time quantum.  

• ROP [8]: Random Offloading algorithm selects a random 

computing device on which the incoming task will be 

offloaded. This approach works in a dynamic manner 

without taking into consideration any objective 

parameters. 

• BAT [9]: Nature-inspired evolutionary and stochastic 

techniques are making a noteworthy mark by optimizing 

computationally hard problems specifically in the arena of 

resource management for integrated cloud-fog landscape. 

This metaheuristic exploits characteristics of microbats 

such as echolocation, frequency tuning, and automated 

zooming to target their prey.  

A. Performance analysis for the Makespan parameter 

It is defined as the time required to execute entire IoT requests 

by computing platform (fog node or cloud server), which is 

depicted by equations (16) and (17). Φ𝑘(𝑡) is a decision 

variable that determines whether a task is assigned to a given 

VM deployed on a local server or in the cloud. The authors 

have considered two test cases: 

Case 1: Initially 100 tasks have been taken to evaluate the 

performance of the latency-aware proposed framework. The 

proposed WOA algorithm has the ability to search for the 

best possible resource for the execution of IoT requests with 

higher convergence accuracy, that leads to a global optimal 

solution. The WOA allocate the optimal resource to the tasks 

based on its requirements and compared it with state-of-the-

art approaches to validate the results. Further, the number of 

tasks is varied from 100 to 300 and up to 900 to test the 

performance of the proposed approach over a bursty 

workload while keeping 25 fixed VMs. The computational 

results shown in Fig. 2 prove that the proposed WOA 

integrated with the framework allocates the best resources 

for the execution of IoT tasks in minimum time with high 

convergence speed.  

Case 2: The authors have varied the number of resources 

from 10 to 50 while fixing the upcoming IoT tasks (500) to 

measure the efficiency of the proposed framework at 

makespan as a QoS parameter. Figure 3 depicts the superior 

performance of WOA as compared to its counter parts in 

collaborative cloud fog environment while considering 

deadlines as constraints for latency-sensitive applications. 

The experimental results of the proposed framework in 

different test cases reveal that the proposed scheme reduces 

the makespan time by 5.22% , 21.42%, and 37.17%, 

respectively, compared with the BAT, RR, and ROP 

schemes. 

B. Performance Analysis for Task Rejection 

 It is the ratio of rejected tasks to the total number of 

submitted tasks. The mere reason for task rejection occurs 

due to the incompetence of underlying resources (a fog node 

or cloud datacenter) to execute the task within the given 

deadline.  

𝑇𝑅𝑒𝑗=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑 

𝑇𝑜𝑡𝑎𝑙 𝑡𝑎𝑠𝑘𝑠
∗ 100                                    (33)   

      In order to estimate the proposed algorithm’s 

performance, the author has considered 2 scenarios. The 

former scenario  

Algorithm 2: WOA-based Resource Allocation 

Input:     Population size (𝒵), iterations(𝑡max),  

Output: minimal cost function  𝒻 and MST(ℜℳ)  

1 Initialize: 𝒯 = {𝒯1 , 𝒯2 , 𝒯3 , … 𝒯𝑚  }, Maximum number of 

iterations (𝑡max), position of 𝒵     

 whales randomly, coefficient vectors Å 𝑎𝑛𝑑  𝐶 

2   for (𝒾 = 1 𝑡𝑜 𝒾 ≤ 𝒵 ) do 

3        Generate initial population 𝒳𝒾(𝑡) randomly 

corresponding to 𝒾𝑡ℎ whale 

4        Compute the fitness function value 𝒻(𝒳
𝒾
(𝑡))  of each 

search agent 

5 End for 

6 While (𝑡 ≤ 𝑡max) do 

7     For each 𝒾 = 1 : 𝒵 do  

8     if (ρ < 0.5) then 

9          if (|Å| < 1 ) then 

10            Position of current search agent 𝒳𝒾(𝑡) is updated 

using Eq. (23) 

11           else    

12               if (|Å|≥ 1) then  

13               Select a random search agent  𝒳ℜ(𝑡)  

14               Position of current search agent 𝒳𝒾(𝑡) is updated 

using Eq. (30) 

15               End if 

16           End if 

17      else 

18          if (ρ ≥ 0.5) then 

19           Position of current search agent 𝒳𝒾(𝑡) is updated 

using Eq. (25) 

20          End if 

21          Evaluate the fitness function of each search agent 
𝒻(𝒳

𝒾
(𝑡))   

22        End if,  End for 

23        best search agent 𝒳∗(𝑡) is updated 

24 Until (𝑡 > 𝑡max ) 

25 Return optimal value of MST(ℜℳ), and  𝒻 
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Fig 2: Makespan comparison with diverse tasks Fig 3: Makespan comparison with varying VMs 

Fig 4: Illustrating Task Rejection Ratio with diverse tasks Fig 5: Illustrating Task Rejection Ratio with varying VM’s 

 

Fig 6: Evaluation of Execution cost with varying task length 

 

Fig 7: Evaluation of Execution cost with varying VMs 

 

Fig 8 Analysis of Energy utilization with fixed VM’s 

 

 

Fig 9: Analysis of energy utilization with fixed task length 

Consider a varying number of tasks ranging from 100 to 900. 

Along with this, the number of VMs have been fixed at 25. 

These incoming tasks 𝒯𝜅  ∈ 𝒯 are processed via various state-

of-the-art algorithms along with our proposed technique. As 

demonstrated in Fig 4, it is concluded that WOA serves the 

incoming tasks in a better manner satisfying the task 

constraints in terms of length 𝒯𝜅 (𝑡) and deadline, 𝒯𝑑 (𝑡).    The 

later scenario incorporates variation in terms of underlying 

resources (VMs in fog nodes or cloud datacenters) keeping 

the number of IIoT tasks fixed. The incorporation of fuzzy 

modules in the proposed technique shows astounding results 

providing optimal output and meeting the IIoT task deadline 

as depicted in Fig. 5. 

C. Performance Analysis for Execution Cost 

     To serve the real-time IoT workload, the cost incurred by 

the user by the service provider remains a primary concern. 

Hence, the author has evaluated the proposed technique in 
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terms of execution cost, where the cost model has been 

portrayed in terms of Indian Rupee, ₹. The cost model has 

been formulated as a function of the sum total of execution 

time ℂ𝑑𝑇𝑜𝑡𝑎𝑙(t) and EC, 𝜉𝑑𝑇𝑜𝑡𝑎𝑙  (𝑡) from eq. (15). The test 

cases considered demonstrate improvised results proving that 

the proposed technique outshines other state-of-the-art 

algorithms by outlaying minimal execution cost incurred, in 

a fixed task length and fixed VM’s scenario as shown in Fig 

6 and 7 respectively.  

D. Performance Analysis for Energy Utilization 

      Energy consumption remains a dominant parameter with 

the increased number of IoT requests and the increasing CO2 

footprint in the environment is a genuine concern [18]. 

Hence, the author evaluated the EC by devices and VM’s at 

various layers formulated in eq. (3), (7) and (11) of the 

proposed algorithm against the benchmark approaches. 

Considering both cases, authors have observed that the 

proposed approach improved the EC up to 6% in the case of 

BAT, 27.32% in the case of ROP and 14% in comparison to 

RR. The results have been illustrated in Fig 8, which 

considers the case of fixed VMs and Fig 9, which portrays an 

energy matrix comparison with a fixed incoming task length. 

VII. CONCLUSIONS AND FUTURE WORK 

With the rising era of IIoT applications comprising an 

orchestrated cloud-fog computing paradigm, managing the 

finite resources, and ensuring prompt response delivery has 

become a challenging task. Hence, our work identifies and 

addresses the most challenging issues in offloading tasks and 

allocating requests by procuring an AI-enabled framework. 

The decision to offload tasks and request allocation has been 

formulated as an optimization problem. The decision of where 

to execute an Industry 5.0 incoming task is optimized using a 

fuzzy based model at access points considering deadline 

constraints and moreover boosting the battery life of the IIoT 

device. The framework is complemented with an autonomic 

nature-inspired evolutionary and stochastic approach well 

known as WOA, which holds prominence for devising optimal 

solutions for computationally hard problems in minimal time. 

The proposed computational model has been validated using 

extensive experiments in terms of vital QoS stats comprising 

makespan, task rejection, execution cost and energy 

consumption. Two scenarios have been considered, one with a 

fixed number of VMs and the other with a fixed number of 

tasks. Escalating results depict 2% and 3% reductions in 

makespan and task rejection ratios in contrast to BAT, ROP 

and RR techniques. For future work, we propose to 

incorporate machine learning techniques for workload 

prediction to further improve the offloading response to 

consumers and IIoT devices in Industry 5.0   
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