
!

!"#$%&'()*##+),-./+0'123)#4),5#"%+1-)
6%787)91:.);/7#0"-/),.%"123)#2)%)69#<
:(5/)=/:/"#3/2/#07)>0':15"#-/77#")
!'%:4#"?)

)
)

)

"""#$%&&'(#)*+,#),,#,-!

.+/$0)/'1!2+,3&-!

4522678.2899:;:<!

=+&*)30>!!

?'-+>!;@AB@A:99

*0"0'123/7.);%"%$1)

@AB"2)C2+/"77#2)

D#27:%2:12#7)@'/:7%7)

.+/$0)/'1!2+,3&-!4522678.2899:;:<! C&3D'E1(!F33G!H/$+G%1)0I!3J!H,3&'G)/!.'*K*!")-$!2+*3%&/+!H$'&)0I!

! !!!30!'!."38-(,+!4+-+&3I+0+3%*!L%1-),&3/+**3&!C1'-J3&M!

N!OCC!4%&&'(P!2+*+'&/$!F&3%,
"""#$%&&'(#)*+,#),,#,-! !

E)

Provably Good Scheduling of Sporadic Tasks with Resource Sharing on a
Two-type Heterogeneous Multiprocessor Platform
Gurulingesh Raravi, Björn Andersson, Konstantinos Bletsas

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: ghri@isep.ipp.pt, baa@isep.ipp.pt, ksbs@isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
Consider the problem of scheduling a set of implicit-deadline sporadic tasks to meet all deadlines on a two-type
heterogeneous multiprocessor platform where a task may request at most one of |R| shared resources. There are m1
processors of type-1 and m2 processors of type-2. Tasks may migrate only when requesting or releasing resources. We
present a new algorithm, FF-3C-vpr, which offers a guarantee that if a task set is schedulable to meet deadlines by an
optimal task assignment scheme that only allows tasks to migrate when requesting or releasing a resource, then FF-3C-
vpr also meets deadlines if given processors 4+6*ceil(|R|/min(m1,m2)) times as fast. As far as we know, it is the first
result for resource sharing on heterogeneous platforms with provable performance.

Provably Good Scheduling of Sporadic Tasks

with Resource Sharing on a Two-type

Heterogeneous Multiprocessor Platform

Gurulingesh Raravi1, Björn Andersson21, and Konstantinos Bletsas1

1 CISTER-ISEP Research Center, Polytechnic Institute of Porto, Portugal.
2 Software Engineering Institute, Carnegie Mellon University, Pittsburgh, USA.

{ghri, baa, ksbs}@isep.ipp.pt; baandersson@sei.cmu.edu

Abstract. Consider the problem of scheduling a set of implicit-deadline
sporadic tasks to meet all deadlines on a two-type heterogeneous multi-
processor platform where a task may request at most one of |R| shared
resources. There arem1 processors of type-1 andm2 processors of type-2.
Tasks may migrate only when requesting or releasing resources. We
present a new algorithm, FF-3C-vpr, which offers a guarantee that if
a task set is schedulable to meet deadlines by an optimal task assign-
ment scheme that only allows tasks to migrate when requesting or releas-
ing a resource, then FF-3C-vpr also meets deadlines if given processors

4+6·
⌈

|R|
min(m1,m2)

⌉

times as fast. As far as we know, it is the first result for

resource sharing on heterogeneous platforms with provable performance.

Keywords: heterogeneous multiprocessor systems, real-time scheduling, resource
sharing

1 Introduction

In heterogeneous multiprocessor platforms (i) not all processors are of the same
type and (ii) task execution times depends on the processor type. Many manu-
facturers offer chips combining different types of processors [1, 13–15, 18]. Clearly,
such chips are key components in heterogeneous systems, and such systems are
increasingly used in practice. Yet, despite this trend, the state-of-art in real-
time scheduling theory for heterogeneous multiprocessors is under-developed.
The reasons include (i) processors typically sharing low-level hardware resources
(e.g. caches, interconnects), which makes task execution times interdependent
and (ii) dispatching limitations (e.g. some processors depend on another pro-
cessor for dispatching [12]). Such idiosyncratic challenges must be addressed on
a case-by-case basis, accounting for the particularities of the architecture. The
state-of-art does offer some general ideas on analyzing shared low-level hardware
resources [3, 16, 17] and scheduling co-processors [9, 11]. Ultimately though, the
dependency of the task execution time on the processor-type is what inherently
complicates the design of scheduling algorithms for heterogeneous platforms.

2 Resource Sharing on Two-type Heterogeneous Multiprocessor Platforms

The problem of scheduling independent implicit-deadline sporadic tasks (i.e.,
for each task, its deadline is equal to its minimum inter-arrival time) on hetero-
geneous multiprocessors has been studied in the past, both for generic [5, 7, 6]
and for two-type [4] platforms but without considering the case when tasks share
resources. One might partition tasks to processors and apply a resource-sharing
protocol conceived for identical multiprocessors (e.g. D-PCP [19]). However, pro-
tocols such as D-PCP are not as effective in minimizing priority inversion when
used in heterogeneous multiprocessors. For example, a task holding a shared
resource may be executing on a processor where it runs slowly – causing large
priority inversion to other tasks and poor schedulability. Therefore, a resource-
sharing protocol for heterogeneous platforms ought to be cognizant of the execu-
tion speed of each task on each processor. It should also provide a finite bound
on how much worse it performs, compared to an optimal scheme.

This paper introduces an algorithm, FF-3C-vpr, for scheduling tasks that
share resources on a two-type heterogeneous multiprocessor. It offers a guarantee
that if a task set can be scheduled to meet deadlines by an optimal scheme
that allows a task to migrate only when requesting or releasing a resource then

FF-3C-vpr also meets deadlines if given processors 2 + 3 ·
⌈

|R|
min(m1,m2)

⌉

times as

fast. Notably this is the first result with provably good performance for resource
sharing on heterogeneous multiprocessors – which are increasingly relevant.

In this paper, Section 2 briefs the system model and assumptions. Section 3
gives the main idea of FF-3C-vpr. Section 4 lists notations and results used later.
Section 5 discusses virtual processors – integral to our algorithm, presented in
Section 6 along with the proof of its performance. Section 7 concludes.

2 System Model and Assumptions

We consider the problem of scheduling implicit-deadline sporadic tasks that share
resources on a two-type heterogeneous multiprocessor platform with restricted
migration (defined later). The system is specified as follows:

– Processors (Π): The platform consists of m processors of which m1 ≥ 1
processors are of type-1 and m2 ≥ 1 processors are of type-2.

– Shared Resources (R): A set R of |R| resources that tasks share.
– Task set (τ): There are n implicit-deadline sporadic tasks – for each task

τi, its deadline is equal to its minimum inter-arrival time, denoted as Ti.
– Execution Time and Utilization: The worst-case execution time of τi on

a type-z processor (z ∈ {1, 2}) is denoted by Cz
i and its utilization by Uz

i .

We make the following assumptions:

– Sharing the resources: Each task may request at most one resource from
R (known at design time) and at most once by each job of that task.

– Virtual processors: Virtual processors are logical constructs, used as task
assignment targets by our algorithm. A virtual processor vpi acts equivalent
to a (physical) processor of the same type with (scaled) speed 1

f
– and we

Resource Sharing on Two-type Heterogeneous Multiprocessor Platforms 3

assume that it can be “emulated” on a physical processor of the same type
(of speed 1), using no more than 1

f
of its processing capacity3.

– Restricted migration: A job of a task may only migrate to another pro-
cessor during execution when it requests a resource; it must then migrate
back to the original processor upon releasing the resource. We call this model
restricted migration. Migrations between processors of any type are allowed.

3 Overview of our approach

The key to our approach is to distinguish between three phases in the execution
of a task and make different scheduling provisions for each of them (Figure 1):

– Phase-A of a task spans from its arrival until it requests a shared resource.
– In its Phase-B, the task is holding (or waiting for) the shared resource.
– In its Phase C, the task has released the resource.

The main structure of our approach is as follows:

1. Split the task execution into phases A, B and C – in essence creating three
subtasks out of it. The phase-B and phase-C subtasks of a task “arrive” (i.e.
first become ready to execute) at a (respective) fixed time offset to the arrival
of the respective phase-A subtask. This ensures that subtasks “inherit” the
inter-arrival time of the original task and exhibit no arrival jitter.

2. Use m physical processors to create a set VP of virtual processors, formed by
disjoint sets VPAC and VPB (i.e. VP=VPAC∪VPB and VPAC ∩VPB = ∅).

3. Phases A and C of a task are assigned (both) to a virtual processor vpj∈VPAC.
Phase-B of the same task is assigned to a virtual processor vpk∈VPB.

4. The phase-A and phase-C subtasks of a task are scheduled using preemptive
EDF on their assigned virtual processor in VPAC; the phase-B subtask is
scheduled on its assigned virtual processor in VPB using non-preemptive
EDF – as a way of serializing accesses to shared resources4.

3 One intuitive way of achieving this is by dividing time to short slots of length S
and using 1

f
· S time units in each slot to serve the workload of vpi. By selecting S,

we can then make the speed of the emulated processor arbitrarily close to 1
f

(and
in practice, S need rarely be impractically short) [10]. In strict terms, a sufficient
condition for emulating m1 type-1 virtual processors from VPAC onto m1 type-1

physical processors is:
∑

vpi∈V PAC

vpi is type−1

Vi < m1, where Vi is the speed of virtual processor

vpi (and similarly for type-2 processors in VPAC and for VPB processors). For more
details (including how to tradeoff spare processing capacity for longer S), see [10].

4 Observe that implementing multiple virtual processors on the same physical pro-
cessor might in practice involve frequent “context-switching” between those. Yet,
whenever a physical processor “context-switches” between a phase-B virtual proces-
sor and some other virtual processor mapped to it, this does not violate the semantics
of non-preemptive scheduling on the phase-B virtual processor because we are only
interested (for the purposes of resource access serialization) in ensuring that phase-B
subtasks never preempt each other – and this property is not violated.

4 Resource Sharing on Two-type Heterogeneous Multiprocessor Platforms

D
es

ig
n

Ti
m

e
Ti

m
e

R
un

D
is

pa
tc

h{ using preemptive!EDF using non!preemptive!EDF using preemptive!EDF

Phase!C

Deadline of the job

Phase!A Phase!B

t
The phase!A of a task is{ The phase!B of a task accessing a The phase!C of a task is

Job of τi arrives

t+ Ti

assigned to vpj ∈ V PAC resource is assigned to vpk ∈ V PB assigned to vpj ∈ V PAC

Fig. 1. Three execution phases of a job along with the design time (task assignment)
and run time (task dispatching) decisions of FF-3C-vpr.

Steps 1-3 are performed at design time; step 4 is carried out at run time.
Despite using virtual processors, our algorithm by-construction ensures that the
“restricted migration” assumption is not violated – discussed in Section 5 and 6.
Subtasks corresponding to task phases are assigned constrained deadlines, i.e.
not exceeding their inter-arrival time (inherited from the original task).

4 Few Notations and Useful Results

4.1 Notations

Let Π(m1,m2) denote a two-type heterogeneous multiprocessor platform having
m1 processors of type-1 and m2 processors of type-2. Let Π(m1,m2) · 〈s1, s2〉
denote a platform in which the speed of a type-1 and type-2 processor is respec-
tively, s1 and s2 times the speed of a type-1 and type-2 processor in Π(m1,m2)
platform (where s1 and s2 are positive real-numbers, i.e. s1 > 0 and s2 > 0).

Let the predicate sched(A, τ,Π(m1,m2) · 〈s1, s2〉) signify that a task set τ
meets all its deadlines if scheduled by an algorithm A on a platform Π(m1,m2) ·
〈s1, s2〉. The term meets all its deadlines in this and other predicates means
‘meets deadlines for every possible valid arrival of jobs of tasks in τ ’.

We use sched(nmo, τ,Π(m1,m2) · 〈s1, s2〉) to signify that there exists a non-
migrative-offline preemptive schedule which meets all deadlines for the specified
system. Here, non-migrative schedule refers to a schedule in which all the jobs
of a task execute on the same processor to which the task is assigned. In this
predicate (and others), the term offline means that the schedule (i) can contain
inserted idle times and (ii) can be generated using knowledge of future task
arrival times (irrespective of whether such knowledge is available in practice).

The predicate sched(rmo, τ, R,Π(m1,m2) · 〈s1, s2〉) signifies that there exists
a restricted-migration-offline preemptive schedule which meets all deadlines for
the specified system when tasks share resources from R. As mentioned in Sec-
tion 2, each task requests at most one resource from R and each job of that
task may request that resource at most once during its execution. The term
“restricted migration” has the same meaning as discussed in Section 2.

Resource Sharing on Two-type Heterogeneous Multiprocessor Platforms 5

Similarly, sched(A, τ, R,Π(m1,m2) · 〈s1, s2〉) signifies that τ “sharing the
resources” (see Section 2) from R meets all its deadlines when scheduled by an
algorithm A on Π(m1,m2)·〈s1,s2〉 with “restricted migration” (see Section 2).

Finally, in the above predicates, the suffix -δ (where applicable, i.e. in (sub-)
task-partitioned schemes) to a scheduling algorithm (or algorithm class) implies
that the schedulability of τ (other than just being established via some exact
test) must additionally be ascertainable via a (potentially pessimistic) density-
based uniprocessor schedulability test. This means that for the sub-set τ

′
of

(sub-)tasks assigned on every type-z processor of speed V , it has to hold that
∑

i∈τ
′ δzi ≤ V , where δzi =

Cz
i

Dz
i
is the density, Cz

i is the execution time (w.r.t. a

processor of speed 1) and Dz
i is the deadline of a task τi on a type-z processor.

On a type-z processor: Let Cz
i,1 denote the execution time of a task τi before

requesting a resource, i.e. in its phase-A. Let Cz
i,2(k) denote the execution time

of τi while holding resource Rk (where k is the index of the resource used by τi),
i.e. in its phase-B. Let Cz

i,3 denote the execution time of a task τi after releasing
the resource, i.e. in its phase-C. Note that ∀τi∈τ : Cz

i,1+Cz
i,2(k)+Cz

i,3=Cz
i .

We derive three new constrained-deadline (denoted by Dz
i) sporadic task

sets (i.e., for each task, its deadline is less than or equal to its minimum inter-
arrival time) namely, TDA(τ), TDB,Rk(τ) and TDC(τ) from implicit-deadline
sporadic task set τ by modifying the parameters of the tasks in τ . Intuitively,
(i) a task τi(A) ∈ TDA(τ) represents phase-A execution of τi ∈ τ , (ii) a task
τi(B) ∈ TDB,Rk(τ) represents phase-B execution of τi ∈ τ , accessing the resource
Rk and (iii) a task τi(C) ∈ TDC(τ) represents phase-C execution of τi ∈ τ .

TDA(τ), TDB,Rk(τ) and TDC(τ) are defined as follows – for each task τi ∈ τ :

τi(A) = {Ti(A) = Ti, Dz
i(A) =

Cz
i,1

Cz
i

·
Ti

2
, Cz

i(A) = Cz
i,1}

τi(B) = {Ti(B) = Ti, Dz
i(B) =

Ti

2
, Cz

i(B) = Cz
i,2(k)}

τi(C) = {Ti(C) = Ti, Dz
i(C) =

Cz
i,3

Cz
i

·
Ti

2
, Cz

i(C) = Cz
i,3}

Note that DA
i +DB

i +DC
i ≤ Ti. This is essential as it ensures that if τi(A), τi(B)

and τi(C) derived from τi meet their deadlines then τi meets its deadline as well.
Also, observe that TDA(τ) and TDC(τ) are derived such that the densities of
τi(A) and τi(C) are twice the utilization of τi∈τ . For example,

∀τi(A)∈TDA(τ): δzi(A) =
Cz

i(A)

Dz
i(A)

=
Cz

i,1

Cz
i,1

Cz
i

· Ti
2

=
2Cz

i

Ti
= 2Uz

i of τi∈τ (1)

4.2 Useful Results

Lemma 1 and Lemma 2 (re-)state the speed competitive ratios of FF-3C (which
is 2 – see Th. 1 in [4]) and of uniprocessor non-preemptive EDF (at most 3 –see
Lem. 1 in [2]). FF-3C is a non-migrative scheduling scheme for implicit-deadline
sporadic tasks (without resource sharing) on a two-type heterogeneous platform.

6 Resource Sharing on Two-type Heterogeneous Multiprocessor Platforms

Lemma 1. sched(nmo, τ,Π(m1,m2)) ⇒ sched(FF-3C, τ,Π(m1,m2) · 〈2, 2〉)

Lemma 2. sched(nmo-np, τ,Π(1, 0)) ⇒ sched(nm-np-EDF, τ,Π(1, 0) · 〈3, 3〉)

The heterogeneous multiprocessor in Lemma 2 (with only one processor of type-
1) is (trivially) a uniprocessor. (Lemma 2 also holds for Π(0, 1) platform.)

Lemma 3 states that if a task is non-preemptive EDF-schedulable on a
uniprocessor, it is also non-preemptive non-migrative (i.e. partitioned) EDF-
schedulable on a platform with one more processor.

Lemma 3. sched(nm-np-EDF,τ,Π(1,0)·〈3,3〉)⇒sched(nm-np-EDF,τ,Π(1,1)·〈3,3〉)

The intuition behind Lemma 3 is that if the additional (type-2) processor
is ignored, τ is schedulable on the original (type-1) processor. (The lemma also
holds for platform Π(0, 1) · 〈3, 3〉 in left-hand side predicate.)

Lemma 4. (Combining Lemma 2 and Lemma 3)
sched(nmo-np, τ,Π(1, 0)) ⇒ sched(nm-np-EDF, τ,Π(1, 1) · 〈3, 3〉)

The following lemma states that if implicit-deadline task set τ is non-migrative
offline schedulable on Π(m1,m2) then constrained-deadline sporadic task set
TDA(τ) derived from τ (as described in Section 4.1) is also non-migrative schedu-
lable (e.g. under partitioned preemptive EDF) onΠ(m1,m2)·〈2, 2〉 and addition-
ally this can be established via use of a (potentially pessimistic) density-based
schedulability test. It is easy to see that the claim holds since the density of a task
τi(A) in TDA(τ) is always twice the utilization of the corresponding task τi in τ .

Lemma 5. sched(nmo, τ,Π(m1,m2)) ⇒ sched(nmo-δ, TDA(τ),Π(m1,m2) · 〈2, 2〉)

Proof. Let us assume that a non-migrative-offline feasible schedule exists for τ
on Π(m1,m2). So, there must exist a schedule in which the following holds:

∀p ∈ Π(m1,m2) :
∑

τi∈τ [p]

Uz
i ≤ 1 (2)

where τ [p] denotes the set of tasks assigned to processor p. Now, we show
that there also exists a non-migrative-offline feasible schedule for TDA(τ) on
Π(m1,m2) · 〈2, 2〉.

We know that for every task τi ∈ τ there exists a task τi(A) ∈ TDA(τ). We
also know from Expression (1) that ∀τi(A) ∈ TDA(τ) : δzi(A) = 2Uz

i of τi ∈ τ . Let

us assign TDA(τ) toΠ(m1,m2)·〈2, 2〉 as follows: if τi ∈ τ is assigned to processor
p ∈ Π(m1,m2) then assign τi(A) ∈ TDA(τ) to p ∈ Π(m1,m2) · 〈2, 2〉. From the
fact that this assignment of TDA(τ) (which is identical to the assignment of τ) is
made on a platform twice faster (on which the densities of tasks will be halved)
and from Expressions (1) and (2), we get:

∀p ∈ Π(m1,m2) · 〈2, 2〉 :
∑

τi(A)∈TDA(τ)[p]

δzi(A) ≤ 1 (3)

The above inequality corresponds to density-based schedulability test, on every
processor p ∈ Π(m1,m2)·〈2, 2〉, for partitioned preemptive EDF (which is a non-
migrative algorithm). Thus, TDA(τ) is also non-migrative-offline schedulable on
Π(m1,m2) · 〈2, 2〉.

Resource Sharing on Two-type Heterogeneous Multiprocessor Platforms 7

The following lemma largely follows from Lemma 1 — obtained by applying
density-based schedulability test and on faster platforms and using the reasoning
provided in Lemma 5.

Lemma 6. (From Lemma 1 and Lemma 5)
sched(nmo-δ, TDA(τ),Π(m1,m2)·〈2, 2〉) ⇒ sched(FF-3C-δ, TDA(τ),Π(m1,m2)·〈4, 4〉)

Proof. Assume that predicate sched(nmo-δ, TDA(τ),Π(m1,m2) · 〈2, 2〉) holds.
Then, since the density of every (sub-)task in TDA(τ) is twice the utilization
of the corresponding (original) task in τ , (from the reasoning similar to the one
provided in the previous lemma,) predicate sched(nmo, τ,Π(m1,m2)) holds as
well. In that case, we know from Lemma 1 that sched(FF-3C, τ,Π(m1,m2) ·
〈2, 2〉) holds. But then, since the density of every (sub-)task in TDA(τ) is twice
the utilization of the corresponding (original) task in τ , it follows from similar
reasoning provided in previous lemma that: sched(FF-3C-δ, TDA(τ),Π(m1,m2)·
〈4, 4〉).

Finally, a lemma that will be relied upon for assigning phase-C subtasks:

Lemma 7. If, for a set TDA(τ)[p] of phase-A subtasks,

δTDA(τ)[p]
def
=

∑

τi(A)∈TDA(τ)[p]

Cz
i(A)

Dz
i(A)

≤ V

then TDA(τ)[p] ∪ TDC(τ)[p] (where TDC(τ)[p] is the set of the respective phase-C
subtasks) is preemptive-EDF schedulable on a type-z (virtual) processor vpp of speed V .

Proof. That δTDA(τ)[p]≤V means that TDA(τ)[p] is schedulable under preemp-

tive EDF on vpp. We now show that the demand-bound function5, dbf(τ
′
, t), of

a task set τ
′
= TDA(τ)[p] ∪ TDC(τ)[p] is upper bounded at every instant t by

δTDA(τ)[p] · t and hence is also schedulable on vpp under preemptive EDF. Note
that, for every phase-A subtask τi(A)∈TDA(τ) (and respective phase-C subtask
τi(C)∈TDC(τ)):

dbf({τi(A), τi(C)}, t) ≤ δzi(A) · t =
Cz

i(A) · t

Dz
i(A)

(4)

This is easy to verify because, the maximum “slope” to any point in the graph

(Figure 2) of dbf({τi(A), τi(C)}, t) from the origin is δzi(A)=
Cz

i(A)

Dz
i(A)

(which is equal

to 2Uz
i of τi ∈ τ , as per our choice of Dz

i(A)), at abscissa t = Dz
i(A). Summation

of Equation (4) over all τi(A) ∈ TDA(τ)[p] (and respective τi(C) ∈ TDC(τ)[p])
yields:

dbf(TDA(τ)[p] ∪ TDC(τ)[p], t) ≤ t ·
∑

τi(A)∈TDA(τ)[p]

δzi(A) = t · δTDA(τ)[p]

5 The demand bound function of a task τi, dbf(τi, t), is the maximum possible com-
putation demand by jobs of τi, that have both release and deadline within any
interval of length t. The demand bound function of a task set τ is defined as:
dbf(τ, t) =

∑

τi∈τ dbf(τi, t) [8].

8 Resource Sharing on Two-type Heterogeneous Multiprocessor Platforms

!"#$%&'

!"#$%&(!"#$!&'

)$!"#$%&('!"#$*&'(!"#$!&&'

!"#$%"
#$%&('+"

#$*&'(+"
#$!&'+"

#$%&'

,'

Fig. 2. Assigning phase-C sub-tasks to the same virtual processor as the respective
phase-A sub-tasks (earlier assigned using a density-based test) preserves schedulability.

Fig. 3. m+ 2 |R| virtual processors created from m physical processors on a two-type
heterogeneous multiprocessor platform (m = m1 +m2).

5 Creating Virtual Processors on A Two-type
Heterogeneous Multiprocessor Platform

We create m+2 |R| virtual processors from m physical processors on a two-type
heterogeneous multiprocessor platform as shown in Figure 3. The main idea is as
follows. We treat physical processors of each type as an identical multiprocessor
platform and create a certain number of virtual processors of the corresponding
type from this platform. To be precise, m1 physical processors of type-1 are
treated as an identical multiprocessor platform and m1 + |R| virtual processors
(of type-1) are created from them and ordered as shown in the left half of Figure 3
(i.e. left side of the vertical solid line). Analogously, m2 physical processors of
type-2 are treated as an identical multiprocessor platform and m2 + |R| virtual
processors (of type-2) are created from them and ordered as shown in the right
half of Figure 3 (i.e. right side of the vertical solid line). Now, if we look at
each row in Figure 3 (separated by horizontal lines), it represents a two-type
heterogeneous multiprocessor platform (for example, the second row represents
a two-type heterogeneous multiprocessor platform with m1 virtual processors of
type-1 and m2 virtual processors of type-2). Thus, m+ 2 |R| virtual processors
are created from m physical processors on a two-type heterogeneous platform.
Precisely, we create the virtual processors with following specifications:

– m virtual processors (denoted as VPAC):m1 virtual processors of type-1
each of speed 2

2+3
⌈

|R|
m1

⌉ times the speed of a physical processor of type-1 and

m2 virtual processors of type-2 each of speed 2

2+3
⌈

|R|
m2

⌉ times the speed of a

physical processor of type-2. They are used to schedule phase-A and phase-C
of a task execution and are referred to as ‘virtual processors in VPAC’.

Resource Sharing on Two-type Heterogeneous Multiprocessor Platforms 9

Algorithm 1: FF-3C-vpr(τ,Π2(m1,m2), R): for scheduling tasks that
share resources on a two-type heterogeneous multiprocessor platform

// Lines 1-17 execute offline; line 18 executes at run-time.
1 Create TDA(τ), TD

B,Rk (τ) and TDC(τ) from τ as described in Section 4.1

2 {V PAC , V PB} := V P Create(Π2(m1,m2), R) // Create V PAC and V PB virtual
processors and store them in arrays of structures

3 for i = 1 to |R| do //Form |R| pairs from 2 |R| virtual processors in V PB

4 PairB [i] := 〈VPB[i],VPB[|R| + i]〉
5 end

6 Assign TDA(τ) to virtual processors in VPAC using FF-3C
7 for i = 1 to n do

8 if τi requests a resource then

9 let k denote the resource that task τi requests

10 if (C1
i(B) ≤ C2

i(B)) then

11 assign τi(B) to VPB[k]
12 else

13 assign τi(B) to VPB[|R| + k]
14 end

15 end

16 end

17 Assign TDC(τ) to virtual processors in VPAC using the assignment made by FF-3C for
phase-A of tasks on line 6, i.e. if τi(A) of TDA(τ) was assigned to VPAC[j] processor then
assign τi(C) of TDC(τ) to VPAC[j] processor

18 Dispatch tasks in (i) TDA(τ) with preemptive EDF on VPAC, (ii) TDB(τ) with
non-preemptive EDF on V PB and (iii) TDC(τ) with preemptive EDF on V PAC

– 2 |R| virtual processors (denoted as VPB): |R| virtual processors of
type-1 each of speed 3

2+3
⌈

|R|
m1

⌉ times the speed of a physical processor of

type-1 and |R| virtual processors of type-2 each of speed 3

2+3
⌈

|R|
m2

⌉ times the

speed of a physical processor of type-2. They are used to schedule phase-B
of task execution and are referred to as ‘virtual processors in VPB’.

We ensure that no virtual processor is created using two or more physical
processors, i.e., the capacity of a virtual processor comes from a single physical
processor alone. The pseudo-code for creating virtual processors, referred to as
VP Create in the rest of the paper, can be found in Appendix (Section 8.1).
Since VP Create creates a virtual processor out of the processing capacity of
a single respective physical processor, within each of its phases, any job exe-
cutes on only one physical processor (i.e. does not migrate between different
physical processors). However, it can migrate to a different physical processor at
the boundaries separating (i) its phase-A and phase-B and (ii) its phase-B and
phase-C executions. FF-3C-vpr adheres to the “restricted migration” model by
assigning phase-A and phase-C of a task to the same physical processor.

6 FF-3C-vpr and its Speed Competitive Ratio

6.1 The FF-3C-vpr Algorithm

The pseudo-code of FF-3C-vpr is listed in Algorithm 1. The algorithm works as

10 Resource Sharing on Two-type Heterogeneous Multiprocessor Platforms

follows. On line 1, it creates three subsets of tasks, i.e. TDA(τ), TDB,Rk(τ) and
TDC(τ) from the given task set τ . On line 2, it creates m + 2 |R| virtual pro-
cessors specified in Section 5 from m physical processors. On lines 3-5, it groups
2 |R| phase-B virtual processors into |R| pairs of processors, each pair contain-
ing one processor of each type, i.e. one processor of type-1 and one processor
of type-2. Each pair of processors, PairB [k] where k = {1, · · · , |R|}, is used for
scheduling phase-B of tasks that access the resource Rk. At any time instant,
only one processor from each heterogeneous pair is used for executing the tasks:
this is, in each case, the processor of the type on which the given task executes
fastest (termed the favorite processor type for that task); the other processor
is kept idle during the execution of the task. This technique ensures mutual ex-
clusion for accessing each resource. Moreover, it effectively creates, out of each
pair, the equivalent of a hypothetical single virtual processor whereupon every
task would execute as fast as on its (respective) favorite processor type. This
design choice aims at minimizing blocking times related to resource sharing. On
line 6, the algorithm assigns phase-A of a task (in TDA(τ)) to virtual proces-
sors in VPAC using FF-3C [4]. On lines 7-16, it assigns phase-B of a task (in
TDB,Rk(τ)) accessing resource Rk to that virtual processor in PairB [k] which
is of its favorite processor type in phase-B. On line 17, it assigns phase-C of a
task (in TDC(τ)) to a virtual processor in VPAC in the same manner as that
of assignment of a task in TDA(τ) to a virtual processor in VPAC by FF-3C
(on line 6). Instead of running FF-3C again on TDC(τ) task set, the algorithm
makes use of the output of FF-3C (that was run on line 6 to assign tasks in
TDA(τ) on VPAC) to assign TDC(τ). Line 17 ensures that phase-C of a task is
assigned to that virtual processor in VPAC to which phase-A of the same task
has been assigned. Assigning phase-C subtasks on the same virtual processor as
its corresponding phase-A subtask (i) does not endanger the schedulability of
a previously schedulable virtual processor; intuitively, this is because these two
subtasks have precedence constraints – Lemma 7 provides formal proof and (ii)
ensures that the “restricted migration” assumption is not violated. On line 18,
FF-3C-vpr schedules tasks executing in their phase-A onto VPAC using preemp-
tive EDF, tasks in their phase-B onto VPB using non-preemptive EDF and tasks
in their phase-C onto VPAC using preemptive EDF. Lines 1-17 can be performed
at design time and only line 18 has to be performed at run time.

6.2 Time complexity of FF-3C-vpr

We now show that the time-complexity of FF-3C-vpr is a polynomial function of
the number of tasks (n), processors (m) and/or resources (|R|). From FF-3C-vpr
pseudo-code (Algorithm 1), we can observe that the time-complexity for:

– creating TDA(τ), TDB,Rk(τ) and TDC(τ) subsets (on line 1) is O(n).
– creating the virtual processor subsets, VPAC and VPB (on line 2) is O(m).
– forming the virtual processor pairs (on lines 3-5) is O(|R|).
– assigning TDA(τ) on VPAC using FF-3C (on line 6) isO(n·max(m, log n)) [4].
– assigning TDB,Rk(τ) on VPB (on lines 7-16) is O(n).

Resource Sharing on Two-type Heterogeneous Multiprocessor Platforms 11

– assigning TDC(τ) on VPAC (on line 17) is O(n).

Thus the time-complexity of FF-3C-vpr is at most

(

O(n)
︸︷︷︸

create
subtasks

+ O(m)
︸ ︷︷ ︸

create virtual
processors

+ O(|R|)
︸ ︷︷ ︸

form virtual
processor pairs

+O(n ·max(m, log n)
︸ ︷︷ ︸

assign TDA(τ)

+ O(n)
︸︷︷︸

assign TD
B,Rk (τ)

+ O(n)
︸︷︷︸

assign TDC(τ)

)

= O(max(n ·max(m, log n)), |R|) = O(n ·max(m, log n))

6.3 The Speed Competitive Ratio of FF-3C-vpr Algorithm

Theorem 1. The speed competitive ratio of FF-3C-vpr is 4+ 6 ·
⌈

|R|
min(m1,m2)

⌉

.

Proof. The proof considers separately the scheduling of each of the three phases
and then combines the results. Let us look at phase-A first. Combining Lemma 5
and Lemma 6 and applying the result to virtual processors in VPAC yields:

sched(nmo, τ,Π(m1,m2)) ⇒ sched(FF-3C-δ, TDA(τ),Π(m1,m2) · 〈4, 4〉) (5)

Now consider phase-C. Since a task in its phase-A cannot be in its phase-C
simultaneously (and vice versa), the respective sub-tasks are not independent.
Treating them as such would be potentially pessimistic; conversely, accounting
for these precedence constraints during (sub-)task assignment could improve
performance. Indeed, our algorithm assigns each phase-C sub-task to the same
virtual processor as its respective phase-A sub-task (Algorithm 1, line 17.).

For convenience, let us introduce a notation say, FF-3C-δ+cp for this (sub-)
task assignment strategy (using FF-3C-δ to assign phase-A subtasks and “copy-
ing” the assignment for respective phase-C subtasks, as done by FF-3C-vpr on
line 6). Then, applying Lemma 7 to Equation (5) yields:

sched(nmo, τ,Π(m1,m2)) ⇒

sched(FF-3C-δ+cp, TDA(τ) ∪ TDC(τ),Π(m1,m2) · 〈4, 4〉) (6)

Now, let us consider phase-B. If tasks in τ sharing resource rk are non-
migrative-offline, non-preemptive schedulable on Π(m1,m2) then TDB,Rk(τ)
is also non-migrative-offline, non-preemptive schedulable on Π(m1,m2) · 〈2, 2〉.
This speedup factor of 2 comes from the fact that we have halved the deadlines
of tasks in TDB,Rk(τ) compared to the deadlines of corresponding tasks in τ .
Hence, we can write: ∀Rk ∈ R:

sched(nmo-np, τ,Π(m1,m2)) ⇒ sched(nmo-np, TDB,Rk (τ),Π(m1,m2) · 〈2, 2〉) (7)

For each resource rk, since rk is accessed in a mutually exclusive way, all the
tasks that access rk must execute sequentially. So, if TDB,Rk(τ) in which tasks
share a single resource Rk is non-migrative-offline non-preemptive schedulable
on Π(m1,m2) · 〈2, 2〉 then the same task set is also non-migrative-offline non-
preemptive schedulable on Π(1, 1) · 〈2, 2〉. the intuition is that the tasks are

12 Resource Sharing on Two-type Heterogeneous Multiprocessor Platforms

always executed on their ‘favorite’ processor type and in a sequential manner as
they are accessing a mutually exclusive resource. ∀Rk ∈ R:

sched(nmo-np, TDB,Rk (τ),Π(m1,m2) · 〈2, 2〉) ⇒

sched(nmo-np, TDB,Rk (τ),Π(1, 1) · 〈2, 2〉) (8)

Hence, combining Equations (7) and (8) gives: ∀Rk ∈ R:

sched(nmo-np, τ,Π(m1,m2)) ⇒ sched(nmo-np, TDB,Rk (τ),Π(1, 1) · 〈2, 2〉) (9)

Without loss of generality, Lemma 4 can be rewritten as:

sched(nmo-np, τ,Π(1, 1)) ⇒ sched(nm-np-EDF, τ,Π(1, 1) · 〈3, 3〉) (10)

The intuition behind this generalization of Lemma 4 to Expression (10) is that
the extra processor added to the left-hand side predicate (of Lemma 4 to obtain
the Expression (10)) is ignored while scheduling.

Applying Equation (10) to a task set TDB,Rk(τ) and multiplying the proces-
sor speeds by 2 on both left-hand and right-hand side platforms gives: ∀Rk ∈ R:

sched(nmo-np, TDB,Rk (τ),Π(1, 1) · 〈2, 2〉) ⇒

sched(nm-np-EDF, TDB,Rk (τ),Π(1, 1) · 〈6, 6〉) (11)

Combining Equation (9) and (11) and applying the result to VPB virtual processors:
∀Rk ∈ R,

sched(nmo-np, τ,Π(m1,m2)) ⇒ sched(nm-np-EDF, TDB,Rk (τ),Π(1, 1) · 〈6, 6〉) (12)

Combining the above intermediate results: dividing type-1 and type-2 processor

speeds by, respectively, 4 + 6
⌈
|R|
m1

⌉

and 4 + 6
⌈
|R|
m2

⌉

in Equations (6) and (12)

gives:

sched(nmo, τ,Π(m1,m2) ·

〈

1

4 + 6
⌈

|R|
m1

⌉ ,
1

4 + 6
⌈

|R|
m2

⌉

〉

) ⇒

sched(FF-3C-δ+cp, TDA(τ) ∪ TDC(τ),Π(m1,m2) ·

〈

2

2 + 3
⌈

|R|
m1

⌉ ,
2

2 + 3
⌈

|R|
m2

⌉

〉

)

(13)

∀Rk ∈ R : sched(nmo-np, τ,Π(m1,m2) ·

〈

1

4 + 6
⌈

|R|
m1

⌉ ,
1

4 + 6
⌈

|R|
m2

⌉

〉

) ⇒

sched(nm-np-EDF, TDB,Rk (τ),Π(1, 1) ·

〈

3

2 + 3
⌈

|R|
m1

⌉ ,
3

2 + 3
⌈

|R|
m2

⌉

〉

) (14)

In the right-hand sides of Equations (13) and (14), the processor specifications
match those created by FF-3C-vpr. Note also that under FF-3C-vpr (which
only allows “restricted migration”), phase-A and phase-C sub-tasks are assigned
to virtual processors in V PAC and phase-B sub-tasks are assigned to virtual

Resource Sharing on Two-type Heterogeneous Multiprocessor Platforms 13

processors in V PB (and V PAC∩V PB = ∅). Hence by combining Equations (13)
and (14) we get:

sched(rmo, τ, R,Π(m1,m2) ·

〈

1

4 + 6
⌈

|R|
m1

⌉ ,
1

4 + 6
⌈

|R|
m2

⌉

〉

) ⇒

sched (FF-3C-vpr, τ, R,Π(m1,m2)) (15)

We know that higher speed processors do not jeopardize the schedulability
of a task set. Hence, we can write:

sched(rmo, τ, R,Π(m1,m2) · 〈min(s1, s2),min(s1, s2)〉) ⇒

sched(rmo, τ, R,Π(m1,m2) · 〈s1, s2〉)

Substituting s1 = 1

4+6
⌈

|R|
m1

⌉ and s2 = 1

4+6
⌈

|R|
m2

⌉ in the above equation and

combining with Equation (15) and rewriting gives:

sched(rmo, τ, R,Π(m1,m2) ·

〈

1

4 + 6 ·max
(⌈

|R|
m1

⌉

,
⌈

|R|
m2

⌉) ,

1

4 + 6 ·max
(⌈

|R|
m1

⌉

,
⌈

|R|
m2

⌉)

〉

) ⇒ sched(FF-3C-vpr, τ, R,Π(m1,m2)) (16)

Multiplying processor speeds in Equation (16) by 4+6 ·max
(⌈

|R|
m1

⌉

,
⌈
|R|
m2

⌉)

:

sched(rmo, τ, R,Π(m1,m2)) ⇒ sched(FF-3C-vpr, τ, R,Π(m1,m2)·
〈

4 + 6 ·max

(⌈

|R|
m1

⌉

,

⌈

|R|
m2

⌉)

, 4 + 6 ·max

(⌈

|R|
m1

⌉

,

⌈

|R|
m2

⌉)〉

) (17)

By rewriting the RHS of the above equation, we get:

sched(rmo, τ, R,Π(m1,m2)) ⇒ sched(FF-3C-vpr, τ, R,Π(m1,m2)·
〈

4 + 6 ·

⌈

|R|
min(m1,m2)

⌉

, 4 + 6 ·

⌈

|R|
min(m1,m2)

⌉〉

)

7 Conclusions

We proposed a new algorithm, FF-3C-vpr, for scheduling implicit-deadline spo-
radic tasks with restricted migration to meet all the deadlines on a two-type
heterogeneous multiprocessor platform where each task can access at most one
shared resource. We showed that FF-3C-vpr has a speed competitive ratio of

4 + 6 ·
⌈

|R|
min(m1,m2)

⌉

.

Acknowledgments

This work was partially supported by the REHEAT project, ref. FCOMP-01-0124-

FEDER-010045, funded by FEDER funds through COMPETE (POFC – Operational

Programme Thematic Factors of Competitiveness), National Funds through FCT –

Portuguese Foundation for Science and Technology and REJOIN project of FLAD

(Luso-American Development Foundation).

14 Resource Sharing on Two-type Heterogeneous Multiprocessor Platforms

References

1. AMD Inc.: The AMD Fusion Family of APUs.
http://sites.amd.com/us/fusion/apu/Pages/fusion.aspx

2. Andersson, B., Easwaran, A.: Provably good multiprocessor scheduling with re-
source sharing. Real-Time System 46(2), 153–159 (2010)

3. Andersson, B., Easwaran, A., Lee, J.: Finding an Upper Bound on the Increase in
Execution Time Due to Contention on the Memory Bus in COTS-Based Multicore
Systems. In: WiP of 30th IEEE Real-Time Systems Symposium (2009)

4. Andersson, B., Raravi, G., Bletsas, K.: Assigning real-time tasks on heterogeneous
multiprocessors with two unrelated types of processors. In: 31st IEEE Real-Time
Systems Symposium. pp. 239–248 (2010)

5. Baruah, S.: Task partitioning upon heterogeneous multiprocessor platforms. In:
Proceedings of the 10th IEEE International Real-Time and Embedded Technology
and Applications Symposium. pp. 536–543 (2004)

6. Baruah, S.: Feasibility analysis of preemptive real-time systems upon heteroge-
neous multiprocessor platforms. In: 25th IEEE Real-Time Systems Symposium
(2004)

7. Baruah, S.: Partitioning real-time tasks among heterogeneous multiprocessors. In:
Proc. of the 33rd International Conference on Parallel Processing (2004)

8. Baruah, S., Mok, A., Rosier, L.: Preemptively scheduling hard-real-time sporadic
tasks on one processor. In: IEEE Real-Time Systems Symposium (1990)

9. Bletsas, K.: Worst-case and Best-case Timing Analysis for Real-time Embedded
Systems with Limited Parallelism. Ph.D. thesis, The University of York (2007)

10. Bletsas, K., Andersson, B.: Notional Processors: An Approach for Multiprocessor
Scheduling. In: Proceedings of the 15th IEEE International Real-Time and Em-
bedded Technology and Applications Symposium. pp. 3–12 (2009)

11. Gai, P., Abeni, L., Buttazzo, G.C.: Multiprocessor DSP scheduling in system-on-a-
chip architectures. In: 14th Euromicro Conference on Real-Time Systems (ECRTS
2002). pp. 231–238. Vienna, Austria (Jun 2002)

12. Gschwind, M., Hofstee, H.P., Flachs, B., Hopkins, M., Watanabe, Y., Yamazaki, T.:
Synergistic Processing in Cell’s Multicore Architecture. IEEE Micro 26(2) (2006)

13. IBM Corp.: The Cell Project. http://www.research.ibm.com/cell/
14. IEEE Spectrum: With Denver Project NVIDIA and ARM Join CPU-GPU Inte-

gration Race. http://spectrum.ieee.org/tech-talk/semiconductors/processors/
with-denver-project-nvidia-and-arm-join-cpugpu-integration-race

15. Intel Corporation: The 2nd generation Intel Core processor family.
http://www.intel.com/en IN/consumer/products/processors/core-family.htm

16. Li, Y., Suhendra, V., Liang, Y., Mitra, T., Roychoudhury, A.: Timing Analysis of
Concurrent Programs Running on Shared Cache Multi-Cores. In: Proceedings of
the 30th IEEE Real-Time Systems Symposium. pp. 57–67 (2009)

17. Lv, M., Guan, N., Yi, W., Yu, G.: Combining Abstract Interpretation with Model
Checking for Timing Analysis of Multicore Software. In: Proceedings of the 31st
IEEE Real-Time Systems Symposium. pp. 339–349 (2010)

18. NVIDIA: Dell and NVIDIA Workstation Solutions.
http://www.nvidia.com/object/IO 16084.html

19. Rajkumar, R., Sha, L., Lehoczky, J.: Real-Time Synchronization Protocols for
Multiprocessors. In: 9th IEEE Real-Time Systems Symposium. pp. 259 –269 (1988)

Resource Sharing on Two-type Heterogeneous Multiprocessor Platforms 15

8 Appendix

8.1 Algorithm for Creating Virtual Processors

In our notation, PP denotes the set of physical processors, ppi denotes the ith

physical processor and vpi denotes the ith virtual processor. The VP Create
pseudo-code for creating the specified virtual processors (in Section 5) is listed
in Algorithm 2. It, in turn, uses the sub-routine VPABC Create (Algorithm 3).

The VP Create function on line 2 calls sub-routine VPABC Create to create
m1+ |R| virtual processors of type-1 from m1 physical processors of type-1. The
sub-routine first creates m1 virtual processors (see lines 1-5 in Algorithm 3) from
m1 physical processors and then creates |R| virtual processors (see lines 6-20 in
Algorithm 3) from the remaining capacity of type-1 processors. Observe that
no virtual processor is created using two physical processors, i.e. the capacity
of a virtual processor comes from a single physical processor alone. Similarly,
VP Create() on line 3 creates m2 + |R| virtual processors of type-2 from m2

physical processors of type-2.
Since VPABC Create creates a virtual processor out of the processing capac-

ity of a single respective physical processor, within each of its phases, any job
executes on only one physical processor (i.e. does not migrate between different
physical processors). However, it can migrate to a different physical processor at
the boundaries separating (i) its phase-A and phase-B and (ii) its phase-B and
phase-C. FF-3C-vpr adheres to the “restricted migration” model by assigning
phase-A and phase-C of a task to the same physical processor.

The following observations can be made regarding our specification and
creation of virtual processors. After creating one VPAC virtual processor (for
phase-A and phase-C) from every physical processor (lines 1-5 in the sub-routine
shown in Algorithm 3), let us see (i) how much capacity remains in each of the
physical processors and (ii) how many phase-B virtual processors (i.e. virtual
processors in VPB) can be created from that capacity. For ease of explanation,
consider the case of type-1 processors. After creating one virtual processor, i.e.
one in VPAC (for phase-A and phase-C) of speed 2

2+3
⌈

|R|
m1

⌉ (times the speed of

a physical processor of type-1) from each physical processor, every physical pro-

Algorithm 2: VP Create(PP, |R|): for creating virtual processors from a
two-type heterogeneous platform

Input : PP, |R|
Output: VPAC, VPB

// PP denotes the set of physical processors
// |R| denotes the number of shared resources

1 VPAC[1, · · · ,m] := {0, · · · , 0} VPB[1, · · · , 2 |R|] := {0, · · · , 0}
2 VPABC Create(PP,VPAC,VPB, 0, 0, 1)
3 VPABC Create(PP,VPAC,VPB,m1, |R| , 2)
4 returnVPAC,VPB

16 Resource Sharing on Two-type Heterogeneous Multiprocessor Platforms

Algorithm 3: VPABC Create(PP,VPAC,VPB, lb, si, z): for creating
phase-AC and phase-B virtual processors
Input : PP,VPAC,VPB, lb, si, z
Output: VPAC, VPB

// lb denotes the starting index for array VPAC

// si denotes the starting index for array V PB

// z denotes the processor type
1 VPAC[lb+ 1, · · · , lb+mz] := {0, · · · , 0} // initialize the relevant

elements in VPAC to zero
2 for i = 1 to mz do

3 Create a virtual processor say, vpACz
i from ppi of speed 2

2+3
⌈

|R|
mz

⌉ times the

speed of ppi
4 VPAC[lb+ i] := vpACz

i

5 end

6 cnt := 1, f lag := 0
7 for i = 1 to mz do

8 for j = 1 to
⌈

|R|
mz

⌉

do

9 create a virtual processor say, vpBz
cnt from ppi of speed 3

2+3
⌈

|R|
mz

⌉ times

the speed of ppi
10 VPB[si+ cnt] := vpBz

cnt

11 if (cnt = |R|) then
12 flag := 1
13 break

14 end

15 cnt := cnt+ 1

16 end

17 if (flag = 1) then
18 break
19 end

20 end

cessor is left with a capacity: 1− 2

2+3
⌈

|R|
m1

⌉ =
3
⌈

|R|
m1

⌉

2+3
⌈

|R|
m1

⌉ . As per our specification

(in Section 5), the phase-B virtual processor must have 3

2+3
⌈

|R|
m1

⌉ times the speed

of a physical processor of type-1. Hence, it is possible to create:














3
⌈

|R|
m1

⌉

2+3
⌈

|R|
m1

⌉

3

2+3
⌈

|R|
m1

⌉















=

⌊⌈

|R|
m1

⌉⌋

=

⌈

|R|
m1

⌉

≥ 1

phase-B virtual processors from the remaining capacity of every physical proces-
sor of type-1. This allows us to successfully create |R| phase-B virtual processors
from the remaining capacity of m1 processors of type-1. Analogous reasoning
holds for type-2 processors as well.

