1,963 research outputs found

    ILP-based approaches to partitioning recurrent workloads upon heterogeneous multiprocessors

    Get PDF
    The problem of partitioning systems of independent constrained-deadline sporadic tasks upon heterogeneous multiprocessor platforms is considered. Several different integer linear program (ILP) formulations of this problem, offering different tradeoffs between effectiveness (as quantified by speedup bound) and running time efficiency, are presented

    Provably good task assignment on heterogeneous multiprocessor platforms for a restricted case but with a stronger adversary

    Get PDF
    Consider the problem of scheduling a set of implicit-deadline sporadic tasks to meet all deadlines on a heterogeneous multiprocessor platform. We consider a restricted case where the maximum utilization of any task on any processor in the system is no greater than one. We use an algorithm proposed in [1] (we refer to it as LP-EE) from state-of-the-art for assigning tasks to heterogeneous multiprocessor platform and (re-)prove its performance guarantee for this restricted case but for a stronger adversary. We show that if a task set can be scheduled to meet deadlines on a heterogeneous multiprocessor platform by an optimal task assignment scheme that allows task migrations then LP-EE meets deadlines as well with no migrations if given processors twice as fast

    A conjecture about provably good task assignment on heterogeneous multiprocessor platforms but with a stronger adversary

    Get PDF
    Consider the problem of scheduling a set of implicit-deadline sporadic tasks to meet all deadlines on a heterogeneous multiprocessor platform. We use an algorithm proposed in [1] (we refer to it as LP-EE) from state-of-the-art for assigning tasks to heterogeneous multiprocessor platform and (re-)prove its performance guarantee but for a stronger adversary.We conjecture that if a task set can be scheduled to meet deadlines on a heterogeneous multiprocessor platform by an optimal task assignment scheme that allows task migrations then LP-EE meets deadlines as well with no migrations if given processors twice as fast. We illustrate this with an example

    Provably good scheduling of sporadic tasks with resource sharing on a two-type heterogeneous multiprocessor platform

    Get PDF
    Consider the problem of scheduling a set of implicit-deadline sporadic tasks to meet all deadlines on a two-type heterogeneous multiprocessor platform where a task may request at most one of |R| shared resources. There are m1 processors of type-1 and m2 processors of type-2. Tasks may migrate only when requesting or releasing resources. We present a new algorithm, FF-3C-vpr, which offers a guarantee that if a task set is schedulable to meet deadlines by an optimal task assignment scheme that only allows tasks to migrate when requesting or releasing a resource, then FF-3Cvpr also meets deadlines if given processors 4+6*ceil(|R|/min(m1,m2)) times as fast. As far as we know, it is the first result for resource sharing on heterogeneous platforms with provable performance

    Heterogeneous Computing on Mixed Unstructured Grids with PyFR

    Get PDF
    PyFR is an open-source high-order accurate computational fluid dynamics solver for mixed unstructured grids that can target a range of hardware platforms from a single codebase. In this paper we demonstrate the ability of PyFR to perform high-order accurate unsteady simulations of flow on mixed unstructured grids using heterogeneous multi-node hardware. Specifically, after benchmarking single-node performance for various platforms, PyFR v0.2.2 is used to undertake simulations of unsteady flow over a circular cylinder at Reynolds number 3 900 using a mixed unstructured grid of prismatic and tetrahedral elements on a desktop workstation containing an Intel Xeon E5-2697 v2 CPU, an NVIDIA Tesla K40c GPU, and an AMD FirePro W9100 GPU. Both the performance and accuracy of PyFR are assessed. PyFR v0.2.2 is freely available under a 3-Clause New Style BSD license (see www.pyfr.org).Comment: 21 pages, 9 figures, 6 table

    Intra-type migrative scheduling of implicit-deadline sporadic tasks on two- type heterogeneous multiprocessor

    Get PDF
    Consider the problem of scheduling a set of implicit-deadline sporadic tasks to meet all deadlines on a two-type heterogeneous multiprocessor platform. Each processor is either of type-1 or type-2 with each task having different execution time on each processor type. Jobs can migrate between processors of same type (referred to as intra-type migration) but cannot migrate between processors of different types. We present a new scheduling algorithm namely, LP-Relax(THR) which offers a guarantee that if a task set can be scheduled to meet deadlines by an optimal task assignment scheme that allows intra-type migration then LP-Relax(THR) meets deadlines as well with intra-type migration if given processors 1/THR as fast (referred to as speed competitive ratio) where THR <= 2/3
    corecore