3 research outputs found

    Effective task assignment strategies for distributed systems under highly variable workloads

    Get PDF
    Heavy-tailed workload distributions are commonly experienced in many areas of distributed computing. Such workloads are highly variable, where a small number of very large tasks make up a large proportion of the workload, making the load very hard to distribute effectively. Traditional task assignment policies are ineffective under these conditions as they were formulated based on the assumption of an exponentially distributed workload. Size-based task assignment policies have been proposed to handle heavy-tailed workloads, but their applications are limited by their static nature and assumption of prior knowledge of a task's service requirement. This thesis analyses existing approaches to load distribution under heavy-tailed workloads, and presents a new generalised task assignment policy that significantly improves performance for many distributed applications, by intelligently addressing the negative effects on performance that highly variable workloads cause. Many problems associated with the modelling and optimisations of systems under highly variable workloads were then addressed by a novel technique that approximated these workloads with simpler mathematical representations, without losing any of their pertinent original properties. Finally, we obtain advance queuing metrics (such as the variance of key measurements like waiting time and slowdown that are difficult to obtain analytically) through rigorous simulation

    Task assignment in server farms under realistic workload conditions

    Get PDF
    Server farms have become very popular in recent years since they effectively address the problem of large delays, a common problem faced by many organisations whose systems receive high volumes of traffic. Recently, there has been a wide use of these server farms in two main areas, namely, Web hosting and scientific computing. The performance of such server farms is highly reliant on the underlying task assignment policy, a specific set of rules that defines how the incoming tasks are assigned to and processed at hosts. The aim of a task assignment policy is to optimise certain performance criteria such as the expected waiting time and slowdown. One of the key factors that affect the performance of these policies is the service time distribution of tasks. There is extensive evidence indicating that the service times of modern computer workloads closely follow heavy-tailed distributions that possess high variance. However, in certain environments, the service time distributions of tasks are unknown. Imposing parametric assumptions in such cases can lead to inaccurate and unreliable inferences. Considerable efforts have been made in recent years to devise efficient policies. Although these policies perform well under specific workload conditions, they have several major limitations. These include the assumption of known service times, inability to efficiently assign tasks in time sharing server farms, poor performance under changing workload conditions and poor performance under multiple server farms. This thesis aims at proposing novel task assignment policies for assigning tasks in server farms under two main classes of realistic workload conditions, namely, the heavy-tailed and arbitrary service time distributions. Arbitrary service time distributions are assumed, for cases where the underlying service time distribution of tasks is unknown. First we investigate ways to optimise the performance in a time-sharing server. We concentrate on a particular scheduling policy called multi-level time sharing policy (MLTP). We provide an extensive performance analysis of MTLP and show that MLTP can result in significant performance improvements under certain traffic conditions. Second we investigate how to improve the performance in time sharing server farms using MLTP. Three task assignment policies are proposed for time sharing server farms. Third we investigate how to design efficient task assignment policies to assign tasks in multiple server farms. We propose MCTPM which is based on a multi-tier host architecture. MCTPM supports preemptive task migration and it controls the traffic flow into server farms via a global dispatching device so as to optimise the performance. Finally, we investigate ways to design adaptive task assignment policies that make no assumptions regarding the underlying service time distribution of tasks. We propose a novel task assignment policy, called ADAPT-POLICY, which is based on a set of static-based task assignment policies. ADAPT-POLICY is based on a set of policies for the server farm and it adaptively changes the task assignment policy to suit the most recent traffic conditions. The experimental performance analysis of ADAPT-POLICY shows that ADAPT-POLICY outperforms other policies under a range of traffic conditions

    Task assignment with work-conserving migration

    No full text
    In this paper we a present a task assignment policy suited to environments (such as high-volume web serving clusters) where local centralised dispatchers are utilised to distribute tasks amongst back-end hosts offering mirrored services, with negligible cost work-conserving migration available between hosts. The TAPTF-WC (Task Assignment based on Prioritising Traffic Flows with Work-Conserving Migration) policy was specifically created to exploit such environments. As such, TAPTF-WC exhibits consistently good performance over a wide range of task distribution scenarios due to its flexible nature, spreading the work over multiple hosts when prudent, and separating short task flows from large task flows via the use of dual queues. Tasks are migrated in a work-conserving manner, reducing the penalty associated with task migration found in many existing policies such as TAGS and TAPTF which restart tasks upon migration. We find that the TAPTF-WC policy is well suited for load distribution under a wide range of different workloads in environments where task sizes are not known a priori and negligible cost work-conserving migration is available
    corecore