
Effective task assignment strategies for distributed systems

under highly variable workloads

A thesis submitted for the degree of

Doctor of Philosophy

James Andrew Broberg B.App.Sc. (Hons.),

School of Computer Science and Information Technology,

Science, Engineering, and Technology Portfolio,

RMIT University,

Melbourne, Victoria, Australia.

9th November, 2006

CORE Metadata, citation and similar papers at core.ac.uk

Provided by RMIT Research Repository

https://core.ac.uk/display/15614744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

I certify that except where due acknowledgement has been made, the work is that of the

author alone; the work has not been submitted previously, in whole or in part, to qualify

for any other academic award; the content of the thesis is the result of work which has been

carried out since the official commencement date of the approved research program; and, any

editorial work, paid or unpaid, carried out by a third party is acknowledged.

James Andrew Broberg

School of Computer Science and Information Technology

RMIT University

9th November, 2006

ii

Acknowledgments

I would like to extend my sincere thanks to my two supervisors, Professor Zahir Tari, and

Professor Panlop Zeephongsekul, for their support and guidance over the period of my can-

didature.

I wish to thank the School of Computer Science and Information Technology at RMIT

University for their material support (via scholarships and resources), providing an excellent

work environment for me to pursue my research interests.

I would like to thank all the staff and research students in the Distributed Systems and

Networking (DSN) discipline (formerly the eCDS Activity Unit) for providing a peer group

where support and feedback are readily available.

I would like to thank my fellow PhD students (past and present), in particular Yaniv

Bernstein, Peter Dimopolous, Nalaka Gooneratne, Kwong Lai, Panu Phinjaroenphan, Kazi

Sakib and Abhinav Vora.

I wish to extend my sincere thanks and gratitude to Cathy Xia, Li Zhang and Zhen Liu

for acting as my mentors during my internship at IBM T.J. Watson Research Center in 2005.

The experience was extremely valuable and fruitful.

Finally, I wish to thank my partner, Amy McDowell, and my family, for their patience,

support and good humour during this period.

iii

Credits

Portions of the material in this thesis have previously appeared or are accepted to appear in

the following publications:

• James Broberg, Panlop Zeephongsekul, Zahir Tari, Approximating General service dis-

tributions as Bounded Hyper-exponential, IEEE International Symposium on Comput-

ers and Communication (ISCC), To appear, June 2007 [Chapter 6]

• J. Broberg, Z. Tari and P. Zeephongsekul, Task assignment with work-conserving migra-

tion, Parallel Computing, Volume 32, Issues 11-12, Performance Evaluation of Commu-

nication Networks for Parallel and Distributed Systems, December 2006, Pages 808-830.

ISSN: 0167-8191 [Chapter 5]

• Anthony Bedford, Panlop Zeephongsekul, James Broberg, Peter Dimopoulos, Zahir

Tari, Queueing theory applications to communication systems: control of traffic flows

and load balancing, Springer Handbook of Engineering Statistics, Hoang Pham (Ed.),

ISBN: 1-85233-806-7, July 2006 [Chapters 2 and 3]

• Zahir Tari, James Broberg, Albert Y. Zomaya, Roberto Baldoni, A Least Flow-Time

First Load Sharing Approach for Distributed Server, Journal of Parallel and Distributed

Computing (JPDC), 832-842, Volume 65, Issue 7, ISSN: 0743-7315, July 2005 [Chap-

ters 2 and 3]

• James Broberg, Zahir Tari, Panlop Zeephongsekul, Task Assignment based on Priori-

tising Traffic Flows, Proceedings of the 8th International Conference on Principles of

Distributed Systems (OPODIS 2004), 415-430, LNCS 3544, ISBN: 3-540-27324-7, June

2005 [Chapter 4]

• James Broberg, Zahir Tari, Panlop Zeephongsekul, Task Assignment based on Priori-

tising Traffic Flows, RMIT School of CS IT Technical Reports for 2004, TR-04-5, May

2004 [Chapter 4]

• James Broberg, Zahir Tari, Task Assignment based on Estimating the Service Require-

ment, RMIT School of CS IT Technical Reports for 2004, TR-04-1, February 2004

[Chapters 2 and 3]

iv

• Bin Fu, James Broberg, Zahir Tari, Task Assignment for Overloaded Systems., IEEE

International Symposium on Computers and Communication (ISCC), 1119-1125, June

2003 [Chapters 2 and 3]

This work was supported by the Distributed Systems and Networking (DSN) group at RMIT

University, and ARC Discovery Grant no. DP0346545 awarded by the Australian Research

Council (ARC) for 2003-2005.

The thesis was typeset using the LATEX2ε document preparation system.

All trademarks are the property of their respective owners.

Contents

Abstract 1

1 Introduction 3

1.1 Research Questions . 5

1.2 Limitations of existing solutions . 7

1.2.1 Task assignment policies for batch computing environments 8

1.2.2 Task assignment policies for interactive computing environments . . . 8

1.2.3 Analysis of distributed systems under highly-variable workloads 9

1.2.4 Advanced performance metrics of task assignment policies 9

1.3 Contribution . 9

1.3.1 Task assignment based on prioritising traffic flows 9

1.3.2 Task assignment with work conserving migration 10

1.3.3 Approximating General service Distributions 10

1.3.4 Obtaining advanced performance metrics via simulation 11

1.4 Thesis Structure . 11

2 Background 14

2.1 A Queueing Theory Primer . 14

2.1.1 Queue Characteristics . 15

Arrival Pattern . 15

Service Pattern . 16

Number of Servers . 16

System Capacity . 16

Service Disciplines . 16

2.1.2 Single Server Queue . 17

v

CONTENTS vi

2.2 Queueing Metrics . 17

2.2.1 M/G/1 queues . 18

2.3 Workload measurements of distributed systems 19

2.3.1 Heavy-tailed properties . 20

2.3.2 Implications for designing Task Assignment Policies 21

3 Related Work 24

3.1 Scheduling policies . 24

3.1.1 Non pre-emptive scheduling policies 25

First-In-First-Out (FIFO) . 25

Last-In-First-Out - (LIFO) . 25

Random Selection for Service - (RSS) 26

Shortest Job First - (SJF) . 26

3.1.2 Pre-emptive scheduling policies . 26

Processor Sharing - (PS) . 27

Shortest Remaining Processing Time - (SRPT) 27

Pre-emptive Shortest-Job-First (PSJF) 28

Pre-emptive Last-Come-First-Serve (PLCFS) 28

Least-Attained-Service (LAS) . 28

3.2 Load index . 29

3.2.1 Load index measurement . 29

3.2.2 Load index interpretation and dissemination 31

3.3 Process Migration . 34

3.4 Classical load distribution policies . 37

3.4.1 Random and Round Robin . 37

3.4.2 Dynamic . 37

3.4.3 Central Queue . 38

3.4.4 Known Results . 39

3.4.5 Limitations . 39

3.5 Size-based load distribution policies . 40

3.5.1 SITA-E/V/U - Known task size . 41

3.5.2 TAGS - Unknown task size . 42

3.5.3 Known results . 43

3.5.4 Limitations . 45

CONTENTS vii

3.6 Performance under heavy-tailed workloads . 45

4 Task Assignment based on Prioritising Traffic Flow 49

4.1 The Proposed Model - TAPTF . 50

4.1.1 Motivation . 51

4.1.2 Techniques . 52

4.1.3 A Conceptual view of the TAPTF model 53

4.1.4 Mathematical Preliminaries for the TAPTF model 54

4.1.5 Choosing the cut-offs . 59

4.2 Analytical Comparison . 61

4.2.1 Two Hosts . 67

4.2.2 Three Hosts . 69

4.3 Discussion . 72

4.4 Conclusion . 75

5 Task Assignment with Work-Conserving Migration 77

5.1 Background . 79

5.1.1 Web Server Clusters . 79

5.2 Related Work . 81

5.3 The Proposed Model - TAPTF-WC . 82

5.3.1 Motivation . 82

5.3.2 Conceptual view of the TAPTF-WC model 83

5.3.3 Mathematical Preliminaries for the TAPTF-WC model 84

5.3.4 A TAPTF-WC model with cost-based migration 89

Fixed cost migration . 89

Proportional cost migration . 90

5.3.5 Choosing the cut-offs . 92

5.4 Analytical Comparison . 94

5.4.1 Two Hosts . 95

5.4.2 Three Hosts . 100

5.5 Analytical Comparison - Cost-based migration 105

5.5.1 Fixed cost migration . 107

5.5.2 Proportional cost migration . 113

5.6 Discussion . 114

CONTENTS viii

5.7 Conclusion . 119

6 Approximating General service distributions 121

6.1 Introduction . 122

6.2 Fitting General Distributions to Hyper-exponential 123

6.3 Fitting General Distributions to Bounded Hyper-exponential 126

6.3.1 Updating Prony’s Method . 127

6.4 Quality of fit . 129

6.5 Re-evaluating the TAPTF M/BP/1 model as M/Hn/1 and M/BHn/1 . . . 136

6.6 Comparing M/BP/1 and M/BHn/1 queueing models 139

6.6.1 Random Queueing Model . 139

6.6.2 TAPTF Queueing Model . 140

6.6.3 Discussion . 140

6.7 Applications of Hyper-exponential distributions in General queueing models . 141

6.7.1 General Hyper-exponential analysis . 142

6.7.2 General Bounded Hyper-exponential analysis 145

6.8 Conclusion . 147

7 Obtaining advanced performance metrics via simulation 148

7.1 Simulation framework . 148

7.2 Simulation methodology . 151

7.3 Simulation results . 153

7.3.1 Two Hosts . 153

7.3.2 Three Hosts . 161

7.4 Discussion . 170

7.5 Conclusion . 171

8 Discussion 172

8.1 Contribution . 173

8.1.1 Task assignment based on prioritising traffic flows 173

8.1.2 Task assignment with work conserving migration 174

8.1.3 Approximating General service Distributions 174

8.1.4 Obtaining advanced performance metrics via simulation 175

8.2 Future Work . 175

8.3 Conclusion . 178

CONTENTS ix

Bibliography 180

List of Figures

1.1 Distributed Server Model. 4

2.1 Single Server Queue . 17

3.1 The second moment of a Bounded Pareto distribution (E{X} = 3000, p = 107)

is shown in (a), where α is varied from 0.5 to 2.0. The squared coefficient of

variation (C2 = E{X2}/E{X}2) is shown in (b). 40

3.2 The squared coefficient of variation experienced at each host in a 4 host SITA-

E system is shown in (a). The fraction of tasks assigned to each host is shown

in (b) . 43

3.3 Performance of a distributed system with system load of 0.5. The number of

hosts is increased while the system load is kept constant at 0.5. The expected

waiting time and slowdown are depicted in (a) and (b) respectively. 46

3.4 Performance of a two host distributed system with system load of 0.3, 0.5 and

0.7. The expected waiting time and slowdown are depicted under each load

scenario. 48

4.1 Illustration of the TAPTF model. 51

4.2 Distribution of tasks in TAPTF - 2 Hosts, ρ = 0.3 61

4.3 Performance of a two host distributed system with system load of 0.3. The

expected waiting time and slowdown are depicted in (a) and (b) for policies

optimised for these respective metrics. Likewise, corresponding load compar-

isons (desired versus actual Sum-Of-Loads) are shown in (c) and (d). 62

x

LIST OF FIGURES xi

4.4 Per queue metrics for a two host distributed system with system load of 0.3.

The expected queue length are depicted in (a) and (b), while the expected

task sizes are depicted in (c) and (d). Corresponding load comparisons for

each queue are shown in (e) and (f). 63

4.5 Distribution of tasks in TAPTF - 2 Hosts, ρ = 0.5 64

4.6 Performance of a two host distributed system with system load of 0.5. The

expected waiting time and slowdown are depicted in (a) and (b) for policies

optimised for these respective metrics. Likewise, corresponding load compar-

isons (desired versus actual Sum-Of-Loads) are shown in (c) and (d). 65

4.7 Distribution of tasks in TAPTF - 2 Hosts, ρ = 0.7 66

4.8 Performance of a two host distributed system with system load of 0.7. The

expected waiting time and slowdown are depicted in (a) and (b) for policies

optimised for these respective metrics. Likewise, corresponding load compar-

isons (desired versus actual Sum-Of-Loads) are shown in (c) and (d). 67

4.9 Distribution of tasks in TAPTF - 3 Hosts . 69

4.10 Performance of a three host distributed system with system load of 0.3. The

expected waiting time and slowdown are depicted in (a) and (b) for policies

optimised for these respective metrics. Likewise, corresponding load compar-

isons (desired versus actual Sum-Of-Loads) are shown in (c) and (d). 71

4.11 Performance of a three host distributed system with system load of 0.5. The

expected waiting time and slowdown are depicted in (a) and (b) for policies

optimised for these respective metrics. Likewise, corresponding load compar-

isons (desired versus actual Sum-Of-Loads) are shown in (c) and (d). 72

4.12 Performance of a three host distributed system with system load of 0.7. The

expected waiting time and slowdown are depicted in (a) and (b) for policies

optimised for these respective metrics. Likewise, corresponding load compar-

isons (desired versus actual Sum-Of-Loads) are shown in (c) and (d). 73

5.1 TAPTF-WC With 4 Hosts . 85

5.2 Distribution of tasks in TAPTF-WC - 2 Hosts, ρ = 0.3 95

LIST OF FIGURES xii

5.3 Performance of a two host distributed system with system load of 0.3. The

expected waiting time and slowdown are depicted in (a) and (b) for work-

conserving policies optimised for these respective metrics. In (c), (d), (e) and

(f) work-conserving and non work-conserving versions of TAGS and TAPTF

are compared. 97

5.4 Distribution of tasks in TAPTF-WC - 2 Hosts, ρ = 0.5 98

5.5 Performance of a two host distributed system with system load of 0.5. The

expected waiting time and slowdown are depicted in (a) and (b) for work-

conserving policies optimised for these respective metrics. In (c), (d), (e) and

(f) work-conserving and non work-conserving versions of TAGS and TAPTF

are compared. 99

5.6 Distribution of tasks in TAPTF-WC - 2 Hosts, ρ = 0.7 100

5.7 Performance of a two host distributed system with system load of 0.7. The

expected waiting time and slowdown are depicted in (a) and (b) for work-

conserving policies optimised for these respective metrics. In (c), (d), (e) and

(f) work-conserving and non work-conserving versions of TAGS and TAPTF

are compared. 101

5.8 Distribution of tasks in TAPTF-WC - 3 Hosts, ρ = 0.3 102

5.9 Performance of a three host distributed system with system load of 0.3. The

expected waiting time and slowdown are depicted in (a) and (b) for work-

conserving policies optimised for these respective metrics. In (c), (d), (e) and

(f) work-conserving and non work-conserving versions of TAGS and TAPTF

are compared. 103

5.10 Distribution of tasks in TAPTF-WC - 3 Hosts, ρ = 0.5 104

5.11 Performance of a three host distributed system with system load of 0.5. The

expected waiting time and slowdown are depicted in (a) and (b) for work-

conserving policies optimised for these respective metrics. In (c), (d), (e) and

(f) work-conserving and non work-conserving versions of TAGS and TAPTF

are compared. 106

5.12 Distribution of tasks in TAPTF-WC - 3 Hosts, ρ = 0.7 107

LIST OF FIGURES xiii

5.13 Performance of a three host distributed system with system load of 0.7. The

expected waiting time and slowdown are depicted in (a) and (b) for work-

conserving policies optimised for these respective metrics. In (c), (d), (e) and

(f) work-conserving and non work-conserving versions of TAGS and TAPTF

are compared. 108

5.14 Performance of a two host distributed system with system load of 0.3 and a

fixed migration cost, where γs = γd. 109

5.15 Performance of a two host distributed system with system load of 0.5 and a

fixed migration cost, where γs = γd. 110

5.16 Performance of a two host distributed system with system load of 0.7 and a

fixed migration cost, where γs = γd. 111

5.17 Performance of a two host distributed system with system load of 0.3 and a

proportional migration cost, where βs = βd. 114

5.18 Performance of a two host distributed system with system load of 0.5 and a

proportional migration cost, where βs = βd. 115

5.19 Performance of a two host distributed system with system load of 0.7 and a

proportional migration cost, where βs = βd. 116

6.1 Prony’s Method Matching Points . 124

6.2 Fitting a Bounded Pareto Distribution (E[X] = 3000, α = 0.5, k = 0.0009, p =

1010) to a Hyper-exponential, Normalised Hyper-exponential and Bounded

Hyper-exponential . 130

6.3 Fitting a Bounded Pareto Distribution (E[X] = 3000, α = 1.0, k = 167.555,

p = 1010) to a Hyper-exponential, Normalised Hyper-exponential and Bounded

Hyper-exponential . 132

6.4 Fitting a Bounded Pareto Distribution (E[X] = 3000, α = 1.5, k = 1000.32,

p = 1010) to a Hyper-exponential, Normalised Hyper-exponential and Bounded

Hyper-exponential . 134

6.5 Fitting a Bounded Pareto Distribution (E[X] = 3000, α = 2.0, k = 1500, p =

1010) to a Hyper-exponential, Normalised Hyper-exponential and Bounded

Hyper-exponential . 135

6.6 The c.d.f of waiting time is shown in (a), for a hyper-exponential approxima-

tion of a bounded Pareto distribution with α = 1.0, k = 1000.32 and p = 1010.

The corresponding c.c.d.f is shown in (b). 143

LIST OF FIGURES xiv

7.1 Random 3 Host OMNeT++ model . 149

7.2 TAGS 3 Host OMNeT++ model . 149

7.3 TAPTF 3 Host OMNeT++ model . 150

7.4 Performance of a two host distributed system with system load of 0.3 154

7.5 The number of hand-offs for systems optimised for waiting time or slowdown

are shown in (a) and (b) respectively. The corresponding waste is shown in

(c) and (d). 155

7.6 Performance of a two host distributed system with system load of 0.5. 156

7.7 The number of hand-offs for systems optimised for waiting time or slowdown

are shown in (a) and (b) respectively. The corresponding waste is shown in

(c) and (d). 157

7.8 Performance of a two host distributed system with system load of 0.7 159

7.9 The number of hand-offs for systems optimised for waiting time or slowdown

are shown in (a) and (b) respectively. The corresponding waste is shown in

(c) and (d). 160

7.10 Performance of a three host distributed system with system load of 0.3 162

7.11 The number of hand-offs for systems optimised for waiting time or slowdown

are shown in (a) and (b) respectively. The corresponding waste is shown in

(c) and (d). 163

7.12 Performance of a three host distributed system with system load of 0.5 165

7.13 The number of hand-offs for systems optimised for waiting time or slowdown

are shown in (a) and (b) respectively. The corresponding waste is shown in

(c) and (d). 166

7.14 Performance of a three host distributed system with system load of 0.7 168

7.15 The number of hand-offs for systems optimised for waiting time or slowdown

are shown in (a) and (b) respectively. The corresponding waste is shown in

(c) and (d). 169

List of Tables

2.1 Some measurements of heavy-tailed traffic . 20

4.1 Notation for TAPTF Model . 55

6.1 Matching moments, α = 0.5 . 129

6.2 Matching moments, α = 1.0 . 133

6.3 Matching moments, α = 1.5 . 133

6.4 Matching moments, α = 2.0 . 136

6.5 Comparing queueing metrics for Random . 139

6.6 Comparing queueing metrics for TAPTF . 140

xv

Abstract

The demand on networked computing resources is constantly growing for many application

domains. Users of batch and scientific computing clusters are putting increasing demand on

these resources as they endeavour to analyse and solve larger and more complex problems in

diverse areas like Engineering, Life Sciences and Aerospace. Such problems can have highly

variable demands with regard to the computing resources they require. With respect to so-

called Internet applications, users are placing more demand on web servers and clusters that

provide these services, as we satisfy more of our daily needs on-line. These services include

(but are not limited to) e-commerce, online banking, social networking and acquisition and

sharing of different multimedia file formats (such as photos, documents, music and movies).

The demand for these services (and the resources required) can be transient at times, with

frequent occurrences of ‘flash crowds’ where demand spikes unexpectedly. The demand they

put on computing resources is also highly variable, placing unique requirements on system

designers wanting to provide adequate service to as many customers as possible.

This thesis is concerned with analysing and improving the performance of distributed sys-

tems under highly variable workloads. We focus on improving the performance of distributed

systems by creating task assignment policies that address the needs of modern computing

workloads. Much of the past research in the area of task assignment (or scheduling) assumes

that the workload is less variable, with the service distribution typically characterised by an

exponential distribution.

Extensive recent studies have shown that modern computing workloads are highly vari-

able, and are distributions that represent them are ‘heavy-tailed’. Such distributions are

characterised by numerous small tasks (or requests) with small service requirements, and few

large tasks with disproportionally large service requirements. These characteristics make in-

telligent task assignment that enables effective utilisation of resources extremely challenging.

In light of these findings we focus our efforts on the analysis, mathematical modelling and

improvement of task assignment policies under such highly variable workloads.

The first two issues that are considered involve creating more effective task assignment

policies under two specific application domains; batch computing, and web serving clusters.

Two policies (TAPTF and TAPTF-WC) are devised that endeavour to maximise the per-

formance and utilisation of a distributed system in their respective application domains, by

intelligently addressing the negative effect on performance that highly variable workloads

cause.

We then consider some of the problems associated with the modelling and analysis of

queueing systems that incorporate General service distributions. This is addressed by ap-

proximating such distributions as Hyper-exponential. We also re-computed our TAPTF

model to utilise a Hyper-exponential (or Bounded Hyper-exponential) service distribution.

This allows the TAPTF model to be used with nearly any General service distribution (e.g.

Pareto, Bounded Pareto, Log-normal, Weibull), simply by first approximating it as Hyper-

exponential or Bounded Hyper-exponential. As a result, TAPTF can be utilised under a

wider range of potential workloads.

Finally, the issue of obtaining advanced queueing metrics is examined. Many queueing

metrics (such as the variance of key measurements such as waiting time and slowdown) are

difficult to obtain analytically. As such, we investigate techniques to obtain these metrics

via simulation. A simulation framework to record important queueing metrics is presented,

allowing us to measure such metrics that were too difficult to compute via analytical means.

Several issues regarding simulating highly variable workloads are identified, and the variance

of key metrics such as expected waiting time and slowdown are obtained.

2

Chapter 1

Introduction

Traditionally, distributed computing environments that serviced high-demand networked ap-

plications such as scientific computing and high-volume web sites relied on a singular (and

typically very powerful) machine. These ranged from high-powered servers and mainframes

up to multi-CPU ‘super-computers’. Typically, these machines were significantly more ex-

pensive and powerful than commodity PCs. When the resource limit of these machines are

reached and they can no longer satisfy the demand for the service they provide, they must

be upgraded (often at great expense) or replaced outright with a faster machine.

With personal computers becoming more affordable and more powerful, the price/performance

benefits of a traditional single-server approach have rapidly diminished. The dedicated server

hardware of today is no longer significantly more powerful that a commodity PC. As such,

the usage of a ‘cluster’ of commodity computers has become more prevalent in recent times.

Such clusters are popular due to their scalable and cost effective nature - often providing

more computing resources at a significantly lower cost compared to traditional mainframes

or ‘super-computers’. They also provide other benefits, such as redundancy and increased

reliability. The applications of such systems include super-computing clusters [Schroeder and

Harchol-Balter, 2004], so-called web ‘farms’ and content delivery networks (CDN’s) serving

high profile and high volume web-sites [Dilley et al., 2002], among other applications.

Figure 1.1 illustrates a common cluster configuration. In this configuration, there are a

number of hosts waiting to service a user task or ‘job’. This could be a request for a file

on a web page, or a complex computation to be performed. These tasks arrive at a central

dispatcher, and are dispatched to hosts according to a task assignment policy. This policy

assigns tasks to hosts subject to a specific set of rules, with a typically goal being to maximise

CHAPTER 1. INTRODUCTION

TASKS

FCFS

FCFS

FCFS

FCFS

HOST 1

HOST 2

HOST 3

HOST 4

DISPATCHER

Figure 1.1: Distributed Server Model.

performance. How one measures performance varies depending on the application domain.

When a task arrives at the dispatcher, it is placed in a queue, waiting to be dispatched in

first-come-first-served (FCFS) order. When it is directed to a particular host it is then placed

in a queue there, waiting to be served in a FCFS manner.

The choice of which task assignment policy to utilise can significantly effect the perceived

performance and server throughput. A poorly chosen policy could assign tasks to already

overloaded servers, while leaving other servers idle, drastically reducing the performance of

the distributed system. One major aim of a task assignment policy is to distributed tasks such

that all available system resources are utilised. However, the ideal choice of task assignment

policy still an open question for many contexts.

Making this choice even more difficult is the highly variable nature of modern distributed

computing workloads. Numerous recent studies have shown that these environments exhibit

a wide range of task sizes, often spanning many orders of magnitude. These so-called ‘heavy-

tailed’ workloads have been found to exist in a number of distributed computing environ-

ments - observed in transmission duration’s of files and file sizes stored on servers [Crovella

et al., 1998b; Crovella and Bestavros, 1997; Downey, 2001], as well as unix process life-

times [Harchol-Balter and Downey, 1997] on servers. Such workloads are characterised by

many small tasks and, with lower probability, disproportionally large (and disruptive) tasks.

Often, 1% of tasks make up 90% of the workload. These conditions demand new task assign-

ment techniques to improve performance in distributed systems, as most classical approaches

to task assignment are based on the assumption of less variable, exponential workloads. Task

assignment policies based on such an assumptions cannot effectively handle highly variable

4

CHAPTER 1. INTRODUCTION

workloads, as the performance of these policies is directly proportional to the variability of

the workload. Policies based on an exponential workload assumption are not designed to

reduce the variance of the task size distribution in any way.

We measure the performance of a given task assignment policy via a number of different

metrics. System designers may place importance on one metric over others depending on the

application domain. These metrics include:

• Mean Waiting Time - Waiting time is measured from the point when a task enters the

system until it begins being serviced. This is the most commonly used metric.

• Mean Flow Time - Flow time refers to the waiting time plus the service time. This is

a measure of the entire time a task spends in the system, from entering to leaving.

• Mean Slowdown - The slowdown refers to the waiting time divided by the service time

(e.g. the size of the task). This metric attempts to capture the notion that a task’s

waiting time should be commensurate with its size. That is, a small task should only

wait a short time to be serviced, whereas a larger task can absorb a larger waiting time

while still maintaining good slowdown.

As well as considering mean metrics, we are also concerned with the integrity of these

metrics. How well do these metrics represent the experience of the majority of tasks? As

such, we also wish to consider the variance of each of the above three metrics.

1.1 Research Questions

There has been extensive research regarding task assignment (or scheduling) policies in the

last 40 years. In the past much of this research has been focused on less variable, exponential

workloads. In recent years more attention has been focused on distributed computing envi-

ronments that experience highly variable, ‘heavy-tailed’ workloads. Task assignment policies

have been devised that attempt to address the negative characteristics of these heavy-tailed

workloads in order to maintain good performance. Nonetheless, it remains a relatively new

area of research and there are still significant improvements that must be achieved for modern

distributed computing services in order to provide acceptable performance. As such, we focus

on the modelling and improvement of task assignment policies under realistic conditions of

these highly variable workloads. The first two research questions relate to the creation of

improved task assignment policies for two specific application domains under highly variable,

5

CHAPTER 1. INTRODUCTION

heavy-tailed workloads. It is critical to have an effective and appropriate task assignment

policy to maximise the performance and utilisation of a distributed system. Advanced an-

alytical modelling of such task assignment policies under such workloads can be difficult to

perform, and even impossible in some circumstances. The next research question pertains

to utilising techniques aimed at simplifying the modelling of task assignment policies under

such highly-variable environments. The final question explores the methodology needed to

perform more advanced analysis of these task assignment policies.

A) How can we improve task assignment policies for batch computing environ-

ments?

Scientific and batch computing have specific and unique requirements that differ from other

applications. Tasks are often CPU bound and have extremely high memory requirements

that precludes the use of work-conserving migration [Harchol-Balter, 2002; Milojicic; et al.,

2000]. We cannot simply rely on existing task assignment policies (based on an assumption of

less variable workloads) if we wish to provide acceptable performance in such systems. Task

assignment policies must be devised that improve the performance by specifically dealing with

the unique characteristics of highly variable workloads. Task migration can be utilised where

appropriate (as tasks are not interactive), but work-conserving migration is often unfeasible

due to the enormous memory requirements of some tasks.

B) How can we improve task assignment policies for interactive computing en-

vironments?

Policies created for batch computing are not suited to the interactive nature of serving web

content. Tasks can be CPU bound (e.g. a CGI script) or network bound (e.g. a large

file request), or both. Task assignment policies that deal with the negative effect of highly

variable workloads while ensuring not to unduly delay or interrupt the processing of tasks

are required. Task migration is available to use if beneficial, and should be work-conserving

(i.e. no work is lost). Under these constraints, we need to devise a task assignment policy

that is specifically suited to these application domains in order to maximise the performance

and improve the experience of end-users.

6

CHAPTER 1. INTRODUCTION

C) How can we simplify the analysis of distributed systems under highly-variable

workloads?

The general probability distributions used to characterise the highly-variable (or ‘heavy-

tailed’) workloads experienced by distributed systems can make queueing theory analysis

difficult, or even impossible in some circumstances. Ultimately, this can prevent us from

gaining a greater insight to the behaviour of task assignment policies, restricting the view of

system performance to mean metrics only. This can hide many subtleties in the behaviour of

the system, such as the variance in performance experienced by tasks, and makes enforcing

specific quality of service targets very difficult. Such analysis is often trivial for queueing

systems that utilise exponential service distributions. As such, it would be ideal to model the

highly variable workloads we are concerned with as a sum of weighted exponential distribu-

tions (known as ‘hyper-exponential’), whilst still maintaining the important characteristics

of the original ‘heavy-tailed’ distribution. We are especially concerned with the accurate

modelling of bounded service distributions, which are commonly used in modern queueing

system analysis.

D) How can we obtain advanced performance metrics of task assignment policies?

We need to model the important characteristics of waiting time and slowdown (such as the

variance) to fully understand the experience of tasks in the distributed system. Such a model

can be useful if we wish to eventually provide Quality of Service (QoS) guarantees to cus-

tomers. Unfortunately, these performance metrics cannot always be computed analytically,

even if the problem is grossly simplified. However we can endeavour to obtain these met-

rics via extensive and careful simulation, giving us greater insight into the experience of the

majority of tasks in the queueing system.

1.2 Limitations of existing solutions

In this section we briefly highlight the limitations of existing solutions in addressing the

requirements of the research questions posed in Section 1.1. A more extensive evaluation of

these existing solutions is presented in Chapter 2.

7

CHAPTER 1. INTRODUCTION

1.2.1 Task assignment policies for batch computing environments

The issue of task assignment in a distributed system has been the subject of extensive re-

search. Much of the classical research in this area has focused on the assumption that the

workload does not show much variation, and is typically exponential in nature. Policies such

as Random, Round Robin and certain dynamic policies such as Least Loaded First (LLF) and

Shortest Queue First (SQF) were formulated based on these assumptions. However, when

faced with highly variable workloads these policies perform poorly [Harchol-Balter et al.,

1999], with the variation having a negative effect on all performance metrics. More recently,

size-based policies have been formulated to directly address the negative effects of highly

variable workloads by grouping like-sized tasks together (creating a less variable experience

for them) [Harchol-Balter et al., 2003c; Crovella et al., 1998a; Schroeder and Harchol-Balter,

2004]. However many of these size-based policies assume that task sizes are known a pri-

ori at the dispatcher, which is often not the case. The TAGS [Harchol-Balter, 2002] policy

is unique in that it makes no such assumption of prior knowledge of a task’s size. TAGS

shows good performance under highly variable workloads but generates significant wasted

processing (from migrating many tasks without conserving any prior processing done) and

often leaves servers idle. It also loses its effectiveness as the workloads become moderately

less variable, and the system load increases.

1.2.2 Task assignment policies for interactive computing environments

Interactive computing environments such as high-volume web serving clusters face unprece-

dented workloads that can be highly variable and bursty in nature. Incidents of ‘flash-crowds’

often occur due to surges in interest for products, sporting events or breaking news [Arlitt

and Jin, 2000; Iyengar et al., 1999]. Surprisingly, many web serving platforms still depend

on traditional policies (e.g. Random or Weighted Random) and rudimentary metrics (e.g.

Queue Length, number of TCP connections). Due to the real-time nature of such applica-

tion domains these techniques are attractive as they can be computed efficiently. Despite

this, these policies were not designed to effectively handle highly variable workloads, and as

such are not ideally suited to these conditions. Significant improvement could be gained if

we apply modern queueing theory analysis (based on realistic assumptions of heavy-tailed

workloads) to this application domain. However, we cannot simply apply task assignment

policies that are suited to batch and scientific computing to this application domain, as they

have different assumptions and user requirements.

8

CHAPTER 1. INTRODUCTION

1.2.3 Analysis of distributed systems under highly-variable workloads

Highly-variable workloads have been observed in many computing environments, from batch

computing clusters, Internet (ftp and http) and LAN traffic [Crovella et al., 1998b; Crov-

ella and Bestavros, 1997]. These are often characterised mathematically by heavy-tailed or

Power-Law distributions like Pareto or Bounded Pareto. However, these distributions can

make certain advanced M/G/1 queueing analysis difficult, and even impossible in some cir-

cumstances. Exponential approximations of heavy-tailed workloads could potentially be used

in such circumstances [Feldmann and Whitt, 1997], but their accuracy needs to be rigorously

verified to ensure they still possess the characteristics of the original highly variable Pareto

workload models before we can utilise them with confidence in our task assignment models.

In particular, we wish to ensure these techniques can accurately approximate bounded service

distributions, which are commonly used in queueing analysis and are used extensively in this

thesis.

1.2.4 Advanced performance metrics of task assignment policies

It is important to understand all of the performance metrics of task assignment policies -

including higher-order measures such as variance. These are necessary if these approaches

are to be deployed, to be able to develop Quality of Service bound for customers, especially in

commercial environments where this knowledge is essential. Deriving these metrics analyti-

cally can be challenging, and even impossible in many circumstances due to the mathematical

difficulties involved when computing advanced queueing metrics that utilise a Pareto service

distribution. Evidently, these metrics must be obtained via other means (such as simulation).

1.3 Contribution

In response to the research questions posed in Section 1.1, the following contributions are

made:

1.3.1 Task assignment based on prioritising traffic flows

We present a task assignment policy, Task Assignment based on Prioritising Traffic Flows

(TAPTF) [Broberg et al., 2005], designed specifically to address the performance issues caused

by highly variable workloads in batch and scientific computing facilities. TAPTF is a size-

based partitioning approach that utilises dual queues at each host, and attempts to group

9

CHAPTER 1. INTRODUCTION

like-sized tasks together to maximise performance and minimise the variance in waiting time

experienced by tasks. Each host has specific size ranges assigned to them, and only service

tasks within those size ranges. Tasks that exceed these ranges avoid unduly delaying other

tasks by being migrated to another host once they exceed these size ranges. However, any

work done on a task is abandoned if the task is migrated. TAPTF addresses several limita-

tions of existing approaches in this problem domain. It is designed specifically to deal with

the negative impact of highly variable workloads. It does not assume any a priori knowledge

of a task’s size at the dispatcher, unlike many recent size-based approaches. TAPTF also

minimises the wasted processing that affects policies like TAGS, reducing the number of non

work-conserving migrations that occur, and improving utilisation at all hosts.

1.3.2 Task assignment with work conserving migration

Interactive application domains such as high-volume web serving have different requirements

to batch and scientific application domains. For instance, it is not reasonable from a user’s

perspective to migrate a task while it is being serviced, starting it from scratch at another

host. As such we introduce Task Assignment with Work Conserving Migration (TAPTF-

WC) [Broberg et al., 2006]. TAPTF-WC has all the features of TAPTF to mitigate the

effects of highly variable workloads, while also providing work-conserving migration, making

it suitable for more interactive applications. So, unlike traditional approaches that are still

frequently used in this application domain, TAPTF-WC is specifically designed to handle

the highly variable workloads that are now commonly experienced.

1.3.3 Approximating General service Distributions

Prony’s method [Feldmann and Whitt, 1997] is a technique used to approximate a general

distribution (such as Pareto or Log-normal) as a sum of exponential distributions, known

as a Hyper-exponential. Exponential distributions are highly desirable to use in queueing

theory analysis due to their tractable nature, with transforms and higher moments easy to

compute. Bounded Pareto distributions are commonly used to accurately describe highly

variable workloads, but how suitable is an unbounded Hyper-Exponential approximation of

such a distribution? To address this issue we introduce a new class of distribution, the

Bounded Hyper-exponential, and update Prony’s method to fit a Bounded Pareto directly to

a Bounded Hyper-exponential distribution. We find that the Bounded Hyper-exponential is

much better suited to fitting heavy-tailed workloads, where the original distribution itself is

10

CHAPTER 1. INTRODUCTION

bounded. The resulting fit is significantly more accurate, with certain specific mathematical

properties of interest matching perfectly. The accuracy of this approximation is verified by

integrating the Hyper-exponential and Bounded Hyper-exponential service distributions into

our original TAPTF model, and comparing queueing metrics. This also improves the utility

and potential application of the TAPTF model, by allowing it be utilised with a wider range

of General service distributions (Pareto, Bounded Pareto, Log-normal, Weibull, etc.).

1.3.4 Obtaining advanced performance metrics via simulation

Extensive simulation is performed, comparing one of our proposed approaches, TAPTF,

against existing task assignment policies for validation purposes. These simulations are

important for two key reasons. First, we wish to contrast our simulation results against

the analytical results obtained previously, for both the proposed approaches and existing

techniques. Second, as obtaining the variance of waiting time and slowdown analytically is

extremely difficult we measure it via simulation to understand the behaviour of tasks in our

system. Mean metrics are measured (for waiting time, flow time and slowdown), as well as

the variance of each metric. We measure global, per host and per queue metrics. These

advanced metrics give us a more detailed picture of the behaviour of tasks in the system.

and can ultimately provide us with approximate bounds on performance. Ultimately these

simulations will provide further insight into the problem of task assignment under highly

variable workloads.

1.4 Thesis Structure

The remainder of the thesis is organised as follows:

• Chapter 2 provides the necessary background into the core concepts of this thesis. This

includes background on queueing theory analysis of distributed systems, important

characteristics of ‘heavy-tailed’ workloads and a description of the different metrics

used to measure performance.

• Chapter 3 analyses the related work in task assignment policies, specifically focuses on

their performance under highly variable workloads. Classical policies such as Random

and Round Robin are examined, as well as more recent dynamic and size-based policies.

The strengths and weaknesses of these policies in dealing with highly-variable workloads

are highlighted.

11

CHAPTER 1. INTRODUCTION

• In Chapter 4 we present an improved task assignment policy for high variable batch

computing workloads. The policy, Task Assignment based on Prioritising Traffic Flows

(TAPTF), is validated by a rigorous mathematical model based on the fundamentals of

queueing theory, and an analytical comparison is presented, comparing TAPTF against

classical, dynamic and size-based task assignment policies. TAPTF shows significant

improvements in performance under a variety of workload conditions over existing

policies.

• In Chapter 5 we present an improved task assignment policy for highly variable inter-

active computing workloads. The Task Assignment with Work Conserving Migration

(TAPTF-WC) policy is designed specifically for applications were work-conserving mi-

gration is feasible (and has negligible cost). TAPTF-WC is supported by a extensive

mathematical model, and analytical comparisons are presented, comparing TAPTF-

WC against classical and modified size-based approaches (that support work-conserving

migration). TAPTF-WC shows improved performance over existing policies under a

wide range of workload conditions.

• In Chapter 6 we investigate the effectiveness of Prony’s method [Feldmann and Whitt,

1997] in approximating a Bounded Pareto service distribution (frequently used to de-

scribe distributed computing workloads) by a weighted sum of exponential distribu-

tions (known as a Hyper-exponential). Hyper-exponential distributions can be used

to simplify queueing theory analysis of distributed systems, and often can enable the

computation of more advanced queueing metrics, providing greater insight into the

operation of our system. We modify Prony’s method to fit directly to a new class of

distribution, known as a Bounded Hyper-exponential, to provide even more accurate

results. Furthermore, we re-evaluate the TAPTF model to handle Hyper-exponential

and Bounded Hyper-exponential service distributions. Our modified Prony’s method

is validated by substituting the unbounded and bounded Hyper-exponential workload

approximations into our updated TAPTF model, and comparing the results. Our up-

dated TAPTF models also widen the application of TAPTF to nearly any long-tailed

General service distribution (via approximating it using the original or modified Prony’s

method). We also highlight some of the desirable properties of Hyper-exponential and

Bounded Hyper-exponential distributions that make them so amenable to analysis in

queueing systems.

12

CHAPTER 1. INTRODUCTION

• In Chapter 7 we obtain further performance bounds via simulation. Through extensive

simulation we obtain measurements of the mean and variance of important queueing

metrics (to validate against analytical models), as well as obtaining per host and per

queue performance metrics exhibited by TAPTF and other policies.

• Finally, in Chapter 8 we summarise the main contributions of this thesis, and suggest

areas of future research that could be investigated.

13

Chapter 2

Background

In this chapter we cover the required background knowledge in queueing theory needed to

understand the various models presented in the later chapters, as well as reviewing recent

workload measurements to support the remainder of the thesis. In Section 2.1 we provide

a brief introduction into the fundamentals of queueing theory, explaining key concepts and

terminology. Section 2.2 describes the metrics that are commonly used to measure the

performance of queueing systems, as well as how they are computed for the type of queueing

systems we are interested in. Section 2.3 discusses some recent studies that analyse the

characteristics of computing workloads, and the implications of those findings with regards

to the design and operation of distributed systems are examined in Section 2.3.1.

2.1 A Queueing Theory Primer

Queueing is a part of every day life, and can be found occurring in computer and telephone

networks, checkout counters at supermarkets or even waiting in traffic at an intersection. In

order to understand the behaviour of such queues (as well as the experience of the entities

residing in them) some kind of predictive model would be extremely valuable. Analytical

models based on Queueing Theory can often very accurately model the mechanics of the

scenarios described above. Queueing theory provides a stochastic and probabilistic approach

to studying the operation and behaviour of queues. There have been several seminal books

published on Queueing Theory - with the first key work written by Saaty [1961]. Saaty lists

over 900 papers in his bibliography, indicating that the field was already well established by

this point. Other key works include Kleinrock’s two volumes on Queueing Theory [Kleinrock,

1975a;b] which are still utilised to this day in generating new queueing analysis. Countless

14

CHAPTER 2. BACKGROUND

other more recent texts continue to cover and expand on this increasingly important field of

study [Gross and Harris, 1998; Stallings, 2002; Ross, 2002].

2.1.1 Queue Characteristics

The characteristics of a queueing system are commonly described using Kendall’s nota-

tion [Kendall, 1953] in the form (A/B/C), where:

• A is the arrival pattern of customers;

• B is the service pattern of customers;

• C is the number of servers;

In more recent years Kendall’s notation has been expanded to (A/B/C/D/E), with the

notation now including the following parameters:

• D is the system capacity or buffer size;

• E is the service discipline.

Despite these additions it is most common to see queueing systems described in the

original Kendall notation, (A/B/C).

Arrival Pattern

This refers to the distribution of the arrivals of tasks into a system. Some commonly measured

distributions are:

Exponential M:f(t) = λe−λt, t ≥ 0, λ > 0.

Deterministic D

Erlangian with k stagesEk : fk(t) =
λ(λt)k−1e−λt

(k − 1)!
, t ≥ 0, k = 1, 2, . . . ,∞

When the exact distribution is unspecified, it is described as G or GI, ‘general’ or ‘general

and independent’. The symbol M is used where the distribution is exponential, referring to

the fact that in such cases the arrival pattern has the Markov property. This is a desirable

property to have in a queueing system as Markovian queueing systems are analytically more

tractable than other types of queues (e.g. General). Specifically, the Laplace transforms of

such distributions are trivial to compute.

15

CHAPTER 2. BACKGROUND

Service Pattern

This describes the service distribution. In modern communication analysis, this is often

interchangeably referred to as the task size, job or workload distribution. It could refer to the

distribution of the size of files being requested on a web server or even the distribution of CPU

time required by tasks in a batch computing facility. The most commonly used distributions

that represent the service pattern are the same as described for the arrival pattern. As

with the arrival pattern, exponentially distributed service patterns are better than General

distributions from a tractability standpoint. However, many recent measurements of modern

communication workloads (such as web requests and unix process lifetimes) show that ‘heavy-

tailed’ General distributions (such as Pareto) are a more accurate representation of the service

pattern. The service pattern has a critical effect on the performance of a queueing system,

as we will discover in Chapter 3.

Number of Servers

This parameter describes the number of entities that provide service to customers in the

queueing system. In modern communication systems this service could be CPU time (e.g.

executing a CGI script or other process), network bandwidth (e.g. a file server serving a file

to a customer) or some other resource of interest (and combinations thereof). These servers

could be homogeneous or heterogeneous.

System Capacity

Classical Queueing Theory assumes that there are no restrictions on the number of customers

in the queueing system at a given time - that is, the queues are unbounded. Communication

networks (such as those existing on the web) typically have restrictions on the number of

customers waiting in a queue for service at a given time, both at the Operating System

level and the Application level, where requests are ignored or ‘dropped’ once these limits

are reached. If the queues are unbounded in a given queueing system and tasks arrived

faster than could be serviced, then the queue lengths would constantly increase, approaching

infinity.

Service Disciplines

Once customers are in a queue, we must decide on which ones to service. The rules that

govern this choice are called service disciplines. They are also often referred to as scheduling

16

CHAPTER 2. BACKGROUND

λ µFCFS

Figure 2.1: Single Server Queue

policies in the literature. The most common service discipline is First-Come-First (FCFS)

(also known as First-In-First-Out, FIFO). As the name suggests, customers are serviced

in order of their arrival. Intuitively this would seem the fairest and most logical choice,

but other service disciplines are frequently utilised in queueing systems. A Last-In-First-Out

(LIFO) service discipline services the last customer to arrive in a queue. Shortest-Remaining-

Processing-Time (SRPT) services the customer with the shortest expected service time in

the queue first (assuming that the service time is known in advance). Priority queueing

disciplines are also commonly used, where a server processes customers in a queue in order

of their priority or class. These service disciplines (and others) are explained in more detail

in Section 3.1.

2.1.2 Single Server Queue

The simplest example of a queueing system is a single server queue. Figure 2.1 shows tasks

arriving at a rate λ into a queue, waiting for service. The server will service tasks in a

FCFS order, at a rate µ. Let us assume that the arrival pattern follows a Poisson [Cao

et al., 2002] distribution and as such is Markovian, and that the queue length is unbounded.

If the service distribution was exponential, we would classify this system using Kendall’s

notation as M/M/1/∞/FCFS, or simply M/M/1. If the service distribution was a General

Distribution (such as Pareto), we would describe it as M/G/1/∞/FCFS, or M/G/1 for

short.

2.2 Queueing Metrics

The cluster configuration depicted in Figure 1.1 (Chapter 1) is well suited to analysis via

queueing theory. Armed with some basic knowledge about our system of interest, such as the

arrival rate, λ, and distribution of service requirements, f(x), we can obtain the expected

performance metrics of the system. With these metrics, we can evaluate the performance of

17

CHAPTER 2. BACKGROUND

different task assignment policies, and make an informed judgement regarding which policy

is best to employ.

As such, some common metrics are used in order to directly compare the relative per-

formance of the various task assignment policies. We consider the mean waiting time, mean

flow time, and the mean slowdown of each task assignment policy. The waiting time refers

to the time a task spent waiting in queues to be processed. The flow time is the sum of

the waiting time and the service time. Slowdown refers to the waiting time divided by its

processing time. We also consider second-order statistics such as the variance of each of our

metrics to gauge the relative confidence in the observed means.

2.2.1 M/G/1 queues

Consider for a moment that each host in our basic distributed system (depicted in Figure 1.1)

is a M/G/1/FCFS queue, where the arrival process into the system has rate λ. X represents

the service time distribution, and ρ represents the utilisation (ρ = λE(X)). W denotes a

task’s waiting time in the queue, F its flow time, S its slowdown, and Q is the queue length

on arrival. Using a well known result in queueing theory [Kleinrock, 1975a], the expected

values of these metrics are as follows:

E(W) =
λE(X2)
2(1− ρ)

(Pollaczek-Khinchin formula)

E(F) = E(W) + E(X)

E(S) = E(
W

X
) = E(W) · E(X−1)

E(Q) = λE(W) (Little’s formula)

The system load (ρ) over an entire distributed system is defined as,

ρ =
λE(X)

n

where λ represents the outside task arrival rate into the system, E(X) represents the mean

task size and n represents the number of hosts in the system. When ρ is below 1, the system

is stable and under-loaded. When ρ is greater than 1, the system is overloaded and more

tasks enter the system than leave the system.

The expected waiting time, E(W), is the most commonly used metric to describe the

performance of a queueing system. Indeed, the main aim of many task assignment policies is

18

CHAPTER 2. BACKGROUND

to minimise waiting time. We can see the expected waiting time is directly proportional to

the second moment of the service distribution. The flow time metric E(F) is also commonly

used, describing the end-to-end time a task (or customer) spends in the queueing system.

This is considered by some [Tari et al., 2005] to be a better representation of the experience

of tasks in the queueing system. Slowdown (E(S)) is a more recently devised metric, that

considers the notion of ‘fairness’. Slowdown normalises the waiting time by considering the

size (or service requirement) of a task. Common sense dictates that if a task has a small

service requirement, then it should not have to wait an unduly long time to be serviced.

Conversely, if a task has a large service requirement, they would expect their task to take a

longer time, and thus can absorb a longer waiting time (proportional to their service time).

Essentially we wish that a tasks waiting time be proportional to its service requirement.

2.3 Workload measurements of distributed systems

Numerous recent studies have shown that distributed computing environments exhibit a wide

range of task sizes, often spanning many orders of magnitude. These so-called ‘heavy-tailed’

workloads have been found to exist in a number of computing environments. Researchers

have found that a number of workloads measured on the World Wide Web exhibit heavy

tails, including file requests by users, files transmitted via the network, transmission du-

ration’s of files and files stored on servers [Crovella et al., 1998b; Crovella and Bestavros,

1997]. Further examples of observed heavy-tailed workloads include the size of files stored

in Unix file systems [Irlam, 1993], and the Unix process CPU requirements measured at

UC Berkley [Harchol-Balter and Downey, 1997]. Motivated by such measurements, WWW

traffic generating tools such as SURGE [Barford and Crovella, 1998] have been developed

to more accurately ‘stress-test’ servers by generating realistic heavy-tailed traffic. More re-

cently, traffic measurements of the 1998 World Cup [Arlitt and Jin, 2000] and the 1998 Winter

Olympics [Iyengar et al., 1999] have exhibited some heavy-tailed characteristics.

E-commerce and e-payment workloads also present unique challenges to system design-

ers as poor management of these workloads can directly correlate to lost income for these

service providers. Indeed, prior research on workload characterisation of such sites found

that the small portion of customers that exhibit the longest sessions also had the smallest

buying ratio [Menasce et al., 1999]. That is, the longer a session took, the less likely the

customer bought an item from an e-commerce site. Given that E-commerce sites are of-

ten heavily personalised and database driven, lengthy sessions can impose a burden on the

19

CHAPTER 2. BACKGROUND

hosting site for little gain. Work by Neto et al. characterised web access patterns from a

major US broadband provider for home and SOHO (Small office/home office) customers for

commercial web services [Neto et al., 2004]. The durations of these sessions were found to

be highly variable, follow lognormal and lognormal-pareto hybrid distributions for home and

SOHO customers respectively. As more web content becomes dynamic and personalised in

these systems, the server infrastructure required to satisfy these requests can increase dra-

matically [Arlitt et al., 2001]. Secure communication using HTTPS/SSL can also dominate

the CPU on an E-commerce web server, increasing the computational cost over a non-SSL

transaction by a factor of five to seven [Kant et al., 2000].

There are significant questions raised by these findings with regards to task assignment

policies, as much of the existing work in the area was formulated under an assumption of a less

variable, exponentially distributed workload. These findings have had a major impact on the

way we traditionally design task assignment policies. In order to maximise the performance

in modern communication systems that face these highly variable conditions, we must devise

task assignment strategies that specifically deal with such ‘heavy-tailed’ workloads.

Description α

Unix process CPU requirements [Harchol-Balter and Downey, 1997] 1.0

Sizes of files transmitted over the internet 1.1− 1.3

[Crovella et al., 1998b; Crovella and Bestavros, 1997]

1998 World Cup Web Site File Size Distribution [Iyengar et al., 1999] 1.37

Table 2.1: Some measurements of heavy-tailed traffic

2.3.1 Heavy-tailed properties

The so-called ‘heavy-tailed’ distributions have very high variance, where 1% of tasks can take

50% of the computing resources. They can be characterised by the function,

Pr{X > x} ∼ x−α,

where 0 ≤ α ≤ 2. The α parameter describes the variation of the distribution. Any set of

tasks that is said to follow a heavy-tailed distribution is described as having the following

properties [Harchol-Balter, 1999; 2002; Harchol-Balter et al., 1999]:

20

CHAPTER 2. BACKGROUND

1. Decreasing failure rate. That is, the longer a task has run, the longer it is expected to

continue running.

2. Infinite variance, and if α ≤ 1, infinite mean.

3. The property that a very small fraction (less than 1%) of the very largest jobs make up

a large fraction (half) of the workload. This is commonly referred to as the heavy-tailed

property. It is this property that makes the load very difficult to balance effectively.

For the purpose of analysis, we assume that the task sizes show some maximum (but

large) value. This is a reasonable assumption in many cases, such as a web server, which

would have some largest file. A Bounded Pareto distribution is therefore used, which has an

lower and upper limit on the task size distribution. The probability density function for the

Bounded Pareto B(k, p, α) is:

f(x) =
αkα

1− (k/p)α
x−α−1, k ≤ x ≤ p (2.1)

where α represents the task size variation, k is the smallest possible task, and p is the largest

possible task. By varying the value of α we can observe distributions that exhibit moderate

variability (α ≈ 2) to high variability (α ≈ 1). Typical measured values of the α parameter

are between 0.9 - 1.3 [Crovella et al., 1998b; Crovella and Bestavros, 1997; Harchol-Balter,

1999], with an empirically measured mean of α ≈ 1.1.

Throughout this thesis we use the parameter α to capture the variance of the probability

distribution of the service times. The direct relationship between this parameter and common

representations of variability, such as the coefficient of variation, C2 = E{X2}/E{X}2 and

the second moment of the service distribution, E{X2}, is demonstrated in Figures 3.1 and 3.2

respectively, and motivates its use for the remainder of the thesis. As such, we are confident

that it is the most appropriate metric to quantify the variation in the workloads we examine

in this thesis, and it has been used extensively in (similar) prior work by other researchers on

workload modelling [Harchol-Balter and Downey, 1997; Crovella and Bestavros, 1997; Crov-

ella et al., 1998b; Iyengar et al., 1999] and task assignment policies. [Harchol-Balter et al.,

1999; Crovella et al., 1998a; Schroeder and Harchol-Balter, 2004; Harchol-Balter, 2002]. It

allows us to generate a wide range of workloads with differing degrees of variation, approxi-

mating diverse workloads in a manner that is consistent with empirical measurements from

supercomputing, batch, web (e.g. ftp/http) and commercial computing facilities.

21

CHAPTER 2. BACKGROUND

2.3.2 Implications for designing Task Assignment Policies

Based on the workload measurements described in Section 2.3, and the properties of heavy-

tailed workloads (described in Section 2.3.1) it is clear that task assignment policies for

modern queueing systems need to mitigate the negative effects of heavy-tailed workloads if

they are to be effective. Traditional task assignment policies were devised with the assump-

tion of a less variable, exponential service distribution in mind. The characteristics of the

exponential distribution are fundamentally different to that of heavy-tailed distributions, and

task assignment policies based on the exponential assumption cannot expected to provide

adequate performance under heavy-tailed workloads.

As such, the focus of remainder of this thesis is the effect of highly variable workloads

on task assignment policies in distributed systems. These workloads consist mostly of small

tasks, with extremely large tasks appearing with non-negligible and totally independent

probability.

This should not be confused with autocorrelation, which is an entirely different phenom-

ena to variability, with the former being the statistical measure of the relationship between

a random event and itself at different time lags [Brockwell and Davis, 1986]. A positive

autocorrelation can manifest itself as a large observation, which is consistently followed by

another large observation, or a small observation consistently followed by another small ob-

servation at a given time lag. A negative correlation can be a large observation being followed

by a small observation, or vice versa, at a given time lag. These type of observations are

common in time-series style analysis, which is not utilised in this thesis.

For our purposes, when using M/G/1 queuing analysis the service distribution itself

is stationary and memory-less. As such, there is no autocorrelation between task sizes at

different time lags l.

We quantify the negative effects of heavy-tailed workloads in the next chapter. Addition-

ally, the performance of classical task assignment policies as well as dynamic and size-based

approaches will be analysed under heavy-tailed, highly variable workloads.

22

CHAPTER 2. BACKGROUND

23

Chapter 3

Related Work

In this chapter we consider some of the important existing task assignment policies for dis-

tributed systems. We examine their strengths and weaknesses, particularly in dealing with

realistic, highly variable workloads. In Section 3.1 we explore the different scheduling poli-

cies utilised in computing systems, and investigate the effect they have on common queueing

metrics. Section 3.2 reviews the different techniques used to measure and disseminate load

information on a computer system. We examine their effectiveness in being good load indi-

cators and the importance of how frequently the information is disseminated to nodes in a

distributed system. In Section 3.3 we examine the role of process migration in distributed

systems, identifying how the mechanism works in modern distributed systems, and under

what circumstances it is appropriate to use. Section 3.4 examines classical task assignment

policies, including static policies such as Random and Round Robin, as well as Dynamic and

Central-Queue policies. Section 3.5 considers more recently devised size-based policies such

as the SITA (Size Interval Task Assignment) variants and TAGS (Task Assignment based

on Guessing Size), illustrating how they address highly variable workloads, and highlighting

areas where they can be improved. In Section 3.6 we compute some analytical queueing

results of the task assignment policies discussed in this chapter under heavy-tailed, highly

variable workloads, highlighting the negative effects these workloads have on performance.

3.1 Scheduling policies

As described in Section 2.1, the service (or scheduling) discipline dictates the manner and

order in which tasks in a queue are serviced. Depending on the nature and characteristics

of a computer system, only non pre-emptive scheduling (described in Section 3.1.1) may be

24

CHAPTER 3. RELATED WORK

supported. This means once a task is in service, it cannot be interrupted (i.e. pre-empted)

from service, rather it must run to completion. Alternatively, pre-emptive scheduling may

be available (described in Section 3.1.2), where a task in service can be interrupted by an

incoming or existing task in the queue.

Depending on the nature of the workload experienced by a computing system, the choice

of scheduling policy can have a significant effect on the mean performance metrics of tasks,

as well as the variance and consequently our confidence in these metrics [Conway et al., 1967;

Kleinrock, 1975a;b; Wierman and Harchol-Balter, 2003; 2005]. Ultimately a scheduling policy

will be chosen according to the problem domain, the hardware and the software limitations

(e.g. operating system) of the computing system in question.

3.1.1 Non pre-emptive scheduling policies

Non pre-emptive scheduling policies dictate than once a task is in service, it cannot be

interrupted by any other arriving task, or an existing task in the service queue. This is

advantageous as it still allows the order of waiting tasks to be manipulated, whilst the

costs associated with bring tasks in and out of service (and maintaining and saving state

information) is avoided. From an analytical standpoint, queueing systems with non pre-

emptive scheduling are typically easier to formulate and optimise.

First-In-First-Out (FIFO)

First-In-First-Out, as the name suggests, services tasks to completion in the order they

arrive. It is often referred to in the literature as First-Come-First-Served (FCFS). A large

volume of existing queueing results (such as the Pollaczek-Khinchin formula) assume a FIFO

scheduling discipline. Intuitively it is considered the most fair scheduling policy, where a

task is rewarded for arriving earlier than another task by being serviced before it.

Last-In-First-Out - (LIFO)

Under a Last-In-First-Out discipline, the last task to enter the queue is the first candidate for

service. It is otherwise referred to as Last-Come-First-Served (LCFS) in scheduling literature.

LIFO policies are analogous to stack data structures, where elements are added to the stack,

and removed (i.e. popped) from the top of the stack rather than the bottom. One could

imagine that there is a potential, especially under high loads, for tasks to languish at the

bottom of the stack for lengthy periods of time. Indeed this turns out to be the case - while

25

CHAPTER 3. RELATED WORK

the mean queueing metrics for FIFO and LIFO are equivalent, the second moment (and

consequently the variance) of the LIFO policy are worse, having a greater dependence on the

system load [Wierman and Harchol-Balter, 2003; 2005].

Random Selection for Service - (RSS)

A Random Selection for Service discipline selects tasks waiting in the queue for service in

a purely random fashion. That is, each n customers in a queue have a 1/n chance of being

selected for service. The queueing results for the RSS scheduling discipline have been found

to be identical that of FIFO scheduling [Spirn, 1980]. This is expected, as Conway et al.

have found that all non pre-emptive scheduling disciplines that do not make use of task sizes

(such as FIFO, LIFO and RSS) have the same distribution on the number of tasks in the

system [Conway et al., 1967]. Consequently, we can categorically state (according to the

Pollaczek-Khinchin formula) that the expected (average) queueing metrics of these policies

are equivalent.

Shortest Job First - (SJF)

Shortest Job First, otherwise known as Shortest Job Next (SJN), selects a task for service

from all tasks waiting in a queue that has the smallest service requirement (e.g. execution

time). A SJF scheduling discipline is desirable as it maximises the throughput - that is, the

number of tasks that can be serviced to completion in a given period of time. However, there

have been long held views that SJF policies can cause service starvation for tasks with larger

service requirements if smaller tasks continually arrive. Also, its applications are limited as it

requires knowledge (or accurate estimations) of the service requirements of all tasks waiting

in the queue.

3.1.2 Pre-emptive scheduling policies

Pre-emptive scheduling policies allow arriving tasks (or tasks already queued) to pre-empt

or interrupt a task currently being serviced, regardless of whether it has finished or not. The

current task being processed is brought out of service in exchange for another task. Such

techniques can often reduce the variance in the waiting times of tasks, depending on the

particular pre-emptive scheduling policy used. For instance, a smaller task can interrupt

a long running task so it is not waiting a disproportionate amount of time to be serviced.

26

CHAPTER 3. RELATED WORK

However, additional overhead is incurred by swapping unfinished tasks in and out of service,

and maintaining the appropriate state information so they may eventually resume.

Processor Sharing - (PS)

A processor sharing scheduling discipline (otherwise known as time sharing) givens a quantum

of service to each task waiting in the queue in a round-robin fashion [Kleinrock, 1967].

Processor sharing queues have a number of desirable properties. They are considered to be

fair in that all tasks have the same expected slowdown [Ward and Whitt, 2000; Wierman and

Harchol-Balter, 2003]. Also, the average time a task spends in a system depends only on the

mean of the task size distribution, and not on other higher moments. Intuitively these results

make sense, as a processor sharing discipline addresses many of the issues associated with

FCFS queueing. As tasks are given a fixed slice of service, larger tasks cannot block smaller

tasks behind it in the queue for lengthy periods of time, as can occur in non pre-emptive

scheduling policies. This also assists smaller tasks without requiring that the service time is

known in advance, as they only require a small number of slices to complete service.

Shortest Remaining Processing Time - (SRPT)

A Shortest Remaining Processing Time scheduling discipline is a pre-emptive policy that

services the task with the least remaining processing time first. It requires that the service

requirement be known in advance to be utilised effectively. A SRPT discipline has long

since been proved to be optimal in minimising the mean response time in a queue [Schrage,

1968; Winston, 1977; Smith, 1978]. Despite this, its usage is not widespread due to the

common perception (and teaching) that it favours shorter tasks, and can disadvantage or

even starve longer tasks [Tanenbaum, 1995; Stallings, 1995; Silberschatz and Galvin, 1998].

This perception of unfairness by the SRPT policy toward larger tasks has been challenged in

recent research [Bansal and Harchol-Balter, 2001]. The authors analyse the SRPT scheduling

discipline using standard M/G/1 queueing analysis, compare the results against the PS

scheduling policy, which is considered fair in that it provides the same expected slowdown

for all tasks. Bansal et al. contend that the notion that SRPT scheduling is unfair is largely

unfounded, and demonstrate that under moderate system load (independent of task size

distribution), all tasks prefer SRPT scheduling to PS. Under higher load, this observation

still holds for heavy-tailed task size distributions. In light of these findings, the SRPT

scheduling policy has since been implemented in a web server [Harchol-Balter et al., 2003c;

27

CHAPTER 3. RELATED WORK

Schroeder and Harchol-Balter, 2006]. By simply changing the order in which web requests

where scheduled, the authors demonstrated improved delay and mean response time whilst

having minimal adverse effects on larger requests.

Pre-emptive Shortest-Job-First (PSJF)

The pre-emptive Shortest-Job-First scheduling policy, like its non pre-emptive equivalent,

aims to execute the task with the shortest service requirement. However, PSJF guarantees

this behaviour at all times by allowing tasks that arrive to pre-empt the task currently

being serviced if it is smaller. PSJF provides near optimal response time for tasks in a

single queue, close to that of the SRPT policy, which is known to be optimal as described

previously. However, for certain classes of tasks (e.g. larger tasks), PSJF can discriminate

against them and provide unpredictable queueing performance [Harchol-Balter et al., 2003c;

Schroeder and Harchol-Balter, 2006]. This is unsurprising given that PSJF favours smaller

tasks over larger tasks at all times.

Pre-emptive Last-Come-First-Serve (PLCFS)

A pre-emptive Last-Come-First-Serve policy is simply a pre-emptive analogue to the LCFS

described previously. At all times, a PLCFS policy ensures that the last arriving task is

being serviced. Any running tasks will be pre-empted from service by a newly arriving task

as necessary. Like Processor Sharing, PLCFS has been found to be both fair and provide

predictable service times to all tasks, no matter what their size is [Wierman and Harchol-

Balter, 2003; 2005].

Least-Attained-Service (LAS)

The Least Attained Service scheduling discipline is a pre-emptive policy that does not require

any knowledge of a task’s service requirement. LAS works by giving service to the task in

the queue that has received the least service overall, compared to all other waiting tasks.

Newly arriving tasks always pre-empt the current task in service, and is processed until the

next task arrives or it has received an amount of service that is equivalent to the task it

pre-empted, depending on which occurs first. A LAS policy is appealing, as it has been

shown to provide a mean response time that is comparable to that achieved by SRPT, whilst

not requiring knowledge of task sizes needed by SRPT [Rai et al., 2003]. In the same study,

LAS was also shown to provide finite mean response time for the majority of tasks (up to

28

CHAPTER 3. RELATED WORK

the 99th percentile) for tasks at an overload of ρ = 2.0. Further work has demonstrated

that LAS (and LAS variants) are very effective as scheduling policies over bottleneck links

in packet switched networks, significantly besting FIFO scheduling under a variety of load

conditions [Rai et al., 2004].

3.2 Load index

The availability and utilisation of resources provided by a computer are typically charac-

terised in the form of a load index. A load index could provide a measure of utilisation of

a single resource on a computer system, such as the load on the CPU. Alternatively, it can

be a combined measure of multiple resources and metrics like CPU load, memory utilisation,

disk paging and the number of running processes. This information can be utilised to iden-

tify a node that is lightly loaded, making it a candidate to have tasks migrated there from

a heavily load node (discussed in Section 3.3), or identifying a target node for a dynamic

load distribution policy (discussed in Section 3.4). In Section 3.2.1 we discuss the types of

measures and metrics that are commonly used to construct load indexes in computer sys-

tems. Section 3.2.2 describes some techniques to utilised to disseminate this information in

an effective and timely manner among distributed systems.

3.2.1 Load index measurement

The type of load measurements and metrics used in computing systems depend very much

on the operating system and the application domain. Work by Ferrari and Zhou attempts

to formalise this by considering the notion that a correct load index for a given application

domain (and process mix making up the workload) should ensure that the response time

for a task must be a function of the load index [D. Ferrari, 1985; Ferrari and Zhou, 1986].

In this investigation, the authors consider the use of an linear combination of mean queue

lengths (such as background processes) and coefficients describing the resource requirements

of the next task waiting to be assigned in order to represent the perceived load at each

machine. The intent of computing the index in this manner is to ensure the response time

for a given application (with specific resource needs) is minimised. Ultimately this means

that the indexes are computed on a per application basis as needed, considering the varying

resource requirements of different applications. The authors note that it is unclear how

suitable this measure would be in highly dynamic distributed computing environments.

Further work by Ferrari and Zhou evaluates the effectiveness of a variety of different load

29

CHAPTER 3. RELATED WORK

indices as a means to perform load balancing in a distributed system [Ferrari and Zhou,

1988]. The authors emphasise the need for a given host to be viewed as a collection of

resources, and for a given load index to represent that fact. Experiments were performed on

a distributed system, utilising the instantaneous CPU queue length, averaged CPU queue

length, averaged file and paging I/O and memory queue lengths (e.g. buffer space, page table)

as load indices in an individual and combined manner. Other important factors in providing

an effective load index were identified, including the averaging interval for measurement

of a given resource queue length, and the exchange interval, representing the frequency of

dissemination of the load index to other hosts. The importance of such load dissemination

policies are investigated in the next section. The authors found that for the workload used in

the experiments (consisting of common non-interactive unix tasks), using the instantaneous

CPU queue length proved the most effective to improve the overall response times of jobs,

besting several other hybrid load indices.

Kunz considers the influence of differing load descriptors for a load balancing scheme for

a general purpose distributed system [Kunz, 1991]. A number of requirements are imposed

for such a system, namely that no assumptions are made regarding the specifics of the under-

lying network, no a priori knowledge of incoming tasks is assumed, the system is dynamic,

physically distributed and has cooperative scheduling (as defined in prior research [Casavant

and Kuhl, 1988]) and that mean response time of a task is the key performance metric of in-

terest. The choice of load descriptor in such systems obviously affects the ability of a system

to meet these requirements. Kunz examines the utility of singular workload descriptors, as

well as more complex combinations of workload descriptors, in providing efficient and effec-

tive load information for load balancing schemes. The single descriptors include the number

of tasks in the run queue, available memory, rate of CPU context switches, rate of system

calls, 1-minute load average and the amount of free CPU time. Combination metrics utilise

multiple individual metrics which are multiplied by a coefficient to either normalise or weight

a given metric. From the individual descriptors, the number of tasks in the run queue proved

to be the best metric to minimise response time. No improvements were found when utilising

combined descriptors over simply utilising the one-dimensional workload descriptors.

Work by Cardellini investigates the different state estimations (i.e. load index) utilised by

DNS-based load control policies in distributed web clusters [Cardellini et al., 1998]. Choosing

an effective load index in such a scenario is made more challenging by the fact that DNS

cannot be relied upon to control all incoming requests due to caching of DNS data at both

the ISP and client level. Indeed, it can have control over as little as 5% of requests in many

30

CHAPTER 3. RELATED WORK

instances [Cardellini et al., 2002]. The fact that web requests are typically non-uniformly

distributed and highly variable provides additional difficulties. Such indices must also con-

sider the reliability of the load index, given that it can only be updated during a DNS TTL

(Time-To-Live) interval. The authors cater for this limitation by estimating the hidden load

weight, which considers the number of requests that a web server will receive during a TTL

interval. This load measure can potentially estimate the number of request sessions, the

number of page requests or the number of hits that occur during a specific interval. The

authors consider load control policies using these state estimators that are updated at static

TTL intervals [Colajanni et al., 1998b] and dynamic TTL intervals [Colajanni et al., 1998a].

A Two-tier Round Robin (RR2) approach was also examined, that utilises a static in-

terval threshold-based approach to group client domains into two classes, normal and hot.

Client domains are placed in either class by considering their hidden load weight index rela-

tive to the threshold. This two-tier approach is essentially a weighted round robin approach

that attempts to avoid hot client domains from being constantly assigned to the same server,

spreading requests over a larger (weighted) proportion of available servers and reducing the

chance of overload. The hidden load weight index is used more directly in the Dynamically

Accumulated Load (DAL) and Minimum Residual Load (MRL) policies, using a predictive

model to gauge the expected load on servers (based on previous assignments it has made)

to maintain a more accurate load index of each of its member servers. An Adaptive TTL

(AdpTTL) approach was also evaluated, that utilises a load index that considers both the

hidden load weight and the server capacity of member servers, making it suitable for het-

erogeneous cluster environments. This index is used to assign dynamic TTL values that are

inversely proportional to the hidden load weight in an effort to achieve more fine-grained and

consistent load balancing.

Cardellini found that under theoretical conditions there was little difference between

the load estimates used (sessions, requests or hits) for the RR2, MRL, DAL or AdtTTL

policies, with each one providing significantly better performance than the baseline round

robin approach. Under realistic and dynamic experimental conditions, utilising the number

of hits in the computation of the hidden load weight metric achieved the best (or near best)

results for the RR2, MRL, DAL or AdtTTL policies.

31

CHAPTER 3. RELATED WORK

3.2.2 Load index interpretation and dissemination

Mitzenmacher considers how useful old load information is when choosing where to direct

newly incoming tasks in a distributed system [Mitzenmacher, 1997; 2000]. Given that it

is typically unfeasible to have instantaneous global load information available at all times,

Mitzenmacher investigates the use of load information that is only periodically updated.

Given that load can change rapidly, it is often unclear what is the most appropriate way to

utilise old load information. The author extensively models and evaluates different models

for old load information. Mitzenmacher considers a theoretical bulletin board approach -

where global information is centrally located at a bulletin board. However, in reality this

information could potentially contain old (and inaccurate) information. To choose where an

incoming task is assigned, one could choose d servers at random (i.e. a subset), check their

load information from the bulletin board, and assign the task to the server with the least

load. Alternatively the load of all servers could be checked, and a task assigned to the server

with the least load. Providing the information on the bulletin board is up to date, the subset

approach performs well and has lower overhead than checking the load of all servers. In more

centralised distributed systems, where a centralised bulletin board of all load information is

feasible, assigning tasks to the least loaded server can provide better results, and is indeed

optimal from a mathematical standpoint in many situations.

The way load is disseminated and interpreted in a bulletin board model must still be

addressed. Mitzenmacher suggests a periodic update model, where the bulletin board is

updated with new load information every T seconds. As such, the update times would be

0, T , 2T , The time between these updates is considered a phase, with phase i ending

at time iT . Two key issues exist for this type of approach - the number of servers that

are considered (e.g all servers or a subset) when choosing where tasks are assigned, and the

length of the update phase T . If the update interval T is kept short, then choosing the

shortest queue (according to the load information currently available) works well - as few

new tasks arrive in the interval and the old load information remains relatively accurate. As

T increases, instance’s of herd behaviour can occur as tasks are assigned to the same small

subset of servers that appear lightly loaded, eventually leading to overload. In such instances

(as T grows larger and approaches ∞) simply assigning tasks at random to servers usually

performs better.

Alternatively, a continuous update model can be used, where the bulletin board is updated

in a continuous fashion but remains T seconds behind the true global state at all times. This

32

CHAPTER 3. RELATED WORK

models the common scenario where there is transfer delay between when the load information

is propagated and when it is available to use by tasks. As a result, tasks use information that

is T seconds old when making a choice on its destination. Two scenarios were investigated -

where the continuous update interval T is a fixed constant, and where T is replaced by X,

a random exponentially distributed value. Significantly different results where observed in

each instance. In the case of a fixed T , assigning tasks to the least loaded server performs

poorly, even with relatively small T values. Choosing randomly amongst a small subset of

least loaded servers performed significantly better over a wider range of T values. Using a

randomly distributed update interval X produced surprisingly good results for both shortest

queue and subsets of shortest queue assignments. Mitzenmacher attributes this to the fact

that tasks entering the system at approximately the same time will have differing views of the

system and consequently make different choices. This avoids the herd behaviour commonly

experienced by other load balancing approaches and improves utilisation and performance. A

individual update model is also briefly considered, where servers update their load information

at different, independently distributed times. However, this model was found to perform

similarly to the standard continuous update model.

Several interesting results are drawn from Mitzenmacher’s work, but we note that it

is limited to systems where arrivals and service distributions are exponentially distributed

(i.e. M/M/c). As such, these findings cannot be directly mapped to systems with highly

variable arrivals or service distributions. Indeed, the conclusions would likely be substantially

different due to the highly variable nature of heavy-tailed workloads and their propensity to

unbalance the load in distributed systems.

Research by Dahlin attempts to get more utility out of stale load information by improving

the way it is interpreted and utilised in distributed systems [Dahlin, 2000]. Dahlin proposes

load interpretation (LI) algorithms that consider not just the last reported load information,

but also the age of that information and the rate that tasks arrive, which can potentially

make the load information inaccurate.

Dahlin’s work depends heavily on the prior work of Mitzenmacher [Mitzenmacher, 1997;

2000] regarding the means of obtaining and updating the load information itself (i.e. peri-

odically, continuously or individually updating the load bulletin board). Rather, he focuses

on devising load interpretation models that use the information in such load update models

effectively.

The load interpretation models consider two key elements in their use of available load

information. First, the magnitude of load imbalance between servers is considered. Second,

33

CHAPTER 3. RELATED WORK

and most importantly, the interpretation of load information depends on its age and also the

arrival rate of tasks into the system.

Under simulation, it was found that if load information was fresh (as the update interval,

T , or arrival rate, λ, are low) then the load interpretation algorithms sent requests to servers

with recently reported low load. In such circumstances the performance was found to match

that of aggressive Least-Loaded-First (LLF) algorithms, and bested both random subset and

purely random algorithms.

When faced with old load information, the proposed LI algorithm tended to distribute

tasks more uniformly rather than relying too heavily on stale information, as the perceived

least loaded server could have since been overloaded. Thus the performance demonstrated

was comparable if not better than truly random algorithms, and better than algorithms that

naively use stale load information.

When dealing with load information of a modest age (neither especially fresh or stale)

the load interpretation model significantly outperformed other algorithms tested by up to

60%.

Several other key findings were obtained. In the load interpretation models considered,

underestimating the arrival rate λ severely affects the performance of the load interpretation

(LI) algorithm. However, overestimating the arrival rate has little harm. As such, the author

recommends assuming a λ that maximises throughput (i.e. system load of 1.0). If the load

is legitimately higher than this then no algorithm with help. Dahlin finds that even when

limited load information is made available (such as with a ‘k-subset’ approach described pre-

viously [Mitzenmacher, 1997; 2000]), with the aid of an effective load interpretation algorithm

such information can be used to outperform algorithms that use no load information under

exponential workloads.

3.3 Process Migration

A process is an Operating System construct that represents an instance of a running computer

application. A process typically has other resources associated with it, characterised by data,

program stack, register contents and other state descriptors, depending on the Operating

System it is running on. Process migration is the act of transferring a process between two

logical entities (a source and destination) during execution. These entities could be different

CPU’s on the same machine, or different physical nodes on a network. If the migration is to

be work-conserving, state information must also be transferred during migration of a process.

34

CHAPTER 3. RELATED WORK

We often use the term task as a generalisation of the process concept.

The mechanics of work-conserving migration depends on the Operating System and the

implementation details, but it can be described generally as follows [Milojicic; et al., 2000]:

1. Based on some migration criterion, a migration request is issued to a remote node.

After negotiation between the source and destination node, the migration request is

accepted.

2. A process is suspended from its execution, and detached from the source node. It is

now in a migratory state.

3. Arriving messages are temporarily queued until the communication channels can be

redirected to the destination node and delivered successfully.

4. The process state is extracted, which depending on implementation details can consist

of memory and register contents, communication state (such as open files) and the

kernel context.

5. The process is recreated on the destination node, in readiness for the relevant state

information to be transferred.

6. State information is transferred and associated to the newly recreated process on the

destination node.

7. Forwarding references must be created to direct communication to the newly recreated

process on the destination node.

8. The newly recreated process resumes execution from the point at which it was halted

on the source node.

The more recent growth in popularity of broadly accessible virtualisation solutions (such

as Xen [Barham et al., 2003], VMWARE [Adams and Agesen, 2006]) and services (Amazon

Cloud [Amazon.com, Inc, 2007], PlanetLab [Bavier et al., 2004]) provides an interesting

framework where a lightweight virtual machine (VM) image can be a unit of execution (i.e.

instead of a ‘task’ or process) and migration [Nelson et al., 2005]. These developments,

described by Nelson et al., have allowed migration of unmodified applications encapsulated

in virtual machines, even if these applications are unaware of the mechanics (described above)

behind it. This migration can be achieved in a work-conserving fashion without the running

35

CHAPTER 3. RELATED WORK

application nor any dependant clients or external resources being aware that it has occurred.

The VMWARE management capabilities makes this possible encapsulating the state of the

VM, such as CPU, networking, memory and I/O while the virtual machine is still running.

It can transfer open network connections due to the layer of indirection provided by the

VMWARE Virtual Machine layer. Physical memory is often the largest overhead in terms

of state that must be migrated. Stopping a VM to save and transfer this state can cause

a lengthy downtime, making the migration process far from transparent. As such, this is

handled in situ by a virtual memory layer [Waldspurger, 2002], allowing memory state to be

transferred whilst a VM is still running by iteratively pre-copying memory to the destination

node and marking it as temporarily inaccessible to the source.

Nelson et al. found that for a variety of CPU, I/O and memory bound workloads, VM

migration in a local cluster can be fast and transparent for the applications themselves and

any dependent clients and external resources. In most causes downtime was kept under a

second, short enough to avoid a noticeable lapse in service by clients. If the VMs are simply

batch workloads, this is even less of an issue. Even if migration takes several seconds, this

must be contrasted with the probable runtime of a virtual machine, which could be in the

order of minutes or hours. As such, the benefits of migration would depend on the nature of

the virtual machine workload.

Non work-conserving migration is often achieved simply via remote invocation. A process

is stopped on a source node, and restarted (from scratch) at the destination node. This can

often be a less expensive operation due to the fact that no state information needs to be

transferred from the source node to the destination node. Clearly there will be a trade-off

between losing any work done prior to migration, and avoiding the cost of state transfer

in work-conserving migration, especially if a process has a large state that needs to be

transferred. This balance depends on the characteristic’s of tasks in a given application

domain, and the efficiency of any migration mechanism that might be used.

The decision to migrate a process is typically justified by the assumption that it can

complete its execution faster by accessing resources on another node. It bases this assumption

on some comparative measure of the load at the source node and the destination node. The

goodness of this assumption depends on how accurate the load measure is for the application

domain the process is derived from [Kunz, 1991]. The differing representations of load, as

well as load collection and dissemination policies have been covered previously in Section 3.2.

One measure of load, process lifetime, has been found to be an effective indicator of when

it is prudent to employ process migration. Naturally, it is rarely beneficial to migrate a short

36

CHAPTER 3. RELATED WORK

running tasks as the benefit does not outweigh the migration costs. Early work in this area

(predating much of the analysis of computing workloads discussed in Section 2.3) found that

it was possible to predict a process’s expected lifetime with reasonable accuracy based on

how long it has already lived [Cabrera, 1986; 1999].

The question of whether process migration actually provides benefits has been found to

depend very much on the characteristics of the workload the process is derived from [Nut-

tall and Sloman, 1997]. This is highlighted by conflicting research regarding the benefit of

migrating running processes in distributed systems. Analysis performed by Eager suggested

that that performance gains obtained by work-conserving process migration are only mod-

est in the many cases, and that there are no conditions where such migration yields major

performance gains [Eager et al., 1988]. Conversely, more recent research has been conducted

that disputes this, and endeavours to quantify the relationship between process lifetime and

acceptable migration costs [Harchol-Balter and Downey, 1997].

3.4 Classical load distribution policies

The problem of optimal task assignment in a distributed system has been a well researched

area for many years. Most of the so-called ‘classical’ approaches were created under the

assumption of a Markovian service process (e.g. exponentially distributed service times).

Many of these policies are still widely used, due to their simplistic nature and ease of im-

plementation. In this section we explore some of these policies, evaluate their strengths and

weaknesses, and identify some known results.

3.4.1 Random and Round Robin

Classical task assignment policies such as Random and Round-Robin [Silberschatz and Galvin,

1998] have traditionally been used in distributed systems, and are still widely used for many

application domains. Under the Random policy, tasks are statically assigned to each back-

end server with equal probability. Using a Round-Robin policy, tasks are assigned to servers

in a cyclical fashion. Both policies equalise the expected number of tasks at each server, and

are frequently used as a base line to compare with other task distribution policies. Tasks are

assigned with no consideration of each host’s load or the distribution of task sizes. Despite

this, Random and Round-Robin are still commonly used in many scheduling environments

(most likely due to ease of implementation). It has been shown previously [Harchol-Balter

et al., 1999] that Random and Round-Robin both have similar performance characteristics.

37

CHAPTER 3. RELATED WORK

Weighted variants of Random and Round-Robin are popular task assignment policies, partic-

ularly when a distributed system contains heterogeneous hosts [Tang and Chanson, 2000; He

et al., 2004]. In these instances weighting the task assignment so that more powerful hosts

receive a larger share of tasks can result in significant improvement over standard Random

and Round-Robin policies. Random load distribution policies have also been combined with

Dynamic policies, where a task is assigned to the least loaded server, selecting only from a

random subset of the available servers [Mitzenmacher, 2001].

3.4.2 Dynamic

Dynamic policies intelligently assign tasks based on a representation of the current load at

each host. The LLF (Least-Loaded-First) approach assigns tasks to the server with the

least amount of work remaining, attempting to achieve instantaneous load balance. The

work remaining can be approximated by the queue length (Shortest-Queue) [Winston, 1977;

Nelson and Philips, 1989], or assuming the tasks service requirement is known a priori,

the cumulative work remaining in the queue (Least-Work-Remaining). By keeping the load

balanced, the waiting time in queue can be reduced. It is known that balancing the load

minimises the mean response time [Crovella et al., 1998a; Schroeder and Harchol-Balter,

2004] in the type of distributed system that we consider in this thesis. A Dynamic policy

exhibits good performance as the task size distribution becomes more uniform, but when it

is close to the empirically measured workloads (where α ≈ 1) and highly variable, newer size-

based approaches perform better. Despite this, a number of caveats exist. First, the ‘best’

performance is not always obtained by balancing the load, particularly if you are interested in

different measures of performance, such as the mean slowdown. Second, balancing the load is

not always practical, as often you are depending on approximate measures of the load, such

as the queue length. Under highly variable workloads (where the difference between ‘small’

and ‘large’ tasks can be enormous) it is highly probable that the length of a queue can be

an unreliable indicator of the actual load at a host. Third, there is additional complexity

and overhead to update and disseminate load information. This issue was covered in detail

in Section 3.2. As such, it is easy to imagine how it is a bad policy to depend only on the

number of tasks in the queue at each back-end host, and the effect on performance that can

result from using such information to base task assignment choices on.

38

CHAPTER 3. RELATED WORK

3.4.3 Central Queue

The Central-Queue policy holds tasks in a queue at the dispatcher until a host is idle. Such a

policy has proved to be equivalent to a Least-Work-Remaining policy, showing that equivalent

performance can be obtained without any prior knowledge of a task’s size [Harchol-Balter,

2002; Harchol-Balter et al., 1999]. However, while both exhibit similarly good performance

under an exponential workload, the performance of a Central-Queue policy is equally poor

under more realistic conditions of heavy-tailed workloads. Recently, two variations of the

Central-Queue policy have been proposed - Cycle Stealing with Immediate Dispatch (CS-

ID) and Cycle Stealing with Central Queue (CS-CQ) [Harchol-Balter et al., 2003b;a]. CS-ID

immediately dispatches tasks to a back-end server, whilst CS-CQ holds tasks in a central

queue at the dispatcher until a host is idle. Both policies are evaluated against a Dedicated

policy (much like the size-based policies outlined in the next section). In a Dedicated policy,

one host is ‘dedicated’ to servicing all short jobs, while the other host services long jobs.

Both CS-ID and CS-CQ follow a similar arrangement, but can steal cycles from an idle host

if available (and it is prudent to do so). For example, if a short job arrives and the short

host is busy whilst the long host is idle, the short job can be dispatched to the long host to

improve utilisation. Both CS-ID and CS-CQ show improvement over a Dedicated policy in

many areas (notably for short tasks), The application of these policies are limited to domains

where a priori knowledge of a tasks size is known, and in the case of CS-CQ, there needs to

be constant feedback between the dispatcher and the back end hosts to notify the dispatcher

of an idle host.

3.4.4 Known Results

The Round-Robin policy results in a slightly less variable arrival stream than the Random

policy. Despite this, the performance of the Random and Round-Robin policies have been

shown to be roughly equivalent [Harchol-Balter et al., 1999].

Under a M/M/c assumption, a Shortest-Queue policy has been shown to be optimal with

respect to maximising the number of jobs completed by some time t [Weber, 1978]. Under

the same assumptions, Nelson and Phillips claim that the Central-Queue (and therefore

Least-Work-Remaining) policy is optimal [Nelson and Philips, 1989; 1993].

A Least-Work-Remaining policy is not analytically tractable under M/G/c queueing sys-

tems. Nonetheless this policy has been shown to be equivalent to a Central Queue pol-

icy [Harchol-Balter et al., 1999], for which their exists known approximations [Sozaki and

39

CHAPTER 3. RELATED WORK

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E
{X

2 }

Alpha

E{X2}

(a)

 1

 10

 100

 1000

 10000

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
2

Alpha

C2

(b)

Figure 3.1: The second moment of a Bounded Pareto distribution (E{X} = 3000, p = 107)

is shown in (a), where α is varied from 0.5 to 2.0. The squared coefficient of variation

(C2 = E{X2}/E{X}2) is shown in (b).

Ross, 1978; Wolff, 1989]:

E{QM/G/c} = E{QM/M/c}.
E{X2}
E{X}2

where X is the service requirement distribution, and Q represents the queue length with

subscripts representing its queue characteristics.

3.4.5 Limitations

The task assignment policies listed above are not suited to highly variable task size distribu-

tions. Consider the metrics shown in Section 2.2, and the approximation for the Least-Work-

Remaining policy listed previously. What is immediately apparent is that all metrics depend

on the second moment of the service requirement distribution, E{X2}. For the Dynamic

(e.g. Least-Work-Remaining) policy, we can see that all metrics will depend on the squared

coefficient of variation (C2 = E{X2}/E{X}2). C2 characterises the variability of a probabil-

ity distribution. Distributions such as Erlang are considered to have low variance, whereas

distributions like Pareto and Hyper-exponential are considered highly variable. Figure 3.1

shows an example of one such highly variable distribution (where the y-axis is on a log scale).

This is consistent with the type of workloads found in recent measurements, as discussed in

40

CHAPTER 3. RELATED WORK

Section 2.3. We can see that as α decreases, the variation (as represented by the second

moment of the distribution, and the squared coefficient of variation) explodes. Clearly, as

the variability of the service time distribution increases, the performance of the distributed

system will decrease rapidly using these classical load balancing policies.

3.5 Size-based load distribution policies

In the previous chapter we highlighted substantial recent research showing the frequent oc-

currence of heavy-tailed workloads in many distributed computing environments. The char-

acteristics of these heavy-tailed workloads make them very challenging to manage using

traditional load distribution policies. Indeed, many of these policies were created under the

assumption of M/M/c workloads - for instance where the distribution of service require-

ments follows an exponential distribution. To deal with ‘heavy-tailed’ M/G/c workloads,

new load distribution techniques need to be employed. In particular, they must address the

characteristics of these workloads, such as their highly variable nature, that cause such poor

performance under traditional load distribution policies. In recent years there have been

several load distribution techniques designed to do just that, specifically created to exploit

the characteristics of heavy-tailed workloads. They can be broadly classified as size-based

policies - where the workload is partitioned into distinct size ranges, with each size range

associated to a specific server. For example, you may have a two server system where one

server processes ‘small’ tasks, while another server processes ‘large’ tasks.

These size-based policies can be further classified by what knowledge they assume is

known at the dispatcher. Some policies assumes that a task’s size is known a priori at the

dispatcher, and as such can assign the task directly to the server that is responsible for

servicing tasks in that range. This obviously restricts the application of these policies to

domains where exact (or reasonably accurate) a priori knowledge of a task’s size is available.

Other size-based policies have less restrictive assumptions regarding what information

is available at the dispatcher. Policies such as TAGS [Harchol-Balter, 2002] assume no

knowledge of a task’s size at the dispatcher. They do however require knowledge of the

distribution of task sizes.

3.5.1 SITA-E/V/U - Known task size

SITA-E (Size Interval Task Assignment with Equal Load) [Harchol-Balter et al., 1999] is a

sized-based approach proposed by Harchol-Balter et al. that associates a unique size range

41

CHAPTER 3. RELATED WORK

with each host in the distributed system. These size ranges are chosen specifically to equalise

the expected load received at each host. Whilst proving effective under conditions of high task

size variability, SITA-E is not the best policy in circumstances of lower task size variability

(with a dynamic policy being more suitable).

SITA-V (Size Interval Task Assignment with Variable Load) [Crovella et al., 1998a] in-

tentionally operates the hosts in a distributed system at different loads, and directs smaller

tasks to lighter-loaded servers. The authors note that depending the performance metrics of

interest, the conventional notion of balancing the load on all hosts may not result in optimal

performance, especially when the size distribution is heavy-tailed. SITA-V, like SITA-E,

assigns tasks to a given host based on their size. However, SITA-V exploits the heavy-tailed

property of the task size distribution by running the vast majority of tasks (i.e. the small

tasks) on lightly-loaded hosts, while running the minority of tasks (the larger sized tasks) on

the heavily-loaded hosts, thus preventing small tasks getting ‘stuck’ behind large tasks and

allowing them to be processed quickly. Mean slowdown is reduced, and the throughput is not

adversely affected, but it can result in an increase in mean waiting time - which is expected,

since minimal mean waiting time is known to occur when load is balanced.

Obviously there is a trade-off between improving mean slowdown and degrading mean

waiting time, and the authors recognise this issue and identify the two contributing factors

- the variability of tasks (as represented by α) and the overall system utilisation.

From the simulation results presented by the author [Crovella et al., 1998a] SITA-V shows

itself to be a worthy choice when task sizes are highly variable (α ≤ 1), showing significant

improvements in slowdown by factors of 1000 or more (using two hosts) over an equal load

policy. When task variation is close to the empirically measured mean (α ≈ 1.1) or greater,

the reduction in waiting time in processing the majority of small tasks on the lightly-loaded

server can no longer outweigh the penalty of load imbalance on the other heavily-loaded

server. This is due to the average size of small tasks increasing.

A size-based approach that is specifically suited for batch computing environments un-

der super-computing workloads is SITA-U (Size Interval Task Assignment with Unbalanced

load) [Schroeder and Harchol-Balter, 2004]. SITA-U purposely unbalances the load among

the hosts while also being ‘fair’ - achieving the same expected slowdown for all jobs. The au-

thors collected real trace data from super-computing centres and used it in their simulation,

comparing SITA-U against Random, Least-Work-Left and SITA-E. Two variations of SITA-

U are considered: SITA-U-opt, where service requirement cutoffs are chosen to minimise

mean slowdown, and SITA-U-fair, where service requirement cutoffs are chosen to maximise

42

CHAPTER 3. RELATED WORK

fairness. The simulation results showed that both variations of SITA-U performed better

under a range of load conditions - with system load varied between 0.1 and 0.8. SITA-U-fair

achieved significant performance gains over the range of load 0.5 - 0.8, demonstrating an

improvement of 4 - 10 times with regards to mean slowdown, and from 10 - 100 with regards

to variance in slowdown.

Most size-based policies perform well under very high task size variation, but their ad-

vantage over existing approaches is reduced as variation decreases. Most importantly, the

application of the task assignment policies listed above is limited by the assumption that the

service requirement of each task is known a priori, which is frequently not the case.

3.5.2 TAGS - Unknown task size

The size-based approaches considered thus far all assume that the exact service requirements

is known at the dispatcher in advance. Often this is not the case - in many environments a

tasks service requirement is not known until execution time on a given host. Task Assignment

based on Guessing Size (TAGS) [Harchol-Balter, 2002] assumes no prior knowledge of a tasks

service requirement. Like SITA-V, TAGS is slightly counter-intuitive in that it unbalances

the load, and also considers the notion of ‘fairness’ - that all tasks should experience the

same expected slowdown. The TAGS approach works by associating a processing time limit

with each host. Tasks are executed on a host up until the designated time limit associated

with that host - if the task has not completed by this point, it is killed and restarted from

scratch at the next host. These cutoffs are a function of of the distribution of task sizes and

the outside arrival rate, and can be computed to optimise certain metrics, such as waiting

time or slowdown.

The design of the TAGS policy purposely exploits properties of the heavy-tailed distri-

bution, such as decreasing failure rate - where the longer a task has run, the longer it is

expected to run - and the fact that a tiny fraction (less that 1%) of the very longest tasks

can make up over half the load.

Like other size-based approaches, under higher loads and less variable conditions, TAGS

does not perform so well. TAGS gains much of its performance by exploiting the heavy-tailed

property, by moving (in a two host example) the majority of the load onto host 2, allowing the

vast majority of small tasks to be processed quickly on host 1. TAGS also suffers under high

loads due to excess - the extra work created by restarting many jobs from scratch. As noted

by the author [Harchol-Balter, 2002], “...overall excess increases with load because excess is

43

CHAPTER 3. RELATED WORK

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Alpha

C2

Host 1 C2

Host 2 C2

Host 3 C2

Host 4 C2

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Alpha

p1
p2
p3
p4

(b)

Figure 3.2: The squared coefficient of variation experienced at each host in a 4 host SITA-E

system is shown in (a). The fraction of tasks assigned to each host is shown in (b)

proportional to λ (task arrival rate), which is in turn proportional the [overall system] load,

ρ.”

3.5.3 Known results

It is easy to illustrate how such size based approaches are effective at counteracting the vari-

ance that can effect the performance of traditional approaches to load distribution. Consider

a size-based policy that partitions the workload between the back end hosts. For the sake of

brevity we restrict our illustration to policies where tasks sizes are known a priori at the dis-

patcher, such as SITA-E/V-U [Harchol-Balter et al., 1999; Crovella et al., 1998a; Schroeder

and Harchol-Balter, 2004]. Nonetheless, similar analysis can be applied to size-based policies

which assume no such knowledge, but still utilise similar techniques to reduce variance.

A size based policy assigns unique size ranges to each back-end host (eg. k = s0 < s1 <

s2 < ... < sn = p). For a two host system, Host 1 would service tasks sized between s0 and

s1. Host 2 would handle the remaining tasks, sized between s1 and s2.

Let pi equal the fraction of tasks whose destination (where it will run to completion) is

Host i. That is, tasks whose size is between si−1 and si.

44

CHAPTER 3. RELATED WORK

This is given by:

pi = P (si−1 ≤ X ≤ si)

=
αkα

1− (k/p)α

∫ si

si−1

x−α−1dx

=
kα

1− (k/p)α
(s−α

i−1 − s−α
i). (3.1)

Let us now consider only those tasks that are dispatched to and run-to-completion at

Host i. Let E(Xj
i) be the jth moment of the distribution of tasks that are dispatched to

Host i’s queue. We have:

E(Xj
i) =

∫ si

si−1

xjf(x)dx (3.2)

=

αsα
i−1(sj−α

i−1 −sj−α
i)

(j−α)(1−(
si−1

si
)α)

if j 6= α

si−1si

si−si−1
(ln si − ln si−1) otherwise.

(3.3)

Consider the following example. We shall consider a four host system, utilising the SITA-

E task assignment policy. The arrival rate is Poisson and our service time distribution follows

a Bounded Pareto distribution. As described previously, SITA-E chooses its size ranges in

order to equalise the expected load assigned to each back-end host. Figure 3.2(a) shows the

squared coefficient of variation experienced by each back end host. We can see a significant

reduction in variation that has been achieved by partitioning the workload and assigning it

to different hosts - effectively grouping like-sized tasks together. Indeed, the first two hosts

have a C2 that is less than one unit from α = 1.1 to α = 2.0. Nonetheless, we can see that

the variation at the latter hosts are still quite high, approaching the value of C2 of the task

size distribution itself (i.e. before partitioning it). This is not a problem in itself, as we can

see in Figure 3.2(b). We can see that the vast majority of tasks are processed by the lower

hosts, and predominately the first host. These hosts have a significantly lower variance, and

given they process nearly all tasks they dominate the overall system metrics such as expected

waiting time and slowdown.

Recall from Section 2.2 that all our system metrics depend on the second moment of the

task size distribution, E[X2]. We can see now that by reducing the variance experienced

by the majority of tasks (by minimising E[X2
i] at each Host i), size-based task assignment

policies can significantly improve a system’s performance over traditional techniques under

heavy-tailed workloads.

45

CHAPTER 3. RELATED WORK

3.5.4 Limitations

While size-based approaches have shown promising results, they have fundamental limitations

in common. One problem with size-based approaches is that they can be easily unbalanced.

As the task assignment policies are dictated by size, they do not consider the load of the

host they are assigning to, and can easily assign a large task to an already overloaded server,

while leaving other hosts under-utilised. Also, the assumption of a priori knowledge of task

sizes limits their applications significantly. We cannot assume we have this knowledge for

many application domains.

Like other size-based approaches, TAGS can be also limited by its static nature. If the

characteristics of the task size distribution changes significantly, its performance will suf-

fer - but to a lesser extend than SITA-E/SITA-V. While it is true that the cutoffs can be

re-computed, this will incur significant overhead and would not be a desirable function to

perform regularly. TAGS by its very nature can produce significant excess (wasted process-

ing) by constantly restarting tasks that exceed processing limits at a given host. Also, as all

tasks enter the system at the first host, it can potentially become overloaded. Other hosts

can be under-utilised as a result.

There are potentially significant further gains that could be obtained if we can take the

strengths of size-based approaches (such as negating the effects of highly-variable workloads)

while addressing the weaknesses of these approaches (such as the assumption of a priori

knowledge, and wasted processing from restarting many tasks).

3.6 Performance under heavy-tailed workloads

Let us consider the performance of a distributed server cluster, where our arrival rate is

Poisson and our service time distribution follows a Bounded Pareto distribution (as discussed

in Section 2.3.1). We set p (our largest task) to equal 107, and vary k (our smallest task) to

keep the distributional mean, E(X), fixed at 3000. These parameters are used in order to

focus on the effect of the changing variance in the service time distribution.

Figure 3.3 depicts the expected waiting time and slowdown for a distributed system

utilising either the Random or Dynamic policy. The system load is kept constant at ρ = 0.5

while the number of hosts is varied from 2 to 5. Alpha is varied from 0.5 to 2.0, ranging

from extreme task size variation to moderate task size variation. The performance metrics

are identical for the Random policy, regardless of the number of hosts. We can see that

under the same conditions, when the number of hosts increases, the performance metrics of

46

CHAPTER 3. RELATED WORK

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E
(W

)

Alpha

Random
Dynamic 2H
Dynamic 3H
Dynamic 4H
Dynamic 5H

(a) E(W)

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E
(S

)

Alpha

Random
Dynamic 2H
Dynamic 3H
Dynamic 4H
Dynamic 5H

(b) E(S)

Figure 3.3: Performance of a distributed system with system load of 0.5. The number of

hosts is increased while the system load is kept constant at 0.5. The expected waiting time

and slowdown are depicted in (a) and (b) respectively.

the Dynamic policy improves. This intuitively makes sense, as the Dynamic policy is known

to improve utilisation, and reduces the probability of a host being idle. The Random policy

simply performs random splitting on the arrival stream, and gives no consideration to the

load on each back end host when assigning tasks.

Figure 3.4 shows a comparison of the Random, Dynamic, and TAGS policies in a two host

distributed system. It is worth pointing out that the Dynamic policy (either Least-Work-

Remaining or Shortest-Queue) cannot strictly be compared to the other policies listed, as it

depends on state information (such as the cumulative workload or the queue length) being

available at the dispatcher at all times. Furthermore, the cost of getting that information

is not modelled. Regardless, we include it here for completeness and interest’s sake. The

system load is varied, showing performance where ρ = 0.3 (low load), ρ = 0.5 (moderate

load) and ρ = 0.7 (high load).

As discussed in Section 3.4.5 we can see that the performance metrics of both the Random

and Dynamic policies are dependant on the variation of the task size distribution. As the

variation increases (when α decreases) the expected waiting time and slowdown increase

rapidly. Also, we note that the scale of improvement shown by the Dynamic policy over the

Random policy decreases slightly as the system load increases. As the system load increases,

there is a lower probability of a host being idle, even under the Random policy. As such the

47

CHAPTER 3. RELATED WORK

Dynamic policy has less scope for improvement.

We can see an enormous improvement for the size-based task assignment policy shown

(TAGS), especially under conditions of high and extreme task size variations. Such policies

by their very nature reduce the variance of task sizes at each host, by partitioning the

workload amongst each host. This has the effect of grouping similarly sized tasks together

at the queues of each host, consequently reducing the variance at each host and improving

performance metrics such as mean waiting time and slowdown.

48

CHAPTER 3. RELATED WORK

 100

 1000

 10000

 100000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E
(W

)

Alpha

Random
Dynamic

TAGS

(a) E(W), ρ = 0.3

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E
(S

)

Alpha

Random
Dynamic

TAGS

(b) E(S), ρ = 0.3

 1000

 10000

 100000

 1e+06

 1e+07

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E
(W

)

Alpha

Random
Dynamic

TAGS

(c) E(W), ρ = 0.5

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E
(S

)

Alpha

Random
Dynamic

TAGS

(c) E(S), ρ = 0.5

 1000

 10000

 100000

 1e+06

 1e+07

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E
(W

)

Alpha

Random
Dynamic

TAGS

(d) E(W), ρ = 0.7

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E
(S

)

Alpha

Random
Dynamic

TAGS

(e) E(S), ρ = 0.7

Figure 3.4: Performance of a two host distributed system with system load of 0.3, 0.5 and

0.7. The expected waiting time and slowdown are depicted under each load scenario.

49

Chapter 4

Task Assignment based on

Prioritising Traffic Flow

In batch and scientific distributed computing domains, tasks are typically CPU-bound and

often have very high memory requirements, precluding the use of work-conserving migra-

tion. The size of tasks in such systems are rarely known in advance, and can be difficult to

estimate. These conditions pose challenging requirements to distributed system designers,

especially when the workloads they experience are highly variable, as described in Section 2.3.

Most existing task assignment policies perform poorly under such conditions, unable to deal

with the negative effects of ‘heavy-tailed’ workloads (as demonstrated in Chapter 3). This

chapter proposes a new load distribution approach, called TAPTF (Task Assignment based

on Prioritising Traffic Flows) [Broberg et al., 2005] which deals with the inherent limitations

of existing approaches under these particular application domains.

TAPTF improves performance under heavy-tailed workloads for certain classes of traffic

by controlling the influx of tasks to each host. Tasks can potentially be dispatched to any

host, rather than just the first host, as per the TAGS approach. This becomes crucial under

two important scenarios. First, when task size variation decreases it becomes harder to

exploit the so-called heavy-tailed properties. That is, the workload becomes more uniformly

distributed and thus improved performance is gained from spreading the incoming tasks over

multiple hosts. Second, when the system load is high, the first host (which in a TAGS

system receives all incoming tasks) can become overloaded resulting in a decrease in the

overall performance metrics (described in Section 2.2). Under a scenario of moderate to

low variation and high system load, this technique is especially beneficial as observed in the

50

CHAPTER 4. TASK ASSIGNMENT BASED ON PRIORITISING TRAFFIC FLOW

analytical comparison in Section 4.2.

TAPTF also introduces multiple queues with processing time limits (‘cut-offs’). Each

host has an ordinary queue which receives tasks directly from the dispatcher. Each host

(excluding the first) also has a restart queue that receives tasks from the host above it. The

use of dual queues (combined with cut-offs at each host) enables service differentiation at

each host, allowing small tasks to be executed quickly without being delayed by larger tasks.

To achieve this, tasks that exceed the cut-off on a given host are migrated to the next host’s

restart queue (to be restarted from scratch).

Unlike SITA-E/V/U and other size-based policies, TAPTF assumes no knowledge of the

service requirements of incoming tasks. We are particularly interested in the areas that

TAPTF can improve over TAGS, a policy that performs well when there is no pre-emption

and task sizes are not known a priori. TAPTF is supported by a rigorous analytical model,

based on fundamentals of queueing theory and priority queues which covers a wide spectrum

of potentially different workload scenarios. This gives us great insight into the behaviour

of tasks in the distributed system under the TAPTF policy. A detailed description of the

TAPTF model is presented in Section 4.1. Section 4.2 gives an analytical comparison of

TAPTF with existing approaches. Section 4.3 provides a detailed discussion of the analytical

comparisons performed in Section 4.2. We conclude this chapter with some closing thoughts

on the usefulness of the TAPTF approach in Section 4.4.

4.1 The Proposed Model - TAPTF

In this section we propose a new task assignment policy called TAPTF - Task Assignment

based on Prioritising Traffic Flows - to address the limitations of existing approaches in

dealing with certain classes of traffic. An overview of TAPTF is given in Section 4.1.1,

detailing the motivation behind the TAPTF approach. Differences between it and existing

models are highlighted, and important features are explained. In Section 4.1.2 the techniques

used by TAPTF to improve performance are outlined. Section 4.1.3 provides a conceptual

view of the proposed model. The important parameters associated with our model are defined

and computed in Section 4.1.4. Section 4.1.5 describes how the task size cut-offs are chosen

for each host.

51

CHAPTER 4. TASK ASSIGNMENT BASED ON PRIORITISING TRAFFIC FLOW

(R)

2

q
n−1

q
n

Dispatcher

q
1

Host 1O

s
2

s
n−1

s ...
n−2

s ...
n−1

s
n

s ...
1

s
2

s
n−1

s ...
0

s ...
0

s
1

s ...
0

s
n

s ...
0

R

O
Host n

Host 2
R

Oλ

O
Host
n−1

(O)

(R)

(O)

(R)

(O)

(O)

R

q

Figure 4.1: Illustration of the TAPTF model.

4.1.1 Motivation

Harchol-Balter’s TAGS approach [Harchol-Balter, 2002], while seemingly counter-intuitive in

many respects, proved to be a very effective task assignment policy for distributed systems.

As such, TAGS provides an excellent point of comparison for any new task assignment policy

operating under similar constraints. As described in Section 3.5.2, the TAGS policy has

a number of desirable properties - the most important being that it does not assume any

prior knowledge of the service requirement of incoming tasks, while still maintaining good

performance. The TAGS policy performs admirably under realistic highly variable conditions,

exploiting the heavy-tailed nature that is consistent with many computing workloads. Despite

this, TAGS can produce significant excess at the back-end hosts - wasted processing that a

task incurs (and the corresponding load placed on a host) when it has been placed in the

incorrect queue and is subsequently restarted after exceeding the processing limit associated

with a host. A task that is assigned incorrectly is penalised by being stopped, placed at

the end of the next host’s queue and restarted from scratch (upon reaching the front of that

queue). These shortcomings are justified by the fact that, by the very nature of the heavy-

tailed workload distribution, the tasks that are penalised can absorb the additional waiting

and processing time for the greater good. Nonetheless, this is wasteful, but how can the

efficiency be improved while still maintaining good performance? Three keys areas needed

to be addressed:

• Reducing the variance of tasks that share the same queue.

• Reducing the penalty of wasted processing (excess) on the back-end hosts - caused by

52

CHAPTER 4. TASK ASSIGNMENT BASED ON PRIORITISING TRAFFIC FLOW

tasks that do not complete their processing in time, and are restarted at another host

(‘hand-offs’).

• Reducing the penalty on restarted tasks (given that a task could potentially be restarted

multiple times).

The TAPTF policy was formulated to address these key issues. From Figure 4.1 we can

see the introduction of dual queues at each host - an Ordinary (O) queue and a Restart (R)

queue. Tasks can enter the system at any host. The influx of tasks that are assigned to each

host is controlled by the fraction qi. These additions allow the TAPTF model to be flexible,

providing the means to manipulate the behaviour of the TAPTF model depending on the

characteristics of the workload.

4.1.2 Techniques

In Section 4.1.1 a number of shortcomings of the TAGS model were identified that needed

to be addressed. As such, TAPTF was designed in order to improve on these key areas. The

reasoning behind the techniques that TAPTF uses to address the shortcomings of existing

approaches are outlined as follows:

Variance reduction

It is desirable to reduce the effect of the task size variation, which has a significantly detri-

mental effect on performance as variability increases (as illustrated by the Pollaczek-Khinchin

formula in Section 2.2). TAPTF reduces the variance in the sizes of tasks that share the

same queue by the use of dual queues (an Ordinary (O) queue and a Restart (R) queue) and

migration, in an effort to group like-sized tasks together. This is done in order to minimise

the chance of a short task being stuck behind a long task in the same queue.

Reduce the number of hand-offs

The excess - extra work created by restarting many tasks from scratch - needs to be min-

imised. TAPTF attempts to reduce the amount of ‘hand-offs’ by placing as many tasks in

the most appropriate queue (that is, their final destination) in the first instance as possible

- reducing the penalty on both hosts and tasks. This is achieved in two interrelated ways.

First, by manipulating the fraction of tasks (qi) that is dispatched to each host, which has

a follow-on effect of increasing the number of tasks that are correctly assigned to a suitable

53

CHAPTER 4. TASK ASSIGNMENT BASED ON PRIORITISING TRAFFIC FLOW

host - that is, where they can run-to-completion. Secondly, the reason that it can enter

the system (and potentially finish) at any host is due to the lower boundary cut-off of each

Ordinary (O) queue being k, the smallest possible task size. In the TAGS system, a task

that needs to be processed at Host i (e.g. its size is between si−1 and si) must migrate from

Host 1 to Host i. In TAPTF for the same task, there is a probability qi that it will be directly

dispatched there (an ideal choice), and a probability qi + qi+1 + ... + qn that it be assigned

to Host i or higher - where it will not be subjected to any hand-offs. This becomes more

important as task size variation decreases.

Reducing the effect of hand-offs

While the number of hand-offs are reduced, they still will occur. Knowing this, we can

minimise the detrimental effect of the hand-offs that do occur (specifically, on waiting time

and slow down) by migrating restarted tasks via restart queues to their final destination.

Depending on whether the goal is to optimise the overall performance metrics or to be ‘fair’

to the penalised tasks, the tasks could be fast tracked to their final destination by giving

them priority of service at each host (over tasks in the ordinary queue received from the

dispatcher). Note the default behaviour is the opposite, where tasks in the Ordinary queue

have priority of service over tasks in the Restart queue.

Consider for a moment that each host in our distributed system is a M/G/1 FCFS queue

(see Section 2.2). It can be seen that all performance metrics are dependent on E(X2), the

second moment of the task size distribution. E(X2) is proportional to the variance in the size

of tasks sharing the same queue. Even after we generalise the Pollaczek-Khinchin formula to

priority queues (required by our dual queue implementation) this still holds true, as shown

in Section 4.1.4. We can infer that reducing the variance in the service requirements of tasks

at each host can improve performance, reducing the chance of a smaller task being stuck

behind a significantly longer task.

4.1.3 A Conceptual view of the TAPTF model

As seen in Figure 4.1, tasks arrive at a central dispatcher, following a Poisson process with

rate λ. The dispatcher assigns tasks (in a First-In-First-Out manner) to one of the n hosts

(say, Host i, where 1 ≤ i ≤ n) at random with probability qi. For the purpose of analysis,

we note that the arrival stream to host Host i is also a Poisson process with rate λqi.

Due to the heavy-tailed characteristics of the task size distribution (as discussed in Sec-

54

CHAPTER 4. TASK ASSIGNMENT BASED ON PRIORITISING TRAFFIC FLOW

tion 2.3.1), we assume that the distribution of task sizes (that is, the service distribution)

follows a bounded Pareto Distribution B(k, p, α). A ‘cut-off’ (si) is assigned to each host in

the distributed system. Specifically, tasks are processed on hosts with the following condi-

tions:

• Host i’s O queue deals only with tasks whose sizes are in the range [k, si], 1 ≤ i ≤ n

• Host i’s R queue deals only with tasks whose sizes are in the range [si−1, si], 1 < i ≤ n

where k = s0 < s1 < s2 < s3 < . . . < sn = p. These cut-offs can be computed in order to

minimise certain measurable quantities such as mean waiting time or mean slowdown time.

Further information on how the cut-offs are chosen is provided in Section 4.1.5.

Each host (excluding Host 1) provides two queues, an ordinary queue and a restart queue

(denoted by O and R respectively). All tasks in the O and R queues are served on a First-

Come-First-Served (FCFS) basis. Tasks sent to a given host from the dispatcher join that

host’s O queue. After a task has moved to the front of the queue it can begin to be processed.

If the processing time of a task on a given host exceeds the assigned cut-off limit, the task

is stopped, and moved to the restart (R) queue belonging to the next host. This process

is repeated until these tasks run to completion at their final (correct) destination. Tasks

waiting in an O queue have priority of service over those in the R queue at a given host.

However, a task which is being served from the R queue will not be pre-empted from service

by the arrival of a task into the O queue at a given host. This is the default behaviour of

the TAPTF policy (and is denoted as TAPTF-O in the figures in Section 4.2).

One way the TAPTF model differs from TAGS is the fixed lower size boundaries at each

host (k = s0), so that all tasks with sizes less than or equal to a fixed cut-off point can be

potentially be processed on a particular host. This means that a task can be dispatched to

any host initially without being first dispatched to Host 1 (as per the TAGS approach) while

preserving the property that a task’s service demand is not known a priori. In addition,

TAPTF uses dual queues at each host in order to speed up the flow of shorter tasks, allowing

smaller tasks to be processed quickly in the ordinary queue and migrating larger tasks out

of the way, allowing them to group together in the restart queues at subsequent hosts.

4.1.4 Mathematical Preliminaries for the TAPTF model

In this section, we define and compute all the important parameters associated with the

TAPTF model. The main objective is to use them to determine the optimal cut-off points

55

CHAPTER 4. TASK ASSIGNMENT BASED ON PRIORITISING TRAFFIC FLOW

n Number of hosts in the system

B(k, p, α) Bounded Pareto task size distribution

k Lower bound of task size distribution

p Upper bound of task size distribution

f(x) Probability density function for B(k, p, α)

α Heavy-tailed parameter

si Task size cut-off for Host i

qi Fraction of tasks dispatched to Host i

λ Outside task arrival rate into system

ρ System load

pi Fraction of tasks whose final destination (the host it runs to

completion on) is either Host i or its predecessors

hiO Fraction of tasks that visit Host i’s ordinary (O) queue

hiR Fraction of tasks that visit Host i’s restart (R) queue.

h′iO Fraction of tasks whose final destination is Host i’s

ordinary (O) queue

h′iR Fraction of tasks whose final destination is Host i’s

restart (R) queue

E(Xj
iO) jth moment of the distribution of tasks whose final

destination is Host i’s ordinary (O) queue

E(Xj
iR) jth moment of the distribution of tasks whose final

destination is Host i’s restart (R) queue

E(hostXj
iO) jth moment of the distribution of tasks who spent

time in Host i’s ordinary (O) queue

E(hostXj
iR) jth moment of the distribution of tasks who spent

time in Host i’s restart (R) queue

λiO Arrival rate into Host i’s ordinary (O) queue

λiR Arrival rate into Host i’s restart (R) queue

ρiO Load at Host i’s ordinary (O) queue

ρiR Load at Host i’s restart (R) queue

E(hostWiO) Expected waiting time for a task at Host i’s ordinary

(O) queue

E(hostWiR) Expected waiting time for a task at Host i’s restart

(R) queue

E(WiO) Expected waiting time of a task whose final destination is

Host i’s ordinary (O) queue

E(WiR) Expected waiting time of a task whose final destination is

Host i’s restart (R) queue

E(SiO) Expected slowdown at Host i’s ordinary (O) queue

E(SiR) Expected slowdown at Host i’s restart (R) queue

Table 4.1: Notation for TAPTF Model

56

CHAPTER 4. TASK ASSIGNMENT BASED ON PRIORITISING TRAFFIC FLOW

(where k = s0 < s1 < s2 < . . . < sn−1 < sn = p) corresponding to the minimum mean

waiting time or slowdown for tasks entering the distributed system. It is worth noting that

that the results below reduce to that obtained for the TAGS policy [Harchol-Balter, 2002]

when q1 = 1 and there are no ordinary queues. The notation for the TAPTF model is given

in Table 4.1.

Recall an important observation from Section 2.3.1 - that many computing workloads

have been found to have ‘heavy-tailed’ characteristics. For the purpose of analysis we use a

Bounded Pareto distribution, which still exhibits the requisite properties that are consistent

with ‘heavy-tailed’ workloads. The probability density function for the Bounded Pareto

B(k, p, α) is shown in Equation (2.1) in Section 2.3.1.

We now wish to define pi, the fraction of tasks whose final destination (that is, the host

it runs to completion on) is either Host i or its predecessors. This is given by:

pi = P (X ≤ si)

=
αkα

1− (k/p)α

∫ si

k
x−α−1dx

=
1− (k/si)α

1− (k/p)α
. (4.1)

The fraction of tasks that visit Host i’s ordinary (O) queue, hiO, is simply qi, as the O

queue on a given host only contains tasks received directly from the dispatcher, therefore:

hiO = qi (4.2)

We define hiR as being the fraction of jobs that visit Host i’s restart (R) queue. As can

be observed from Figure 4.1, h1R is undefined as there is no restart queue at Host 1. Clearly

h2R = q1(1− p1), h3R = q1(1− p2) + q2(1− p2), . . . and in general, for 2 ≤ i ≤ n:

hiR =
i−1∑

j=1

qj(1− pi−1)

= (1− pi−1)
i−1∑

j=1

qj . (4.3)

The fraction of tasks whose final destination is Host i’s ordinary (O) queue is denoted by

h′iO, and is simply the product of qi, the probability of a task being assigned to Host i, and

57

CHAPTER 4. TASK ASSIGNMENT BASED ON PRIORITISING TRAFFIC FLOW

pi, the fraction of tasks whose final destination is either Host i or its predecessors. Thus:

h′iO = qipi (4.4)

The fraction of tasks whose final destination is Host i’s restart (R) queue is denoted

by h′iR. Clearly h′2R = q1(p2 − p1), h′3R = q1(p3 − p2) + q2(p3 − p2), . . . and in general, for

2 ≤ i ≤ n:

h′iR =
i−1∑

j=1

qj(pi − pi−1)

= (pi − pi−1)
i−1∑

j=1

qj . (4.5)

Consider those tasks that finish up in Host i’s queues - that is, they have run-to-

completion at Host i. Let E(Xj
iO) and E(Xj

iR) be the jth moment of the distribution of

tasks whose final destination is Host i’s ordinary (O) queue and Host i’s restart (R) queue

respectively. We have:

E(Xj
iO) =

1
pi

∫ si

k
xjf(x)dx (4.6)

=

αsj
i ((

k
si

)α−(k
si

)j)

pi(j−α)(1−(k
p
)α)

if j 6= α

αkα ln(si/k)

pi(1−(k
p
)α)

otherwise
(4.7)

and

E(Xj
iR) =

1
pi − pi−1

∫ si

si−1

xjf(x)dx (4.8)

=

α(sj
i (

k
si

)α−sj
i−1(k

si−1
)α)

(pi−pi−1)(j−α)(1−(k
p
)α)

if j 6= α

αkα ln(si/si−1)

(pi−pi−1)(1−(k
p
)α)

otherwise.
(4.9)

Now, consider the tasks that spent time in Host i’s queues. Let E(hostXj
iO) and E(hostXj

iR)

be the jth moment of the distribution of tasks who spent time in Host i’s ordinary (O) queue

and Host i’s restart (R) queue respectively. Note that the fraction of tasks which leave Host

i’s O queue is qi − qipi, therefore we have:

E(hostXj
iO) =

h′iO
hiO

E(Xj
iO) +

hiO − h′iO
hiO

sj
i . (4.10)

58

CHAPTER 4. TASK ASSIGNMENT BASED ON PRIORITISING TRAFFIC FLOW

Similarly,

E(hostXj
iR) =

h′iR
hiR

E(Xj
iR) +

hiR − h′iR
hiR

sj
i . (4.11)

Let the arrival rate into Host i’s ordinary (O) and restart (R) queue be denoted by λiO

and λiR respectively. Then, based on similar principles to (4.2) and (4.3),

λiO = λqi (4.12)

and λiR = λhiR. (4.13)

The loads at Host i’s O and R queue are:

ρiO = λiOE(hostXiO) (4.14)

and ρiR = λiRE(hostXiR) (4.15)

respectively.

In the TAPTF model, we can choose to prioritise tasks that are in the restart queue

(specifically ‘hand-offs’ that are received from the host above it) over tasks in the ordinary

queue. Alternatively, we can choose to give tasks in the ordinary queue (which are received

directly from the dispatcher) priority of service over tasks in the restart queue (which in

effect becomes a low priority queue). As mentioned in Section 4.1.3, the latter is the default

behaviour of the TAPTF model, as it provides the best performance.

The next set of results, concerning the expected waiting times for tasks in Host i’s ordinary

(O) and restart (R) queues, relies on some key facts:

• Tasks in the O queue have priority of service over tasks in the R queue

• A task in service at the R queue will not be pre-empted from service by a task which

subsequently arrives into the O queue

• Within each queue, tasks are processed on a FCFS basis.

• Finally, we will have to assume that tasks that arrive into the R queues form Poisson

processes.1

1As discussed earlier, arrival streams into O queues are Poisson processes. This is not the case with arrivals

into R queues, which (as noted by Harchol-Balter) are less bursty (i.e. more uniformly random), than those of

a Poisson process. If the task sizes are exponentially distributed, then the output of a queue will be Poisson

but not otherwise.

59

CHAPTER 4. TASK ASSIGNMENT BASED ON PRIORITISING TRAFFIC FLOW

Let E(hostWiO) and E(hostWiR) be the expected waiting time for a task at Host i’s

ordinary (O) and restart (R) queue respectively. Then using a classical result on non pre-

emptive priority queue by A. Cobham [Cobham, 1953] we obtain:

E(hostWiO) =
λiOE(hostX2

iO)
2(1− σ1)

(4.16)

and E(hostWiR) =
λiRE(hostX2

iR)
2(1− σ1)(1− σ2)

(4.17)

where σ1 = ρiO and σ2 = ρiO + ρiR.2 The above results assume that 0 < σ2 < 1

We will now obtain formulae for the two main operational measures of our distributed

system: the expected waiting time and slowdown for tasks entering the system. Let E(WiO)

and E(WiR) be the expected waiting time of a task whose final destination is Host i’s O and

R queue respectively. We have, for 1 ≤ i ≤ n

E(WiO) = h′iOE(hostWiO) (4.18)

and, for 2 ≤ i ≤ n,

E(WiR) = h′iR
i−1∑

m=1

qm[E(hostWmO) +
i∑

j=m+1

E(hostWjR)]. (4.19)

The explanation for the last equation is as follows: for a task whose final destination is

Host i’s R queue, it must have first entered a Host j’s O queue where 1 ≤ j ≤ i − 1 and

then migrates down successive R queues where it finally runs-to-completion at Host i’s R

queue. Along the way, the task accumulates waiting times as it navigates its way to its final

destination.

Let E(SiO) and E(SiR) be the expected slowdown at Host i’s O and R queue respectively.

As explained in Section 2.2, the slowdown is characterised by the waiting time divided by

the processing time. We consider the slowdown to be a critical metric as it is desirable for

a tasks waiting time to be proportional to its processing time - that is, a task with minimal

processing requirements should only wait a small amount, but a task with greater processing

requirements can absorb a longer waiting time. Then, by definition,

E(SiO) = E(WiO)E(1/XiO) (4.20)

and E(SiR) = E(WiR)E(1/XiR). (4.21)
2These results are generalisation of the famous Pollaczek-Khinchin formula to priority queues.

60

CHAPTER 4. TASK ASSIGNMENT BASED ON PRIORITISING TRAFFIC FLOW

4.1.5 Choosing the cut-offs

Like most size-based (or similar) policies, the performance of TAPTF is critically dependent

on the choice of cut-offs used. From Section 3.5.2 we recall that cut-offs refer to the size-range

associated with each host. The cut-offs can be chosen to optimise for mean waiting time, or

mean slowdown. In order to optimise for mean waiting time, the load must be balanced more

evenly amongst the host. To optimise for mean slowdown, load unbalancing techniques are

employed, especially under conditions of high task size variation. We have chosen to optimise

for both mean waiting time and more importantly, mean slowdown, as it is desirable for a

tasks delay to be proportional to its service requirement.

The cut-offs for TAPTF are chosen in a similar fashion as the TAGS approach. The cut-

offs for TAPTF and TAGS are a function of the task size distribution (in our case defined

by the Bounded Pareto B(k, p, α)) and the task arrival rate into the distributed system, λ.

These parameters can be determined by observing the distributed system for a period of

time. Optimal mean waiting time and mean slowdown for the case of two and three hosts

can be obtained for TAGS, given the above parameters, by solving for the optimal values of

the cut-offs using Mathematica [Wolfram Research, 2003] (as described in the appendix of

Harchol-Balter’s work on TAGS [Harchol-Balter, 2002]). For the case of four or more hosts,

the cut-offs need to be tuned by hand, but the same results can be achieved by following

some simple rules of thumb [Harchol-Balter, 2002].

Using the mathematical results described in Section 4.1.4, we too can work towards

obtaining optimal cut-off points (si) for each of our hosts in the TAPTF system. Since our

aim is to produce a task assignment policy that minimises the overall expected waiting time

or slowdown respectively (depending on our goals), the following optimisation problems need

to be addressed:

Problem I Minimize
n∑

i=1

E(WiO) +
n∑

i=2

E(WiR)

Subject to ρiO + ρiR < 1, 1 ≤ i ≤ n.

Problem II Minimize
n∑

i=1

E(SiO) +
n∑

i=2

E(SiR)

Subject to ρiO + ρiR < 1, 1 ≤ i ≤ n.

Now the optimisation problem has been defined, we can choose to optimise for mean

61

CHAPTER 4. TASK ASSIGNMENT BASED ON PRIORITISING TRAFFIC FLOW

waiting time (described by Problem I), mean slowdown (described in Problem II) or a com-

bination of the two.

As described above, the choice of cut-offs depend on the task size variability. From

Section 2.3.1 we recall that the lower the α parameter, the higher the variability, and the

smaller the percentage of tasks is that makes up 50% of the load. TAGS (and subsequently

TAPTF, which can behave like TAGS by setting q1 = 1.0 when prudent) can exploit this

property of the heavy-tailed distribution by running all (or the vast majority) of the (small)

tasks on the first host, leaving them under light to moderate load, while the largest tasks

filter down to be eventually processed by the latter hosts.

As the variability decreases (α increases) we can no longer exploit the heavy-tailed prop-

erty so easily. The average size of the tasks we consider ‘small’ slowly gets bigger as α

increases. As such we have to choose our cut-offs accordingly, as well as manipulating the

fraction of tasks that are assigned to the latter hosts. We still exploit the heavy-tailed prop-

erty by processing larger jobs on the latter hosts, but we are not unbalancing the load to

the extent we could when variability was higher (α ≤ 1). As α approaches 2.0, the task size

variation is lower, and the other hosts have to start pulling their weight in order to maintain

good mean waiting time and slowdown. TAPTF exploits this knowledge to provide better

performance in those areas.

4.2 Analytical Comparison

In order to gauge the usefulness of the TAPTF approach, an analytical comparison with

TAGS and Random was performed. Random is included as a baseline, whereas TAGS pro-

vides the best point of comparison as it operates under similar constraints to TAPTF, where

no a priori knowledge of a task’s service requirement is assumed. These approaches were

evaluated under a variety of conditions and their performance compared using the most

important of the metrics discussed in Section 2.2 - mean waiting time and mean slowdown.

A range of α values were considered, from 0.5 to 2.0, demonstrating a wide range of task

size variation, from extreme task size variation (α ≈ 0.5) to low task size variation (α ≈ 2.0),

and everything in between. To observe the effect of changing variance, the mean of the

Bounded Pareto distribution is fixed at 3000, and the the maximum value p is set at 107. In

order to keep the mean fixed, the minimum value k is varied as the α parameter changes.

Each α value was evaluated for different system loads (ρ) - 0.3 (low load), 0.5 (moderate

load) and 0.7 (high load). These comparisons were performed for two and three host systems,

62

CHAPTER 4. TASK ASSIGNMENT BASED ON PRIORITISING TRAFFIC FLOW

α q1 q2

1.0 0.98 0.02

1.1 0.97 0.03

1.2 0.96 0.04

1.3 0.95 0.05

1.4 0.93 0.07

1.5 0.90 0.10

1.6 0.87 0.13

1.7 0.84 0.16

1.8 0.80 0.20

1.9 0.76 0.24

2.0 0.73 0.27

(a) E(W)

α q1 q2

1.0 1.00 0.00

1.1 0.99 0.01

1.2 0.99 0.01

1.3 0.98 0.02

1.4 0.96 0.04

1.5 0.94 0.06

1.6 0.91 0.09

1.7 0.88 0.12

1.8 0.84 0.16

1.9 0.80 0.20

2.0 0.76 0.24

(b) E(S)

Figure 4.2: Distribution of tasks in TAPTF - 2 Hosts, ρ = 0.3

after which we could no longer find optimum si values with the computational resources

available to us. This is not a big problem in itself as noted in prior research [Harchol-

Balter, 2002], as an n Host distributed system (where n > 2) with a system load ρ can

always be arranged in such a way to provide performance that is comparable or even better

than the best performance of a two or three host system (where n is a multiple of two or

three respectively) with system load ρ. For instance, a 4 Host system (with two subsystems

containing 2 hosts each) will behave identically to a standard 2 Host system. That is, the

performance characteristics of one subsystem in this scenario will be the same as the whole

2 Host system. The same would apply to a 6 Host system, (with two subsystems containing

3 hosts) and a standard 3 Host system. This holds true for any task assignment policy.

The analytical comparison was performed in Mathematica 5.0 [Wolfram Research, 2003],

using the mathematical preliminaries discussed in the Section 4.1.4. The generalised TAPTF

mathematical model is also used to model the behaviour of TAGS by setting q1 = 1.0 (and

subsequently q2 ... qn to equal 0) - negating the dual queues and multiple entry points and

making it behave identically to TAGS. For each scenario, optimum cut-offs are found with

respect to mean waiting time and mean slowdown for both TAPTF and TAGS using the

NMinimize function in Mathematica to produce the best (and fairest) comparison. NMini-

mize searches numerically for the si values in each instance that produce local minima for

63

CHAPTER 4. TASK ASSIGNMENT BASED ON PRIORITISING TRAFFIC FLOW

 1000

 10000

 100000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

Random
TAGS-OPTW

TAPTF-O-OPTW

(a) E(W)

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

Random
TAGS-OPTS

TAPTF-O-OPTS

(b) E(S)

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
um

 O
f L

oa
ds

Alpha

TAGS-OPTW
TAPTF-O-OPTW

Desired Sum-of-Loads

(c) Sum-of-Loads

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
um

 O
f L

oa
ds

Alpha

TAGS-OPTS
TAPTF-O-OPTS

Desired Sum-of-Loads

(d) Sum-of-Loads

Figure 4.3: Performance of a two host distributed system with system load of 0.3. The

expected waiting time and slowdown are depicted in (a) and (b) for policies optimised for

these respective metrics. Likewise, corresponding load comparisons (desired versus actual

Sum-Of-Loads) are shown in (c) and (d).

the expected waiting time, E(W) and the expected mean slowdown, E(S).

The choice of qi parameters has a significant effect on the performance of the TAPTF

policy. In the case of 2 hosts, we can search numerically for the combinations of si and the

qi values that result in the best results (i.e. local minima) for the expected waiting time and

slowdown. In the case of 3 hosts, we must tune the qi parameters by hand. This is not as

problematic as it seems, as we can use our intuition regarding the required spread of tasks

as well as the near-optimal results obtained in the 2 host scenarios to guide our choices.

Task assignment policies that assume a priori knowledge of task sizes (e.g. SITA-E/V/U)

64

CHAPTER 4. TASK ASSIGNMENT BASED ON PRIORITISING TRAFFIC FLOW

 1000

 10000

 100000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

Random
TAGS-OPTW

TAPTF-O-OPTW

(a) E(Q) - OPTW

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

Random
TAGS-OPTS

TAPTF-O-OPTS

(b) E(Q) - OPTS

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
um

 O
f L

oa
ds

Alpha

TAGS-OPTW
TAPTF-O-OPTW

Desired Sum-of-Loads

(c) E(X) - OPTW

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
um

 O
f L

oa
ds

Alpha

TAGS-OPTS
TAPTF-O-OPTS

Desired Sum-of-Loads

(d) E(X) - OPTS

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
um

 O
f L

oa
ds

Alpha

TAGS-OPTW
TAPTF-O-OPTW

Desired Sum-of-Loads

(e) ρ - OPTW

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
um

 O
f L

oa
ds

Alpha

TAGS-OPTS
TAPTF-O-OPTS

Desired Sum-of-Loads

(f) ρ - OPTS

Figure 4.4: Per queue metrics for a two host distributed system with system load of 0.3. The

expected queue length are depicted in (a) and (b), while the expected task sizes are depicted

in (c) and (d). Corresponding load comparisons for each queue are shown in (e) and (f).

65

CHAPTER 4. TASK ASSIGNMENT BASED ON PRIORITISING TRAFFIC FLOW

α q1 q2

0.9 0.98 0.02

1.0 0.97 0.03

1.1 0.96 0.04

1.2 0.94 0.06

1.3 0.91 0.09

1.4 0.88 0.12

1.5 0.85 0.15

1.6 0.81 0.19

1.7 0.78 0.22

1.8 0.74 0.26

1.9 0.71 0.29

2.0 0.68 0.32

(a) E(W)

α q1 q2

0.9 1.00 0.00

1.0 0.99 0.01

1.1 0.99 0.01

1.2 0.98 0.02

1.3 0.96 0.04

1.4 0.93 0.07

1.5 0.90 0.10

1.6 0.86 0.14

1.7 0.82 0.18

1.8 0.78 0.22

1.9 0.74 0.26

2.0 0.71 0.29

(b) E(S)

Figure 4.5: Distribution of tasks in TAPTF - 2 Hosts, ρ = 0.5

are not evaluated in this section, as we are motivated by a more pessimistic (and less restric-

tive) view of the distributed (cluster) model, where this information is not guaranteed to be

available. The Least-Work-Remaining and Central-Queue policies (which have been shown

to be equivalent) are omitted for two key reasons. First, these policies do not fit the as-

sumptions of the problem domain discussed in Section 4.1.1. Second, while these policies are

considered by many as being suitable for conditions of low to moderate variation, previous

work [Harchol-Balter, 2002] has shown only a moderate increase in performance over Random

under a similar evaluation to that performed in this chapter. The same study showed the

TAGS algorithm outperforming a Least-Work-Remaining policy in nearly all scenarios (both

low and high variation) considered. Thus, it is prudent to focus our attention on TAGS.

In the interests of clear and meaningful results, comparisons of mean waiting time and

mean slowdown are performed using the respective TAPTF and TAGS policies optimised for

that metric, as described in Section 4.1.5. The Random policy is included as a baseline for

comparative purposes in each instance. It is worth noting that the expected waiting time

and slowdown graphs are presented on a log scale for the y-axis.

66

CHAPTER 4. TASK ASSIGNMENT BASED ON PRIORITISING TRAFFIC FLOW

 1000

 10000

 100000

 1e+06

 1e+07

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

Random
TAGS-OPTW

TAPTF-O-OPTW

(a) E(W)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

Random
TAGS-OPTS

TAPTF-O-OPTS

(b) E(S)

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
um

 O
f L

oa
ds

Alpha

TAGS-OPTW
TAPTF-O-OPTW

Desired Sum-of-Loads

(c) Sum-of-Loads

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
um

 O
f L

oa
ds

Alpha

TAGS-OPTS
TAPTF-O-OPTS

Desired Sum-of-Loads

(d) Sum-of-Loads

Figure 4.6: Performance of a two host distributed system with system load of 0.5. The

expected waiting time and slowdown are depicted in (a) and (b) for policies optimised for

these respective metrics. Likewise, corresponding load comparisons (desired versus actual

Sum-Of-Loads) are shown in (c) and (d).

4.2.1 Two Hosts

An analytical comparison of TAGS and TAPTF in a two host distributed system is presented

in this section. The results show the performance metrics for a system load of 0.3 (Figure 4.3),

0.5 (Figure 4.6) and 0.7 (Figure 4.8). Results for TAPTF are only shown where they are

better than TAGS, as TAPTF can reduce to TAGS (and achieve identical performance) as

described in Section 4.1 and Section 4.2.

Figures 4.3(a) and 4.3(b) show the mean waiting time and slowdown respectively under

a low system load (ρ = 0.3). From our analysis the TAGS policy achieves better mean

67

CHAPTER 4. TASK ASSIGNMENT BASED ON PRIORITISING TRAFFIC FLOW

α q1 q2

0.9 0.97 0.03

1.0 0.95 0.05

1.1 0.92 0.08

1.2 0.88 0.12

1.3 0.84 0.16

1.4 0.79 0.21

1.5 0.76 0.24

1.6 0.72 0.28

1.7 0.69 0.31

1.8 0.67 0.33

1.9 0.64 0.36

2.0 0.62 0.38

(a) E(W)

α q1 q2

0.9 1.00 0.00

1.0 0.99 0.01

1.1 0.98 0.02

1.2 0.95 0.05

1.3 0.91 0.09

1.4 0.86 0.14

1.5 0.81 0.19

1.6 0.77 0.23

1.7 0.73 0.27

1.8 0.70 0.30

1.9 0.67 0.33

2.0 0.64 0.36

(b) E(S)

Figure 4.7: Distribution of tasks in TAPTF - 2 Hosts, ρ = 0.7

waiting time and slowdown under conditions ranging from extreme to high variation (where

α is between 0.5 and 1.0). The areas where the TAPTF policy improves on TAGS are

highlighted on the graphs. It can be observed that in conditions of moderate to low variation

(where α is between 1.1 and 2.0), the TAPTF policy achieves better performance with respect

to mean waiting time and slowdown. This performance increase can be attributed to the

use of dual queues and by assigning tasks to all servers (or a subset thereof) rather than

feeding all tasks into the first host, as per the TAGS approach. Figure 4.2 gives a breakdown

of the fraction of tasks dispatched to Host 1 (denoted by q1) or Host 2 (denoted by q2).

From the table we can see that as variation increases (and α decreases) TAPTF approaches

TAGS-like behaviour for optimal performance. We can see when optimised for waiting time

(where α = 1.0), almost all tasks (98%) are dispatched to Host 1. As variation increases

further (where α is between 0.5 and 1.2) TAGS-like behaviour produces the best results.

Conversely, when variation decreases it pays to assign some tasks to the second host. As

the variation decreases (and α approaches 2.0) we can afford to assign more tasks to the

second host. Figures 4.3(c) and 4.3(d) again highlight the effect of decreasing variance on

TAGS - as α decreases, the amount of excess load generated by the TAGS policy increases

significantly, while the TAPTF maintains consistent load. As the fraction assigned to Host

68

CHAPTER 4. TASK ASSIGNMENT BASED ON PRIORITISING TRAFFIC FLOW

 1000

 10000

 100000

 1e+06

 1e+07

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

Random
TAGS-OPTW

TAPTF-O-OPTW

(a) E(W) - ρ = 0.7

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

Random
TAGS-OPTS

TAPTF-O-OPTS

(v) E(S) - ρ = 0.7

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

 1.7

 1.75

 1.8

 1.85

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
um

 O
f L

oa
ds

Alpha

TAGS-OPTW
TAPTF-O-OPTW

Desired Sum-of-Loads

(c) Sum-of-Loads

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

 1.7

 1.75

 1.8

 1.85

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
um

 O
f L

oa
ds

Alpha

TAGS-OPTS
TAPTF-O-OPTS

Desired Sum-of-Loads

(d) Sum-of-Loads

Figure 4.8: Performance of a two host distributed system with system load of 0.7. The

expected waiting time and slowdown are depicted in (a) and (b) for policies optimised for

these respective metrics. Likewise, corresponding load comparisons (desired versus actual

Sum-Of-Loads) are shown in (c) and (d).

2 (q2) increases, so to does the factor of improvement over TAGS, both in expected waiting

time and slowdown in addition to system load.

Figures 4.6(a) and 4.6(b) depict the mean waiting time and slowdown respectively under

a moderate system load (ρ = 0.5). Under this increased system load we can see that the

performance of the TAPTF policy is better than TAGS over a larger range of task variation

scenarios (where α is between 1.0 and 2.0) than under a system load of 0.3. Figure 4.5 gives a

breakdown of the fraction of tasks dispatched to each back-end host in the distributed system.

As the system load has increased, a greater fraction of tasks are now being dispatched to

69

CHAPTER 4. TASK ASSIGNMENT BASED ON PRIORITISING TRAFFIC FLOW

the second host in order to maintain better performance than TAGS with respect to mean

waiting time and mean slowdown. From Figures 4.6(c) and 4.6(d) a significant rise in the

system load (and thus excess) can be observed as the task size distribution becomes less

variable. Conversely, the TAPTF maintains a consistent system load over all observed areas.

Again we see that as the fraction assigned to Host 2 (q2) increases (and α approaches 2.0)

the factor of improvement in all metrics over TAGS gets larger.

Figures 4.8(a) and 4.8(b) show the mean waiting time and slowdown respectively under

a high system load (ρ = 0.7). The TAPTF policy betters TAGS over a larger range of task

variation scenarios than occurred under low load (with TAPTF demonstrating lower mean

waiting time and slowdown where α is between 0.9 and 2.0). It can be observed that TAGS

suffers significantly under a high system load. As highlighted in Figure 4.7 we are seeing

an increased fraction of tasks dispatched to the second host in order to maintain superior

performance to the TAGS policy. From Figures 4.8(c) and 4.8(d) we can observe a sharp

increase in system load (and subsequently excess) where α < 1.0. It can be seen that as α

approaches 2.0 the factor of improvement over TAGS increases in all metrics. Indeed, under

this scenario of high system load (where ρ = 0.7), we have observed the biggest factor of

improvement yet over TAGS.

α q1 q2 q3

0.9 1.0 0.0 0.0

1.0 1.0 0.0 0.0

1.1 0.9 0.1 0.0

1.2 0.8 0.2 0.0

1.3 0.75 0.25 0.0

1.4 0.7 0.3 0.0

1.5 0.6 0.4 0.0

1.6 0.6 0.4 0.0

1.7 0.6 0.3 0.1

1.8 0.6 0.3 0.1

1.9 0.5 0.4 0.1

2.0 0.5 0.4 0.1

(a) ρ = 0.3

α q1 q2 q3

0.9 0.95 0.05 0.0

1.0 0.9 0.1 0.0

1.1 0.8 0.2 0.0

1.2 0.75 0.25 0.0

1.3 0.7 0.3 0.0

1.4 0.7 0.3 0.0

1.5 0.6 0.4 0.0

1.6 0.6 0.3 0.1

1.7 0.5 0.4 0.1

1.8 0.5 0.4 0.1

1.9 0.5 0.3 0.2

2.0 0.5 0.3 0.2

(b) ρ = 0.5

α q1 q2 q3

0.9 0.95 0.05 0.0

1.0 0.9 0.1 0.0

1.1 0.8 0.2 0.0

1.2 0.8 0.2 0.0

1.3 0.7 0.3 0.0

1.4 0.6 0.3 0.1

1.5 0.6 0.3 0.1

1.6 0.5 0.3 0.2

1.7 0.5 0.3 0.2

1.8 0.5 0.3 0.2

1.9 0.5 0.3 0.2

2.0 0.4 0.3 0.3

(c) ρ = 0.7

Figure 4.9: Distribution of tasks in TAPTF - 3 Hosts

70

CHAPTER 4. TASK ASSIGNMENT BASED ON PRIORITISING TRAFFIC FLOW

4.2.2 Three Hosts

An analytical comparison of TAGS and TAPTF in a three host distributed system is pre-

sented in this section. The results show the performance metrics for a system load of 0.3

(Figure 4.10), 0.5 (Figure 4.11) and 0.7 (Figure 4.12).

Figures 4.10(a) and 4.10(b) show the mean waiting time and slowdown respectively under

a low system load (ρ = 0.3). It can be observed from the graphs that TAPTF performs better

over a large range of α values, showing improved performance with respect to mean waiting

time and slowdown where α is between 1.1 and 2.0. Figure 4.9(a) gives an indication of how

TAPTF distributed the load more intelligently as the task size variation decreases. As the

variation decreases a significant amount of tasks are dispatched to the second host (denoted

by q2), and as α approaches 2.0 we can see more tasks being dispatched to the third and

final host (denoted by q3). The final host in a TAGS system typically processes only the

largest tasks - as variation decreases this practise is shown to be poor, as demonstrated

by TAPTF’s superior performance. Figures 4.10(c) and 4.10(d) highlight the benefit of the

TAPTF approach under high to low variation (where α is between 1.1 and 2.0) showing

consistent system loads while TAGS exhibits a sharp increase. As α approaches 2.0, the

TAGS policy is producing significant excess load, which is a worrying sign under such a low

arrival rate into the distributed system.

The mean waiting time and slowdown under a moderate system load (ρ = 0.5) are

depicted in Figures 4.11(a) and 4.11(b) respectively. As the system load has increased it can

be seen from the graphs that TAPTF shows improvement over a larger range of α values

(where α is between 0.9 and 2.0). From Figure 4.9(b) it can be observed that in most cases

a larger fraction of tasks are now being assigned to the second and third hosts (than under

a system load of 0.3). It is worth noting that optimum values for the cut-offs (si) for TAGS

could not be found for α values of 0.5 or 0.6, suggesting that it was impossible (or at least

not computationally feasible) to find cut-offs that could keep the load below 1.0 at each host.

From Figures 4.11(c) and 4.11(d) we can see that the increased arrival rate has a detrimental

effect on the total load in the TAGS system. A sharp increase in load (and corresponding

excess) can be observed as α approaches 2.0, while the TAPTF maintains consistent load

over the same area.

Under a high system load (ρ = 0.7), the mean waiting time and slowdown are depicted in

Figures 4.12(a) and 4.12(b). Similar problems to those experienced under a system load of 0.5

occurred when finding cut-offs for many α values under the three host, ρ = 0.7 scenario for

71

CHAPTER 4. TASK ASSIGNMENT BASED ON PRIORITISING TRAFFIC FLOW

 100

 1000

 10000

 100000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

Random
TAGS-OPTW

TAPTF-O-OPTW

(a) E(W)

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

Random
TAGS-OPTS

TAPTF-O-OPTS

(b) E(S)

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
um

 O
f L

oa
ds

Alpha

TAGS-OPTW
TAPTF-O-OPTW

Desired Sum-of-Loads

(c) Sum-of-Loads

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
um

 O
f L

oa
ds

Alpha

TAGS-OPTS
TAPTF-O-OPTS

Desired Sum-of-Loads

(d) Sum-of-Loads

Figure 4.10: Performance of a three host distributed system with system load of 0.3. The

expected waiting time and slowdown are depicted in (a) and (b) for policies optimised for

these respective metrics. Likewise, corresponding load comparisons (desired versus actual

Sum-Of-Loads) are shown in (c) and (d).

TAGS. That is, it was impossible to find optimum cut-offs that satisfied the requirement that

the load must be below 1.0 at all hosts. This is confirmed when looking at the corresponding

Sum-Of-Load measurements shown in Figures 4.12(c) and 4.12(d), showing the Sum-Of-

Loads approaching 3.0 (indicating that some or all of the hosts are overloaded) where α is

less than 0.8 or greater than 1.3. Figure 4.9(c) shows the fraction of tasks (qi) allocated to

each back-end server. We can see to handle the increased system load, a larger proportion

of tasks are being assigned to the second and third host on average to cope. Indeed, when

α is 2.0, each back-end host is allocated a fairly equal share of the incoming tasks (where

72

CHAPTER 4. TASK ASSIGNMENT BASED ON PRIORITISING TRAFFIC FLOW

 1000

 10000

 100000

 1e+06

 1e+07

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

Random
TAGS-OPTW

TAPTF-O-OPTW

(a) E(W)

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

Random
TAGS-OPTS

TAPTF-O-OPTS

(b) E(S)

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
um

 O
f L

oa
ds

Alpha

TAGS-OPTW
TAPTF-O-OPTW

Desired Sum-of-Loads

(c) Sum-of-Loads

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
um

 O
f L

oa
ds

Alpha

TAGS-OPTS
TAPTF-O-OPTS

Desired Sum-of-Loads

(d) Sum-of-Loads

Figure 4.11: Performance of a three host distributed system with system load of 0.5. The

expected waiting time and slowdown are depicted in (a) and (b) for policies optimised for

these respective metrics. Likewise, corresponding load comparisons (desired versus actual

Sum-Of-Loads) are shown in (c) and (d).

q1 = 0.4, q2 = 0.3 and q3 = 0.3). Again it can be observed that, as the system load has

increased, the range of α values where TAPTF outperforms TAGS is still similarly large -

where α is between 0.9 and 2.0.

4.3 Discussion

In this section we discuss the implications of the results presented in Section 4.2 - both for

the two host (Section 4.2.1) and three host (Section 4.2.2) scenarios.

An analytical representation of the Random load distribution policy was included as

73

CHAPTER 4. TASK ASSIGNMENT BASED ON PRIORITISING TRAFFIC FLOW

 1000

 10000

 100000

 1e+06

 1e+07

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

Random
TAGS-OPTW

TAPTF-O-OPTW

(c) E(W)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

Random
TAGS-OPTS

TAPTF-O-OPTS

(d) E(S)

 2

 2.2

 2.4

 2.6

 2.8

 3

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
um

 O
f L

oa
ds

Alpha

TAGS-OPTW
TAPTF-O-OPTW

Desired Sum-of-Loads

(c) Sum-of-Loads

 2

 2.2

 2.4

 2.6

 2.8

 3

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
um

 O
f L

oa
ds

Alpha

TAGS-OPTS
TAPTF-O-OPTS

Desired Sum-of-Loads

(d) Sum-of-Loads

Figure 4.12: Performance of a three host distributed system with system load of 0.7. The

expected waiting time and slowdown are depicted in (a) and (b) for policies optimised for

these respective metrics. Likewise, corresponding load comparisons (desired versus actual

Sum-Of-Loads) are shown in (c) and (d).

a baseline for comparison against TAGS and TAPTF. As discussed in previous work by

Mor Harchol-Balter [Harchol-Balter, 2002] and illustrated by the Pollaczek-Khinchin formula

shown in Section 2.2, all performance metrics for the Random policy are directly proportional

to the variance of the task size distribution. As such, as the task size variation increases, and

α decreases, the expected mean waiting time and slowdown explode exponentially in all the

scenarios examined.

From the figures presented in Section 4.2.1 and Section 4.2.2, it is clear that TAGS (or

at least TAGS-like behaviour) is the best policy under conditions of extreme to very high

74

CHAPTER 4. TASK ASSIGNMENT BASED ON PRIORITISING TRAFFIC FLOW

variation. As mentioned previously, TAPTF is an adaptable task assignment policy, which

can behave identically (and reduces analytically) to TAGS (i.e. set q1 to 1.0) when it is

prudent with regards to obtaining the best performance for a given scenario. In effect, the

TAPTF policy encompasses TAGS ability to exploit a highly variable task size distribution,

as well as remaining flexible enough to handle instances of lower variation and higher system

loads by virtue of its many parameters that can be manipulated where required.

In areas of lower variation (and even low system load) we can see the benefit of dispatching

tasks to hosts other than the first (highlighted by Figures 4.2, 4.3(a) and 4.3(b)). It is clear

that as variation decreases, it pays to dispatch a growing proportion of tasks to the second

host. This is largely due to the fact that we can no longer exploit the heavy-tailed property

of the task size distribution, as the variation between the sizes of tasks decreases, and the

average size of so-called small tasks increases.

The benefit of TAPTF over the TAGS policy becomes even more apparent as the system

load increases (shown in Figures 4.5, 4.6(a) and 4.6(b)). TAGS suffers to a greater extent

under higher loads, as an increase in excess (wasted processing caused by hand-offs, shown in

Figures 4.6(c) and 4.6(d)) and growing average queue lengths combine to have a detrimental

effect on TAGS performance under conditions of moderate to low task size variation. It can

be observed that as the system load increases, the task variation range where the TAPTF

policy betters TAGS becomes larger, and the factor of that improvement (in both mean

waiting time and slowdown) increases. For example, consider the two host case. Consider

the results shown in Figures 4.3(a), 4.6(a) and 4.8(a), depicting the mean waiting time under

system loads of 0.3, 0.5 and 0.7 respectively. TAPTF betters TAGS when α ≥ 1.3 under a

low system load of 0.3. With a moderate system load of 0.5, TAPTF betters TAGS when

α ≥ 1.1. When the system load is high (0.7), TAPTF exhibits superior performance than

TAGS when α ≥ 1.0. Similarly, consider when α = 2.0 in each of these scenarios. Under

a system load of 0.3, TAPTF exhibits an factor of improvement of approximately 1.5 over

TAGS. Under a system load of 0.5, TAPTF shows an improvement of 2.7 over TAGS. When

the system load is 0.7, TAPTF shows a substantial improvement over TAGS - by a factor of

6.6.

Section 4.2.2 summarises some interesting results for the three host scenario. We are

particularly interested in the performance characteristics of TAGS and TAPTF for three

hosts, as there is far greater flexibility with regards to choosing the cut-offs (si values) at

each host in order to exploit the heavy-tailed property successfully. This increased flexibility

is largely due to the obvious fact that there is an additional size partition, but also as a

75

CHAPTER 4. TASK ASSIGNMENT BASED ON PRIORITISING TRAFFIC FLOW

consequence it is easier to keep the load below 1 at the respective hosts (both facts noted by

Mor Harchol-Balter in her previous work on TAGS). This turns out to be true for TAPTF

but not necessarily for TAGS, which suffers under heavy system loads.

In light of these changed conditions, we found that in some cases, as variation increases

(and α decreases), the mean slowdown for the TAGS policy actually improves - to a certain

point. Consider Figures 4.10(a) and 4.10(b), depicting a two host system under a low system

load of 0.3. We observe a fairly flat and consistent response from the TAGS policy for the

expected mean waiting time and slowdown over the range of α values shown. Slowdown

gradually decreases as α approaches 0.7, then increases slightly as α reaches 0.5. This,

as mentioned above, is because as the variation of tasks sizes becomes larger, TAGS can

increasingly exploit the heavy-tailed property of such a distribution through choosing effective

cut-offs that enable small tasks to be processed quickly, while ensuring large tasks are moved

to latter hosts and do not unduly delay smaller tasks. This ensures good results with regards

to overall metrics like mean waiting time and slowdown under conditions of extreme to highly

variable task size distributions.

Despite the different behaviour exhibited for the three host scenario, TAGS is still bettered

by the TAPTF policy under conditions ranging from high to low task size variation due to

the same factors as under the two host scenario. Again we see the benefits achieved by

dispatching a proportion of tasks to all hosts, not just the first. This is especially true as

the system load increases - so to does the factor of improvement of TAPTF over TAGS. The

advantages of the generic and flexible TAPTF model are highlighted in Figures 4.9(a) to

4.9(c) (and subsequently Figures 4.10 to 4.12). In several instances (Figures 4.11 and 4.12)

it was not actually possible to find optimum cut-offs for TAGS that satisfied the constraint

that the load must remain below 1 at all hosts.

Consider the case for three hosts where the system load is a (moderate) 0.5. We can see

from Figures 4.11(a) and 4.11(b) that TAPTF clearly betters TAGS over a range of α values

from 0.9 to 2.0. When α equals 2.0, the factor of improvement of TAPTF over TAGS is

approximately 8 for both mean waiting time and slowdown. Under the same scenario, TAGS

produces 3 times more excess load than the TAPTF policy - a significant amount of wasted

processing.

76

CHAPTER 4. TASK ASSIGNMENT BASED ON PRIORITISING TRAFFIC FLOW

4.4 Conclusion

In this chapter we have presented a new approach to task assignment in a distributed system,

TAPTF (Task Assignment based on Prioritising Traffic Flows). TAPTF is a flexible policy

that addresses the shortcomings of existing approaches (outlined earlier in this chapter)

to task assignment. TAPTF demonstrated improved performance (both in mean waiting

time and mean slowdown) in key areas where the TAGS and Random policies suffer. Most

significantly, TAPTF exhibited improved performance under low to high task size variation

and high system load by reducing the excess associated with a large number of restarts

and by intelligently controlling the influx of tasks to each back-end host. We found for two

and three host scenarios that as system load increases the range of α parameters where an

improvement was shown, and the magnitude of that improvement increased. Given that

TAPTF can encompass the best characteristics of existing approaches, as well as improving

on them in what are considered critical scenarios of heavy traffic load and highly variable

task sizes, we consider TAPTF to be a worthy policy for load distribution in environments

where tasks are not pre-emptible and task sizes are not known a priori.

77

Chapter 5

Task Assignment with

Work-Conserving Migration

The classical problem of task assignment in a distributed system is a critical and well re-

searched area. A common configuration of such systems utilise a centralised dispatcher,

directing incoming requests to homogeneous back-end hosts that offer mirrored services.

Tasks are then serviced first-come-first-served at each host, and are not pre-emptible. Of-

ten, migration is available but is not work-conserving (any work done prior to migration is

lost). Such a scenario is consistent with many batch and super-computing facilities where

typically a task’s memory requirement is so enormous that features like pre-emption and

work-conserving migration are not feasible or even practical to implement.

Numerous task assignment policies have been proposed to address this particular prob-

lem [Crovella et al., 1998a; Harchol-Balter et al., 1999; Harchol-Balter, 2002], which are

described in detail in Chapter 3. One of our important contributions was the TAPTF policy

- Task Assignment based on Prioritising the Traffic Flow [Broberg et al., 2005], presented in

Chapter 4. The TAPTF policy demonstrated improved performance, both analytically and

through rigorous simulation, in key areas where existing policies are weak. Despite this, the

TAPTF policy was not ideally suited to certain applications due to its design - particularly

in the manner it stops and restarts tasks from scratch. This makes it unsuitable in its current

form for certain interactive or real-time applications, like high-volume web serving from a

web server cluster.

Thus, we consider a similar problem scenario to that described above but with an impor-

tant modification - that work-conserving migration is available with low to negligible costs.

78

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

This is consistent with (but not limited to) many popular web serving architectures, known as

web clusters or farms. A common configuration of these local and geographically distributed

web clusters is where centralised dispatchers direct all incoming requests to back-end hosts,

which can also redirect requests amongst themselves if prudent to do so [Cardellini et al.,

2003; Aversa and Bestavros, 2000]. Transparent, negligible cost work-conserving migration

is possible (and indeed highly desirable) due to the minimal state information that needs to

be transferred for most web requests.

The architectures themselves have been the subject of significant research [Cardellini

et al., 1999; 2002], with numerous commercial implementations [Cisco Systems, 1997] and

service providers [Dilley et al., 2002]. As such, their utility and application are generally well

defined. Analytical solutions to this particular problem are generally not as well defined due

to the added complexity in mathematically modelling such scenarios.

We choose to focus on the utility of a work-conserving TAPTF policy in distributing

requests via a centralised dispatcher in a locally distributed web-server system. We are also

particularly interested in analysing the benefit of allowing back-end web servers to redirect

requests when prudent. As such, we a present a task assignment policy specifically suited

to these environments (such as high volume web serving clusters) where local centralised

dispatchers are utilised to distribute tasks amongst back-end hosts offering mirrored services,

with work-conserving migration available between hosts. The TAPTF-WC (Task Assignment

based on Prioritising Traffic Flows with Work-Conserving Migration) policy was specifically

created to exploit such environments. TAPTF-WC exhibits consistently good performance

over a wide range of task distribution scenarios due to its flexible nature, spreading the

work over multiple hosts when prudent, and separating short task flows from large task

flows via the use of dual queues. Tasks are migrated in a work conserving manner, reducing

the penalty associated with task migration found in many existing policies such as TAGS

and TAPTF which restart tasks upon migration. We find that the TAPTF-WC policy is

well suited for load distribution under a wide range of different workloads in environments

where task sizes are not known a priori and work-conserving migration is available. The

practical implementation aspects of such scheduling and redirection techniques are discussed

in Section 5.1, but are not the focus of this chapter. Rather we focus our attention on a

performance analysis of the proposed policy using the fundamentals of queueing theory.

The rest of the chapter is organised as follows. Section 5.1 covers the background required

for the remainder of the chapter. In Section 5.2 the most relevant related work is presented.

A detailed description of the TAPTF-WC model is provided in Section 5.3. Section 5.4 gives

79

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

an analytic comparison of TAPTF-WC with existing approaches. In Section 5.5 we briefly

consider a scenario where the migration costs are non-negligible - that is, where a migration

occurs a fixed or proportional cost. Section 5.6 provides a detailed discussion of the analytical

comparisons performed in Sections 5.4 and 5.5. in Section 5.7 we conclude this chapter with

some closing thoughts on the insight gained during the evaluation, and consider the benefits

of the TAPTF-WC approach.

5.1 Background

This section provides an overview of the practical implementation aspects for task assignment

policies in web server clusters. This will help the reader understand the importance of

effective task assignment for web server clusters. An overview of the practical implementation

aspects for this task assignment policy in web server clusters is provided in Section 5.1.1.

5.1.1 Web Server Clusters

To address the issue of improving performance in high volume web sites, many distributed

architectures have been proposed to improve the users experience - such as response time

to retrieve a file or the throughput. These architectures attempt to provide expandable

resources in order to solve the issue of scalability - how to service the growing number of

users and the expanding bandwidth available to them. With network bandwidth increases

at a rate twice as fast as server capacity and dynamically generated content accounting for

a larger percentage of web content being requested, the server side will be a bottleneck now

and into the future [Cardellini et al., 2002].

There are many options available to an architect of such systems to address these scala-

bility issues. One is to scale-up, improving a node that is already available to you. You can

achieve this in two ways. First, there is the notion of hardware scale-up [Bill Devlin and Spix,

1999], where more resources (such as disk, memory and CPU’s) are added to your node as

needed. This can be useful as a temporary solution but it does not scale very far (considering

the consistent increase in Internet traffic) and it does not solve the issue of reliability that a

set of servers offering mirrored services could achieve.

Another technique is referred to as software scale-up where improvements are made in

the performance and efficiency of a node at the software level. This could be achieved by

making the operating system more efficient, reducing overheads at the web server applica-

tion level [Pai et al., 1999; Doolittle and Nelson, 1991] or improving the request scheduling

80

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

policy [Bansal and Harchol-Balter, 2001]. Again, this can only achieve limited performance

gains and does not address the issue of scalability nor reliability.

To cope with increasing demand and to provide some level of fault tolerance and redun-

dancy, we scale-out [Bill Devlin and Spix, 1999] by adding additional nodes to our web server

architecture. One widely-used technique is to global scale out, locating nodes in different ge-

ographical locations. This has a number of desirable properties, such as offering faster local

mirrors (depending on a user’s location) and providing large scale redundancy, removing any

single point of failure. Despite this, it is very common to address the issue of load distribu-

tion in such architectures by exploiting the DNS mechanism, attempting to route requests

intelligently during the address resolution phase (i.e. by using the authoritative DNS server,

A-DNS, in conjunction with simple task assignment policies such as Random/Round-Robin).

Unfortunately this proves to be a very course-grained approach due to caching of DNS infor-

mation at local names servers and even the client itself. Measurements have shown that the

A-DNS only controls a small percentage of requests, as low as 5% of total requests reaching

the system [Colajanni et al., 1998b; Cardellini et al., 2002]. As such, it is not an entirely

effective way to distribute the workload in a distributed web server system.

More fine-grained control is needed to effectively distribute the load in a distributed web-

server system, given the empirical evidence we have about the characteristics of the workload

and the knowledge of the negative performance implication that poor task assignment choices

can cause. As such, we consider the notion of local scale out where we have a local group

of back-end web-servers that can potentially service any request, with the responsibility of

request assignment placed on a front-end web server or dispatching device, or even the back-

end web-servers themselves (with requests being broadcast or multicast to each server).

We chose to focus on task assignment policies that are suited to local scale-out architec-

tures. They are the best mechanism to effectively distribute the workload in a distributed

web-server system, providing the most control with regards to dispatching or routing incom-

ing requests.

There are a number of differing arrangements that can constitute a local web-server

cluster. One common arrangement is the virtual web cluster, where one IP address (the

Virtual IP, VIP) is visible to clients. This IP is not assigned to a particular front-end server

or device, rather it is shared by each server node. Another arrangement is the traditional

locally distributed web system, where each server node has a unique IP that is visible to all

clients.

In particular we focus on the cluster-based web system, which has a number of desirable

81

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

features that make it appealing over the virtual web cluster or a distributed web system.

The cluster-based arrangement has a single IP address and thus a single point of contact. It

can provide fine-grained control of request routing. Most importantly, it requires no special

reconfiguration of clients or servers - it integrates well with current protocols, standards

and clients. This is crucial as it is highly desirable to make any complex request routing and

redirection transparent to the client. This architecture makes second level routing possible via

HTTP redirection at the application level, or via TCP hand-offs or splicing at the IP protocol

level [Adhya et al., 2002; Cohen et al., 1999; Maltz and Bhagwat, 1998; Rosu and Rosu, 2002;

Spatscheck et al., 2000]. The efficiency of these techniques have improved considerably over

the last 7 years, to the point where the overhead placed on cluster resources is minimal.

An extensive evaluation of the implementation aspects of such techniques can be found in a

recent survey of web cluster technology [Cardellini et al., 2002]. An architecture containing

a centralised dispatcher with second level routing provides an ideal platform to implement

the work-conserving TAPTF model, TAPTF-WC, introduced in this chapter.

5.2 Related Work

An exhaustive evaluation of general purpose task assignment policies can be found in Chap-

ter 3 as well as in existing literature [Harchol-Balter et al., 1999; Harchol-Balter, 2002;

Broberg et al., 2005]. Indeed, many commercial web load balancing solutions depend on

traditional load distribution techniques such as (weighted) Random and Round-Robin, as

well as Shortest-Queue-First assignment policies. These policies were shown in Chapter 3

to perform poorly under high intensity, highly variable workloads, suggesting that modern

techniques that address the negative characteristics of these workloads are required. We

now highlight some techniques that are specifically focused on task assignment in web server

clusters.

Two recent policies that have been proposed specifically to deal with load balancing

in clustered web servers are EQUILOAD [Ciardo et al., 2001] and ADAPTLOAD [Riska

et al., 2002c]. Under the EQUILOAD policy, back-end servers continuously monitor the

incoming workload they receive, and periodically re-negotiate their agreement on the size of

requests to be allocated to them. A methodology is provided to characterise web workload,

fitting them with phase-type distributions that closely resemble the original distribution. The

characterisation can be done both off-line (e.g. on a complete trace) or online (periodically

examining workload seen thus far, and adjusting its fitting). The policy is based solely on the

82

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

distribution of incoming task sizes. EQUILOAD is not truly adaptive - special events may

drastically alter the relative popularity of web server document(s) causing the boundaries

chosen to be no longer optimal.

Riska notes that a robust scheduling policy must consider arrival rate of incoming tasks

and the distribution of their service requirement, and that any changes in observed bursti-

ness in average arrival rate should trigger a change in policy parameters to adopt to the new

arrival rate [Riska et al., 2002c]. As such, the ADAPTLOAD policy was formulated. ADAPT-

LOAD uses workload history to adapt the boundaries. Simulations indicate knowledge of

finite workload can be used as a good indicator of future behaviour. The ADAPTLOAD

policy examines the last K requests to build a discrete data histogram needed to determine

boundaries for the allocation of the next K requests. The authors found that K should be

neither too small (as ADAPTLOAD needs a statistically significant sample) nor too large

(since it needs to adapt to fluctuations). If a significant proportion of workload consists of a

few popular files it may not be possible to select N distinct boundaries (i.e. for each server)

and still ensure each interval corresponds to an equal amount of load received at each server.

Thus, the authors introduced probabilistic boundaries to combat this issue. A probability

pi is assigned to each boundary point si, expressing the portion of requests for file size si to

be served by server i. The remaining portion 1− pi of requests for this file size is served by

server i + 1 or additional servers.

ADAPTLOAD is compared to Join Shortest Weighted Queue (JSWQ), where “the length

of each queue in the system is weighted by the size of the queued requests” [Riska et al., 2002c]

- essentially a Least-Work-Remaining approach. Under low load, JSWQ does better than

ADAPTLOAD, which can direct a request to a server that is busy even when an idle server

is available (due to pre-computed boundaries). Under periods of transient overload ADAPT-

LOAD outperforms JSWQ, achieving lower average slowdowns and returning to acceptable

overload levels quicker. ADAPTLOAD manages consistently small slowdowns for nearly all

classes of requests. Like other size-based approaches, EQUILOAD and ADAPTLOAD are

limited to applications where task sizes are known in advance.

5.3 The Proposed Model - TAPTF-WC

In this section we propose a new task assignment policy called TAPTF-WC - Task Assign-

ment based on Prioritising Traffic Flows with Work-Conserving Migration - to address the

limitations of existing approaches in dealing with certain classes of traffic.

83

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

5.3.1 Motivation

We are motivated by the need for a flexible task assignment policy that provides good perfor-

mance for a local cluster with a centralised dispatcher. No assumptions are made regarding

a priori knowledge of an individual task’s size (rather just requiring a broad knowledge of

the distribution of task’s service requirement). This precludes the usage of size-based poli-

cies (such as SITA-E/V/U [Harchol-Balter et al., 1999; Crovella et al., 1998a; Schroeder and

Harchol-Balter, 2004]) that assume precise knowledge of a tasks service requirement upon

arrival at the dispatcher. We also consider the potential of back-end hosts to re-route tasks

(in a work conserving fashion) in order to further improve performance of the system. As

such, policies like TAGS and TAPTF cannot fully exploit such capabilities, due to their non

work-conserving nature when migrating tasks. This scenario is consistent with many com-

mon cluster web serving architectures, as described in Section 5.1. It also needs to deal with

the commonly experienced scenario of highly variable workloads, which many existing task

assignment policies handle poorly.

5.3.2 Conceptual view of the TAPTF-WC model

We consider an extension of the TAPTF policy, called TAPTF-WC - Task Assignment based

on Prioritising Traffic Flows with Work-Conserving Migration. TAPTF has a number of

desirable characteristics (as described in Section 5.2) that make it an ideal base on which

to build a work-conserving task assignment policy. Unlike TAPTF (and TAGS) where tasks

are restarted from scratch if they exceed the cut-off at a given host, TAPTF-WC conserves

each portion of work it completes at a given host. Upon migration to a new host, TAPTF-

WC resumes work from where it ceased processing before migration. This is consistent with

distributed systems (such as but not limited to the web cluster environment described in

Section 5.1) that support work-conserving migration.

In TAPTF-WC, arrivals of tasks to the dispatcher follow a Poisson process with rate λ.

The dispatcher then assigns tasks to each of the n hosts, call these Host i, 1 ≤ i ≤ n, at

random with probability qi respectively. Using a well known property of the Poisson process,

the arrival stream to Host i is also a Poisson process with rate λqi.

Due to the heavy-tailed characteristic of the task size distribution, we will assume that

task sizes (service distribution) follow a bounded Pareto Distribution B(α, k, p).

We also make the following assignment of loads to hosts:

• Tasks that run-to-completion at Host i’s O queue are those whose initial (original) sizes

84

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

are in the range [k, si] and remaining size is < si,

• Tasks that run-to-completion at Host i’s R queue (where 1 < i ≤ n) are those whose

initial (original) sizes are in the range [si−1, si] and remaining size is < si − si−1,

where k < s1 < s2 < s3 < . . . < sn = p. The aim is to compute the cut-offs (si values)

in order to minimise critically important performance metrics such as mean waiting time or

mean slowdown.

Like TAPTF each host, except for Host 1, accommodates two queues, the ordinary (O)

queue and the restart (R) queue. Tasks sent to a host from the Dispatcher join the O queue.

If the remaining size of a task does not fall within the correct range (that is, it exceeds the

processing limit si associated with some Host i), they are moved to the R queue belonging

to next host down the line. Unlike the standard TAPTF approach, any computational work

done at a given host is conserved when it is moved to the next host’s restart (R) queue.

This process is repeated until these tasks can run-to-completion. Tasks kept in the O queues

(received directly from the dispatcher) have priority of service over those in the R queue.

However, a task which is being served in the R queue will not be pre-empted from service

by an arrival of a task into the O queue. All tasks in the R and O queues are served on a

First-Come-First-Serve basis.

The above model differs from TAGS in that we have set the boundaries of task sizes at

each host so that all tasks with remaining sizes less than or equal to a fixed cut-off point

are processed by the host. This means that a task can be dispatched to any hosts initially

without being first dispatched to Host 1 as in TAGS in order to preserve the property that

job’s service demand is not known a priori. TAPTF-WC (like TAPTF) uses dual queues at

each host in order to speed up the flow of shorter tasks.

Shown in Figure 5.1 is the TAPTF-WC system for 4 hosts. Note the size ranges associated

with each Host. ‘Original size’ refers to the initial size of tasks that will run-to-completion

at that host. ‘Remaining’ refers to the tasks with remaining processing time less than the

cut-off that will run-to-completion at that host.

5.3.3 Mathematical Preliminaries for the TAPTF-WC model

In this section, we define and compute all the important parameters associated with the

TAPTF-WC model. As in the analysis of TAPTF in the previous chapter, the main objective

of this process is to use these parameters to determine the optimal cut-off points k < s1 <

85

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

REMAINING

2

Dispatcher

q
1

Host 1O

s ...
0

Host 2
R

O

s ...
1

q
3

q
4

s = k ...
0

s
1

s
2

s ...
0

s
3

s = p
4

s ...
3

s ...
0

s = p
4

s ...
2

s
2

s
3

< s
 1

< s
 2

< s
 3

< s = p
 4

< s − s
 2 1

< s − s
 3 2

< s − s
 4 3

λ

O

R
Host 3

R

O
Host 4

(O)

ORIGINAL SIZE

(R)
(O)

(R)
(O)

(O)
(R)

q

Figure 5.1: TAPTF-WC With 4 Hosts

s2 < . . . < p that allow us to minimise the mean waiting time or slowdown for tasks entering

the distributed system, in order to provide the best overall performance for our system.

In Section 2.3.1 we found that our task size distribution (whose probability density func-

tion is denoted here by f(x)) follows a Bounded Pareto distribution B(k, p, α), where α

represents the task size variation, k is the smallest possible task, and p is the largest possible

task.

Much of the analysis that follows is similar to that undertaken in the previous chap-

ter. However there are some subtle yet critical differences that are made in order to model

work-conserving migration. Indeed, we must consider any processing that may have already

occurred at other hosts when modelling the behaviour of each host in the queueing sys-

tem. We present the entire TAPTF-WC model (including some repeated definitions from

Chapter 4) for the sake of completeness and comprehension.

Let pi be the probability that a task’s original size will be less than the cut-off assigned to

Host i. That is, the fraction of tasks whose final destination is either Host i or its predecessors.

pi will be used later to calculate those tasks that start and finish at the same host.

pi = P (X ≤ si) (5.1)

=
αkα

1− (k/p)α

∫ si

k
x−α−1dx (5.2)

=
1− (k/si)α

1− (k/p)α
. (5.3)

The Ordinary (O) queue only accepts tasks that are received directly from the dispatcher.

86

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

As such, the fraction of tasks that visit Host i’s ordinary (O) queue, denoted as hiO, is simply

qi:

hiO = qi. (5.4)

The fraction of jobs that visit Host i’s Restart (R) queue is denoted as hiR. h1R is not

defined as there is no Restart queue at Host 1. Therefore, for 2 ≤ i ≤ n:

hiR =
i−1∑

j=1

qj(1− pi−1)

= (1− pi−1)
i−1∑

j=1

qj . (5.5)

The expression h′iO denotes the fraction of tasks whose final destination is Host i’s or-

dinary (O) queue. Evidently this is product of the probability of a task being assigned to

Host i (qi), and the fraction of tasks whose original size is less than the cut-off at Host i (pi).

Therefore:

h′iO = qipi (5.6)

The expression h′iR denotes the fraction of tasks whose final destination is Host i’s restart

(R) queue. Clearly h′1R is undefined as their is no Restart queue at Host 1. Therefore, where

2 ≤ i ≤ n:

h′iR =
i−1∑

j=1

qj(pi − pi−1)

= (pi − pi−1)
i−1∑

j=1

qj . (5.7)

Now let us focus on the tasks that finish (i.e. complete their final amount of processing)

in Host i’s queues. Let E(Xj
iO) and E(Xj

iR) be the jth moment of the distribution of the

remaining sizes of tasks whose final destination is Host i’s O queue and Host i’s R queue

respectively. Given that TAPTF-WC is work-conserving, we are careful to condition on the

distribution of task’s remaining sizes at Host i, not their initial (original) size. For E(Xj
iO)

they are one and the same, given that the tasks that finish in an Ordinary queue started in

the same queue, this we do not need to track any previous work done at other hosts.

87

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

We have

E(Xj
iO) =

1
pi

∫ si

k
xjf(x)dx (5.8)

=

αsj
i ((

k
si

)α−(k
si

)j)

pi(j−α)(1−(k
p
)α)

if j 6= α

αkα ln(si/k)

pi(1−(k
p
)α)

otherwise
(5.9)

For E(Xj
iR) we are conditioning on the distribution of task’s remaining sizes by consid-

ering the work already done (si−1).

E(Xj
iR) =

1
pi − pi−1

∫ si

si−1

(x− si−1)jf(x)dx (5.10)

=
αkα

1− (k
p)α

1
pi − pi−1

j∑

z=0

(
j!

z!(j − z)!
)(si−1

j−z)(−1)j−z

∫ si

si−1

xz−α−1dx (5.11)

=

αk
(1−(k

p
))(pi−pi−1)

[ln(si/si−1) + (si
si−1

− 1)] if j = α = 1

αk2

(1−(k
p
)2)(pi−pi−1)

[ln(si/si−1) + 1
2(1− si

si−1
) + 2(si

si−1
− 1)] if j = α = 2

αk
(1−(k

p
))(pi−pi−1)

[si−1(1
si

+ 1)− 2si−1 ln(si/si−1) + si − si−1] if j = 2, α = 1

αkα

(1−(k
p
)α)(pi−pi−1)

∑j
z=0(

j!(si−1
j−α)(−1)j−z((

si
si−1

)z−α−1)

(z!(j−z)!)(z−α)) otherwise.

(5.12)

Now, we consider those tasks that spend time in Host i’s queues (regardless of whether

they complete their processing there or not). We let E(hostXj
iO) and E(hostXj

iR) be the

jth moment of the distribution of tasks who spent time in Host i’s O queue and Host i’s R

queue respectively. Therefore:

E(hostXj
iO) =

h′iO
hiO

E(Xj
iO) +

hiO − h′iO
hiO

sj
i . (5.13)

Similarly,

E(hostXj
iR) =

h′iR
hiR

E(Xj
iR) +

hiR − h′iR
hiR

(si − si−1)j . (5.14)

We let λiO and λiR represent the arrival rate into Host i’s ordinary (O) and restart (R)

queue respectively. Then, based on similar logic to hiO and hiR:

λiO = λqi (5.15)

and λiR = λhiR. (5.16)

88

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

The loads at Host i’s O and P queue are:

ρiO = λiOE(hostXiO) (5.17)

and ρiR = λiRE(hostXiR) (5.18)

respectively.

The next set of results, concerning the expected waiting times for tasks in Host i’s ordinary

(O) and restart (R) queues, relies on the same key facts described in the analysis of TAPTF

(Chapter 4):

• Tasks in the O queue have priority of service over tasks in the R queue

• A task in service at the R queue will not be pre-empted from service by a task which

subsequently arrives into the O queue

• Within each queue, tasks are processed on a FCFS basis.

• Finally, we will have to assume that tasks that arrive into the R queues form Poisson

processes.

The expected waiting time for tasks arriving at Host i’s O and R queues is defined as

E(hostWiO) and E(hostWiR) respectively. Utilising the same classic result employed in

Chapter 4 for a non pre-emptive priority queue [Cobham, 1953] system we find that:

E(hostWiO) =
λiOE(hostX2

iO)
2(1− σ1)

(5.19)

(5.20)

and E(hostWiR) =
λiRE(hostX2

iR)
2(1− σ1)(1− σ2)

(5.21)

(5.22)

where σ1 = ρiO and σ2 = ρiR + ρiO. The above results are dependent on 0 < σ1 < 1 and

0 < σ2 < 1 at all times, or they do not hold. We now wish to work toward obtaining the

two system-wide metrics that are of most importance to us. That is, the expected waiting

time and slowdown for tasks entering the system. We let E(WiO) and E(WiR) denote the

expected waiting time of a task whose final destination is Host i’s O and R queue respectively.

Therefore, for 1 ≤ i ≤ n

E(WiO) = h′iOE(hostWiO) (5.23)

89

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

and, for 2 ≤ i ≤ n,

E(WiR) = h′iR
i−1∑

m=1

qm[E(hostWmO) +
i∑

j=m+1

E(hostWjR)]. (5.24)

The waiting time E(WiR) for a task whose final destination is a Restart queue must factor

in any waiting time it may have accumulated as it migrates toward its final destination.

The expected slowdown experienced by tasks that finish at Host i is characterised by

E(SiO) and E(SiR) respectively. Therefore,

E(SiO) = E(WiO)E(1/XiO) (5.25)

and E(SiR) = E(WiR)E(1/XiR). (5.26)

5.3.4 A TAPTF-WC model with cost-based migration

While not the focus or application of the TAPTF-WC model, for completeness we will briefly

consider a scenario where the act of work-conserving migration incurs a cost to the source

host to save and transfer state, and the destination host to restart the task, rebuild the state

information and resume processing. We will consider two scenarios. First, we consider the

case where a task that restarts incurs a fixed cost, γ, that is borne by the source host it has

migrated from and the destination host it has migrated to. Second, we consider a scenario

where a task incurs a cost, β, that is proportional to the service requirement, X. Again, this

cost can be placed on both the source and destination hosts. This is consistent with many

of the systems and migration mechanisms described in Section 3.3.

Fixed cost migration

First let us consider a fixed migration cost, that occurs when a task is migrated to a restart

queue. This fixed cost is represented by γ, where γ > 0. For generality, we will individually

factor all cost that are incurred by the source host in halting a running task, saving and

packaging its state information for transfer. We shall refer to this cost as γs, the migration

cost. The cost of resuming a task, unpacking and recreating the transferred state information

is placed upon the destination host. We will refer to this cost as γd, the resumption cost.

We need to redefine E(Xj
iR), the jth moment of the distribution of the remaining sizes

of tasks whose final destination is Host i’s R queue. For E(Xj
iR) we are now conditioning

on the distribution of task’s remaining sizes by considering the work already done (si−1) and

the fixed resumption cost incurred from restarting the task, γd.

90

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

E(Xj
iR) =

1
pi − pi−1

∫ si

si−1

(x− si−1 + γd)jf(x)dx (5.27)

=
αkα

1− (k
p)α

1
pi − pi−1

j∑

z=0

(
j!

z!(j − z)!
)(si−1 + γd)j−z(−1)j−z

∫ si

si−1

xz−α−1dx (5.28)

=

k
(1−(k

p
))(pi−pi−1)

[ln(si/si−1) + (si
si−1

− 1) + γd(si−1
−1 − s−1

i)] if j = α = 1

2k2

(1−(k
p
)2)(pi−pi−1)

[(si−1−γd)
2 (4si−si−1+γd

si
2 − 3si−1+γd

si−1
2) + ln (si

si−1
)] if j = α = 2

k
(1−(k

p
))(pi−pi−1)

[si − si−1 − (si−1 − γd)2(si−1
−1 − si

−1)

+ 2(si−1 − γd) ln (si−1

si
)] if j = 2, α = 1

αkα

1−(k
p
)α

1
pi−pi−1

∑j
z=0(

j!
z!(j−z)!)(si−1 + γd)j−z(−1)j−z(si

z−α−si−1
z−α

z−α) otherwise.

(5.29)

Let us consider those tasks that spend time in Host i’s O queues. As defined previously,

E(hostXj
iO) is the jth moment of the distribution of tasks who spent time in Host i’s O

queue. We must redefine this expression to consider the migration cost γs, which is incurred

when a task is migrated to another host without completing its service in this queue:

E(hostXj
iO) =

h′iO
hiO

E(Xj
iO) +

hiO − h′iO
hiO

(si + γs)j . (5.30)

Now, we consider those tasks that spend time in Host i’s R queue (regardless of whether

they complete their processing there or not). As defined previously, E(hostXj
iR) is the jth

moment of the distribution of tasks who spent time in Host i’s R queue. We must redefine

this expression to consider the resumption cost γd, which is incurred regardless of whether a

task runs to completion or is migrated yet again without completing its service in this queue.

In addition, the migration cost γs is incurred when a task is migrated without completing its

service in this queue:

E(hostXj
iR) =

h′iR
hiR

E(Xj
iR) +

hiR − h′iR
hiR

(si − si−1 + γs + γd)j . (5.31)

By allowing the migration costs at the source node and destination node to be modelled

separately, we attempt to maintain the generality of the TAPTF-WC model. If γs and

γd are set to equal zero, the original TAPTF-WC is obtained. By altering γs and γd we

can represent a wide variety of application domains, where these costs might be roughly

equivalent, or where the cost at one side (either source or destination) may dominate the

other.

91

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

Proportional cost migration

Let us consider a proportional migration cost, that occurs when a task is migrated to a restart

queue. We model this cost as a per-unit cost related to the original service requirement. Let

us denote β as the per-unit cost factor, where β > 0. We again separately consider the

migration costs that are incurred by the source host in halting a running task, saving and

packaging its state information for transfer, which we denote as βs. The resumption cost for

recreating the state information and resuming a running task at the destination node is βd

We again need to redefine E(Xj
iR). For E(Xj

iR) we are now conditioning on the distribu-

tion of task’s remaining sizes by considering the work already done (si−1) and the resumption

cost incurred, βdx, where x is the task’s original size.

E(Xj
iR) =

1
pi − pi−1

∫ si

si−1

(x− si−1 + βdx)jf(x)dx (5.32)

=
αkα

1− (k
p)α

1
pi − pi−1

j∑

z=0

(
j!

z!(j − z)!
)(si−1)j−z(−1)j−z

∫ si

si−1

(x + βdx)z

xα+1
dx (5.33)

=

αk
(1−(k

p
))(pi−pi−1)

[ln(si/si−1) + (si
si−1

− 1) + βd ln si
si−1

] if j = α = 1

2k2

(1−(k
p
)2)(pi−pi−1)

[(1 + βd)2(ln(si
si−1

))− si−1
2

2si
2

+ 2(si−1+βdsi−1)
si

− 3
2 − 2βd] if j = α = 2

αk
(1−(k

p
))(pi−pi−1)

[(1 + βd)2(si − si−1)

− 2(1 + βd)(si−1)(ln(si
si−1

))− si−1
2

si
+ si−1] if j = 2, α = 1

αkα

1−(k
p
)α

1
pi−pi−1

∑j
z=0

jCzsi−1
j−z(−1)j−z si

−α((1+βd)si)
z−si−1

−α((1+βd)si−1)z

z−α otherwise.

(5.34)

Let us consider those tasks that spend time in Host i’s O and R queues (regardless

of whether they complete their processing there or not). E(hostXj
iO) and E(hostXj

iO) are

the jth moments of the distribution of tasks who spent time in Host i’s O and R queues

respectively. We must redefine these expressions to consider the source migration (βs) and

destination resumption (βd) costs.

In the O queues, βsx is incurred when a task exceeds the cut-off associated with the host

it is processing on. We first need to find the expected original size of tasks that visit Host

i’s O queue but do not run to completion there, thus incurring a migration cost to transfer

the task.

92

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

¯E(XiO) =
hiO − h′iO

hiO

∫ sn

si

xf(x)dx (5.35)

=
αkα

1− (k
p)α

hiO − h′iO
hiO

∫ sn

si

x−αdx (5.36)

=

αkα

1−(k
p
)α

hiO−h′iO
hiO

ln (sn
si

) if α = 1

αkα

1−(k
p
)α

hiO−h′iO
hiO

sn
1−α−si

1−α

1−α otherwise.
(5.37)

The cost to resume a task, βd, is incurred regardless of whether a task runs to completion

or is migrated yet again without completing its service in the R queue. Unfortunately it is

not as straight forward as the fixed cost migration scenario. We must first find the expected

original size of tasks that visit Host i’s R queue (and incur a restart cost) but do not run to

completion there. We denote this expected value as ¯E(XiR), where:

¯E(XiR) =
hiR − h′iR

hiR

∫ sn

si

xf(x)dx (5.38)

=
αkα

1− (k
p)α

hiR − h′iR
hiR

∫ sn

si

x−αdx (5.39)

=

αkα

1−(k
p
)α

hiR−h′iR
hiR

ln (sn
si

) if α = 1

αkα

1−(k
p
)α

hiR−h′iR
hiR

sn
1−α−si

1−α

1−α otherwise.
(5.40)

We can now easily find both E(hostXj
iO) and E(hostXj

iR), where:

E(hostXj
iO) =

h′iO
hiO

E(Xj
iO) +

hiO − h′iO
hiO

(si + βs
¯E(XiO))j . (5.41)

and,

E(hostXj
iR) =

h′iR
hiR

E(Xj
iR) +

hiR − h′iR
hiR

(si − si−1 + βs
¯E(XiR) + βd

¯E(XiR))j . (5.42)

We again allow the migration costs at the source node and destination node to be modelled

separately. If βs and βd are set to equal zero, the original TAPTF-WC model is obtained.

93

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

5.3.5 Choosing the cut-offs

Now that we have computed the important parameters for the TAPTF-WC policy, we can

use them to find the ‘best’ cut-offs for our system. Like TAPTF and other size-based policies

before it, the choice of these cut-offs used in TAPTF-WC can have an enormous effect on

the performance of a distributed system. The principles in finding the best cut-offs are

the same as described in our previous analysis of TAPTF [Broberg et al., 2005], found in

Chapter 4, so we will briefly summarise the key issues. The optimal cut-offs for TAPTF-

WC are influenced by the task size distribution (Bounded Pareto B(k, p, α)) and the task

arrival rate into the distributed system, λ. Given the above parameters and utilising the

mathematical preliminaries described in Section 5.3.3, we can attempt to obtain optimal

cut-offs (si) for each of our hosts in the TAPTF-WC system.

In order to produce a task assignment policy which minimises the expected waiting time

and slowdown at each host, the following optimisation problems need to be addressed:

Problem I Minimize
n∑

i=1

E(WiO) +
n∑

i=2

E(WiR) (5.43)

Subject to ρiO + ρiR < 1, 1 ≤ i ≤ n. (5.44)

Problem II Minimize
n∑

i=1

E(SiO) +
n∑

i=2

E(SiR) (5.45)

Subject to ρiO + ρiR < 1, 1 ≤ i ≤ n. (5.46)

Using the optimisation problems described above, we can elect to optimise for the best

mean waiting time (represented by Problem I) or mean slowdown (represented by Problem

II).

Optimal mean waiting time and mean slowdown for the case of two and three hosts can

be obtained, using the model found in Section 5.3.3, by solving for the optimal values of the

cut-off (si) values and task splitting fractions (qi) using Mathematica [Wolfram Research,

2003]. For the three host case, si’s can be numerically found but the qi’s must be tuned by

hand. For the case of four or more hosts, all parameters (si and qi) would need to be tuned

by hand.

We recall that the lower the α parameter, the higher the variability, and the smaller

the percentage of tasks is that makes up 50% of the load. From the previous chapter we

noted TAGS (and subsequently TAPTF, which could operate identically to TAGS by setting

94

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

q1 = 1.0 when prudent) can exploit this property of the heavy-tailed distribution by running

all of the (small) tasks on the first host, leaving them under light to moderate load, while the

largest tasks filtered down to be eventually processed by the latter hosts. Despite operating

under new assumptions, it is often prudent for the TAPTF-WC policy to act in a similar

fashion - especially under extremely variable workloads.

As such, when TAPTF-WC sets q1 = 1.0 it is effectively behaving as a work-conserving

version of the TAGS policy. TAGS in its original form did not account for work-conserving mi-

gration, as it was most suited to batch and super-computing facilities where work-conserving

migration is not guaranteed to be available, nor used for performance reason. We denote

this special case of TAPTF-WC as TAGS-WC (Task Assignment based On Guessing Size

- Work Conserving). In subsequent sections we will utilise TAGS-WC as a useful point of

comparison with TAPTF-WC.

5.4 Analytical Comparison

An analytical comparison of the TAPTF-WC approach with a work-conserving TAGS pol-

icy (TAGS-WC) was performed in order to ascertain the performance of these respective

policies. This provided the best point of comparison as both policies under similar con-

straints (i.e. no a priori knowledge of a task’s service requirement, no pre-emption, work-

conserving migration available). It is these very constraints that preclude a direct EQUI-

LOAD/ADAPTLOAD [Ciardo et al., 2001; Riska et al., 2002c] and size-based [Harchol-Balter

et al., 1999; Crovella et al., 1998a; Schroeder and Harchol-Balter, 2004] policies.

Additionally, each work-conserving policy was compared to its original form (where work

is not conserved) - TAGS to TAGS-WC and TAPTF to TAPTF-WC. Although a direct

comparison is not of great use (as they operate under different assumptions), we are interested

in quantifying benefits that work-conserving migration could provide, if available.

These approaches were evaluated under a variety of conditions and their performance

compared using the most important of the metrics - mean waiting time and mean slowdown.

A large range of α values were considered, from 0.5 to 2.0, demonstrating a wide spectrum

of task size variation. Each α value was evaluated for different system loads (ρ) - 0.3 (low

load), 0.5 (moderate load) and 0.7 (high load). Performance metrics were computed for these

load scenarios for both two and three host systems.

The analytical comparison was performed in Mathematica 5.0 [Wolfram Research, 2003],

using the mathematical preliminaries presented in Section 5.3.3. The generalised TAPTF-

95

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

α q1 q2

1.0 0.98 0.02

1.1 0.97 0.03

1.2 0.96 0.04

1.3 0.95 0.05

1.4 0.93 0.07

1.5 0.91 0.09

1.6 0.88 0.12

1.7 0.84 0.16

1.8 0.81 0.19

1.9 0.77 0.23

2.0 0.74 0.26

(a) E{W}

α q1 q2

1.0 1.00 0.00

1.1 0.99 0.01

1.2 0.99 0.01

1.3 0.98 0.02

1.4 0.96 0.04

1.5 0.94 0.06

1.6 0.91 0.09

1.7 0.88 0.12

1.8 0.84 0.16

1.9 0.80 0.20

2.0 0.77 0.23

(b) E{S}

Figure 5.2: Distribution of tasks in TAPTF-WC - 2 Hosts, ρ = 0.3

WC mathematical model is also used to model the behaviour of a work-conserving TAGS

policy, TAGS-WC, by setting q1 = 1.0 (and subsequently q2 ... qn to equal 0). This has

the effect of negating the dual queues and multiple entry points utilised by the TAPTF-WC

policy, and making it behave like a work-conserving version of the existing TAGS policy.

Optimum cut-offs are found with respect to mean waiting time and mean slowdown for

both TAPTF-WC and TAGS-WC using the NMinimize function in Mathematica in order to

produce the best (and fairest) comparison of task assignment policies. This is achieved by

finding the si values in each instance that produce local minimum’s for the expected waiting

time, E(W) and the expected mean slowdown, E(S).

The choice of task distribution at the dispatcher is also critical, where qi controls the

fraction of tasks assigned to Host i from the dispatcher. In the case of two hosts, we can

numerically find the best values at each host for both si and qi, resulting in ideal conditions

for our task assignment policy, TAPTF-WC, for E(W) or E(S). For the case of three hosts,

we can solve for optimal si values but must manually tune the qi parameters. We can use

common sense regarding the necessary spread of tasks, using the results from the two host

case and experimentation to find good parameters. In the three host cases, we elected to use

single sets of qi parameters that resulted in both good E(W) and E(S).

We reiterate that for the purpose of clear and meaningful results, all comparisons of mean

96

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

waiting time and mean slowdown that are performed in this section utilise the respective

TAPTF-WC and TAGS-WC policies optimised for that metric. The expected waiting time

and slowdown graphs are presented on a log scale for the horizontal axis.

5.4.1 Two Hosts

In this section we examine an analytical comparison of TAGS-WC and TAPTF-WC in a two

host distributed system. A range of results are presented, showing the important performance

metrics under system loads of 0.3 (Figure 5.3), 0.5 (Figure 5.5) and 0.7 (Figure 5.7). Results

for TAPTF-WC are only shown where they are superior to TAGS-WC, as TAGS-WC is now

a subset of the TAPTF-WC policy’s behaviour, which can be enacted when prudent to do

so for best performance.

From Figure 5.2 we observe that the optimal values of the qi parameters follow similar

trends to that exhibited by the TAPTF policy (in Chapter 4). Indeed, the qi values are

almost identical for the non work-conserving and work-conserving TAPTF models under

this scenario. As the variation increases, less tasks are directed to the second host, until

eventually no tasks are directly dispatched to that host, tending toward behaviour we done

as TAGS-WC (i.e. a work-conserving TAGS model).

From Figures 5.3(a) and (b) we can see a reasonable improvement in expected waiting

time (from α = 1.1) and slowdown (from α = 1.3) for the TAPTF-WC policy over the

TAGS-WC incarnation under a low system load of 0.3. The magnitude of this improvement

expands as variability decreases, approaching α = 2.0.

Figures 5.3(c) and (d) depict the improvement that work-conserving migration (if avail-

able) can achieve in expected waiting time and slowdown for the TAGS policy. From the

graphs we can see that the improvement is barely perceptible - this is expected under such

low system load as the excess generated by the standard policy has little effect as the arrival

rate and expected queue lengths are low. The choice of task assignment policy used is less

critical under such a low load.

Figures 5.3(e) and (f) contrast the performance of the TAPTF policy and the work-

conserving variation of it, denoted as TAPTF-WC. Like the TAGS policies, there is little

appreciable difference in the performance of the two TAPTF variations, due to the low

system load coupled with the fact that the TAPTF policy was designed in the first instance

to reduce the amount of excess generated. This was achieved by using several techniques

that minimising the amount of hand-offs where tasks are restarted from scratch.

97

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

 1000

 10000

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS-WC
TAPTF-WC

(a) E(W)

 0.1

 1

 10

 100

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS-WC
TAPTF-WC

(b) E(S)

 1000

 10000

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS-WC
TAGS

(c) E(W) - TAGS

 0.1

 1

 10

 100

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS-WC
TAGS

(c) E(S) - TAGS

 1000

 10000

 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF-WC
TAPTF

(d) E(W) - TAPTF

 0.1

 1

 10

 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF-WC
TAPTF

(e) E(S) - TAPTF

Figure 5.3: Performance of a two host distributed system with system load of 0.3. The

expected waiting time and slowdown are depicted in (a) and (b) for work-conserving policies

optimised for these respective metrics. In (c), (d), (e) and (f) work-conserving and non

work-conserving versions of TAGS and TAPTF are compared.

98

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

Figure 5.4 shows the optimal values of the qi parameters for a two host case under a

system load of 0.5. We can see that more tasks are assigned to the second host than was

the case under a system load of 0.5. As expected, as the variation increases (α approaches

0) less and less tasks are assigned to the second host, until eventually host one receives all

tasks from the dispatcher.

Figures 5.5(a) and (b) show the expected waiting time and slow down under a moderate

system load of 0.5. The TAPTF-WC policy exhibits improved performance in expected

waiting time (from α = 1.1) and slowdown (from α = 1.2) over the TAGS-WC policy. The

magnitude of this performance increase grows as α approaches 2.0, with an improvement of

approximately two times in expected waiting time and slowdown when α = 2.0.

Again, as was the case under a low system load of 0.3, the magnitude of improvement of

the TAGS-WC policy over the TAGS policy under a moderate system load of 0.5 is small.

Figures 5.5(c) and (d) highlight this fact, despite the fact we can observe this improvement

increasing slightly. Again this is unsurprising, despite the system load increasing it is still

not enough to alter the performance metrics significantly.

Figures 5.5(e) and (f) contrast the performance metrics of the TAPTF policy with that

of the TAPTF-WC policy. The characteristics of the graph are largely the same for both

expected waiting time and slowdown, with no appreciable difference in performance. As

described previously, the standard TAPTF policy already has measures in place to reduce

the amount and effect of excess processing that exists due to non work-conserving migration,

which explains the similarity between the results.

Figure 5.6 shows the ideal qi parameters for a high system load of 0.7. The two trends

that we previously observed continue. First, as system load increases, more tasks are assigned

directly to the second host (for a given α value) from the dispatcher. Second, as the variation

increases (and α decreases), less tasks are assigned to the second host, until eventually no

tasks are assigned directly there from the dispatcher.

Figures 5.7(a) and (b) show the performance of TAPTF-WC and TAGS-WC under a

high system load of 0.7. As α decreases (from α = 1.1) we can see an increasing performance

gain for TAPTF-WC over TAGS-WC in both expected waiting time and slowdown. When

α reaches 2.0, TAPTF-WC shows a substantial improvement in performance, by factor of

approximately 2.5 in expected waiting time and slowdown.

Under a high system load of 0.7 we are finally seeing a difference in performance between

the standard TAGS policy, and the TAGS work-conserving policy, TAGS-WC. The excess

processing generated by the TAGS policy now has a visibly adverse effect on performance,

99

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

α q1 q2

0.9 0.98 0.02

1.0 0.97 0.03

1.1 0.96 0.04

1.2 0.94 0.06

1.3 0.92 0.08

1.4 0.89 0.11

1.5 0.86 0.14

1.6 0.82 0.18

1.7 0.79 0.21

1.8 0.76 0.24

1.9 0.73 0.27

2.0 0.70 0.30

(a) E{W}

α q1 q2

0.9 1.00 0.00

1.0 0.99 0.01

1.1 0.99 0.01

1.2 0.98 0.02

1.3 0.96 0.04

1.4 0.94 0.06

1.5 0.90 0.10

1.6 0.87 0.13

1.7 0.83 0.17

1.8 0.79 0.21

1.9 0.76 0.24

2.0 0.73 0.27

(b) E{S}

Figure 5.4: Distribution of tasks in TAPTF-WC - 2 Hosts, ρ = 0.5

which can be seen when contrasting it with a work-conserving version of the same policy

(shown in Figures 5.7(c) and (d)). When α = 2.0, there is factor of approximately 3.5 differ-

ence between TAGS and TAGS-WC, showing the detrimental effect that excess processing

causes when the arrival rate is higher and expected queue lengths increase.

Figures 5.7(e) and (f) show the performance metrics of the TAPTF policy compared with

the TAPTF-WC policy. As expected the performance is still largely the same, for the same

reasons given earlier in this section.

5.4.2 Three Hosts

In this section we present an analytical comparison of TAGS-WC and TAPTF-WC in a three

host distributed system. The important performance metrics are shown under system loads

of 0.3 (Figure 5.9), 0.5 (Figure 5.11) and 0.7 (Figure 5.13). As in the previous section, results

for TAPTF-WC are only shown where they are superior to TAGS-WC.

Figure 5.8 shows the qi parameters found (through experimentation) for a three host case,

under a low system load of 0.3. These parameters are more coarse than those found (via

numerical optimisation) in the two host cases. However, similar trends can be observed. We

100

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

 1000

 10000

 100000

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS-WC
TAPTF-WC

(a) E(W)

 0.1

 1

 10

 100

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS-WC
TAPTF-WC

(b) E(S)

 1000

 10000

 100000

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS-WC
TAGS

(c) E(W) - TAGS

 1

 10

 100

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS-WC
TAGS

(d) E(S) - TAGS

 1000

 10000

 100000

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF-WC
TAPTF

(e) E(W) - TAPTF

 0.1

 1

 10

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF-WC
TAPTF

(f) E(S) - TAPTF

Figure 5.5: Performance of a two host distributed system with system load of 0.5. The

expected waiting time and slowdown are depicted in (a) and (b) for work-conserving policies

optimised for these respective metrics. In (c), (d), (e) and (f) work-conserving and non

work-conserving versions of TAGS and TAPTF are compared.

101

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

α q1 q2

0.9 0.97 0.03

1.0 0.96 0.04

1.1 0.93 0.07

1.2 0.89 0.11

1.3 0.85 0.15

1.4 0.82 0.18

1.5 0.78 0.22

1.6 0.75 0.25

1.7 0.72 0.28

1.8 0.69 0.31

1.9 0.67 0.33

2.0 0.66 0.34

(a) E{W}

α q1 q2

0.9 1.00 0.00

1.0 0.99 0.01

1.1 0.98 0.02

1.2 0.96 0.04

1.3 0.92 0.08

1.4 0.88 0.12

1.5 0.84 0.16

1.6 0.80 0.20

1.7 0.76 0.24

1.8 0.73 0.27

1.9 0.70 0.30

2.0 0.68 0.32

(b) E{S}

Figure 5.6: Distribution of tasks in TAPTF-WC - 2 Hosts, ρ = 0.7

can see the majority of tasks are assigned to Host 1, while lesser proportions are assigned

to Hosts 2 and 3 respectively. As variation increases, the majority of tasks are dispatched

directly to Host 1, with a smaller proportion to Host 2 and no tasks are assigned to Host 3.

Figures 5.9(a) and (b) show the expected waiting time and slowdown of TAPTF-WC

and TAGS-WC under a low system load of 0.3. Despite the low load, we can still see some

significant improvements in these metrics over a wide range of α values, from high variation,

where α = 0.9, to lower variation, as α approaches 2.0. When α = 2.0 TAPTF-WC improves

on TAGS-WC by a factor of 2 in both expected waiting time and slowdown.

Despite the system load being low (0.3) the work-conserving TAGS policy TAGS-WC

shows a clear improvement in performance over all areas examined (shown in Figures 5.9(c)

and (d)). The TAGS-WC policy improves on the standard TAGS policy by an average factor

of approximately 1.5 in both expected waiting time and slowdown.

Figures 5.9(e) and (f) depict a familiar picture - with the work-conserving policy TAPTF-

WC showing only minor improvements over its non work-conserving original form in both

expected waiting time and slowdown.

Figure 5.10 shows the qi parameters found (again via experimentation) for a three host

case, under a moderate system load of 0.5. We find in several cases (as expected) that for a

102

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

 1000

 10000

 100000

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS-WC
TAPTF-WC

(a) E(W)

 1

 10

 100

 1000

 10000

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS-WC
TAPTF-WC

(b) E(S)

 10000

 100000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS-WC
TAGS

(c) E(W) - TAGS

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS-WC
TAGS

(d) E(S) - TAGS

 1000

 10000

 100000

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF-WC
TAPTF

(a) E(W) - TAPTF

 1

 10

 100

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF-WC
TAPTF

(b) E(S) - TAPTF

Figure 5.7: Performance of a two host distributed system with system load of 0.7. The

expected waiting time and slowdown are depicted in (a) and (b) for work-conserving policies

optimised for these respective metrics. In (c), (d), (e) and (f) work-conserving and non

work-conserving versions of TAGS and TAPTF are compared.

103

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

α q1 q2 q3

0.9 0.95 0.05 0.0

1.0 0.90 0.10 0.0

1.1 0.90 0.10 0.0

1.2 0.80 0.20 0.0

1.3 0.80 0.20 0.0

1.4 0.70 0.30 0.0

1.5 0.60 0.40 0.0

1.6 0.60 0.30 0.1

1.7 0.60 0.30 0.1

1.8 0.60 0.30 0.1

1.9 0.60 0.30 0.1

2.0 0.60 0.30 0.1

Figure 5.8: Distribution of tasks in TAPTF-WC - 3 Hosts, ρ = 0.3

given α value, the second host is receiving a greater proportion of tasks than was occurring

under a system load of 0.3. The trends in qi’s as variation increases are consistent with all

previous observations, with Host 1 receiving the vast majority of tasks, while Host 2 receives

a less proportion, and Host 3 eventually receives no tasks directly from the dispatcher.

Substantial improvements can be observed in Figures 5.11(a) and (b), depicting the ex-

pected waiting time and slowdown respectively under a moderate system load of 0.5. We see

that TAPTF-WC exhibits improved expected waiting time and slowdown from an α value

of 0.9 (denoting a highly variable workload) to areas of lower variation in the workload (as

α approaches 2.0). When α = 1.9 we can observe that TAPTF-WC has an approximate im-

provement of 2.5 times over TAGS-WC. This is a substantial improvement under conditions

of only moderate system load.

TAGS-WC exhibits a clear (and in some cases substantial) improvement over the standard

TAGS policy under a moderate load of 0.5. Figures 5.11(c) and (d) show the expected waiting

time and slowdown respectively. We can see that meaningful performance gains could be

achieved if work-conserving migration is available to be utilised in a given distributed system.

When α = 1.9, TAGS-WC shows an improvement of approximately 4 times in both expected

waiting time and slowdown.

Figures 5.11(e) and (f) show the largest difference in performance between TAPTF-

104

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

 100

 1000

 10000

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS-WC
TAPTF-WC

(a) E(W)

 0.1

 1

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS-WC
TAPTF-WC

(b) E(S)

 1000

 10000

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS-WC
TAGS

(c) E(W) - TAGS

 0.1

 1

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS-WC
TAGS

(d) E(S) - TAGS

 100

 1000

 10000

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF-WC
TAPTF

(e) E(W) - TAPTF

 0.1

 1

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF-WC
TAPTF

(f) E(S) - TAPTF

Figure 5.9: Performance of a three host distributed system with system load of 0.3. The

expected waiting time and slowdown are depicted in (a) and (b) for work-conserving policies

optimised for these respective metrics. In (c), (d), (e) and (f) work-conserving and non

work-conserving versions of TAGS and TAPTF are compared.

105

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

α q1 q2 q3

0.9 0.95 0.05 0.0

1.0 0.90 0.10 0.0

1.1 0.80 0.20 0.0

1.2 0.75 0.25 0.0

1.3 0.70 0.30 0.0

1.4 0.60 0.40 0.0

1.5 0.60 0.30 0.1

1.6 0.60 0.30 0.1

1.7 0.60 0.30 0.1

1.8 0.60 0.30 0.1

1.9 0.60 0.30 0.1

2.0 0.60 0.30 0.1

Figure 5.10: Distribution of tasks in TAPTF-WC - 3 Hosts, ρ = 0.5

WC and TAPTF observed so far. From the figures we can observe a consistent factor of

improvement from the TAPTF-WC policy of 1.3 times in expected waiting time. This is

over the entire range of α values observed, from α = 0.9 (highly variable) to α = 2.0 (low

variation). Similarly, a factor of improvement of 1.4 times can be seen in expected slowdown,

when comparing TAPTF-WC to TAPTF over the same range of α values.

The qi parameters found for a three host system with a high system load of 0.7 are

depicted in Figure 5.12. By contrasting the qi parameters used here with those used for

lower loads (under three hosts), we can see a subtle trend where it is beneficial to dispatch

more tasks to the second and third hosts as system load rises.

Figures 5.13(a) and (b) show the expected waiting time and slowdown of of our three

host system under a high load of 0.7. A clear benefit can be seen in both waiting time and

especially slowdown, ranging from conditions of high variation (α = 0.9) and expanding in

magnitude as α approaches 2. As was the case under high load (for three hosts) in the

previous chapter for TAGS, TAGS-WC is unable to operate in certain workload conditions.

Specifically, when α > 1.6 no suitable cut-offs can be found that keep the load below 1 at

all hosts. When α = 1.6 TAPTF-WC has an approximate improvement over TAGS-WC in

waiting time and slowdown of a factor of 2.2 times.

Figures 5.13(c) and (d) highlights the enormous benefit that work-conserving migration

106

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

 1000

 10000

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS-WC
TAPTF-WC

(a) E(W)

 0.1

 1

 10

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS-WC
TAPTF-WC

(b) E(S)

 1000

 10000

 100000

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS-WC
TAGS

(c) E(W) - TAGS

 1

 10

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS-WC
TAGS

(d) E(S) - TAGS

 1000

 10000

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF-WC
TAPTF

(e) E(W) - TAPTF

 0.1

 1

 10

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF-WC
TAPTF

(f) E(S) - TAPTF

Figure 5.11: Performance of a three host distributed system with system load of 0.5. The

expected waiting time and slowdown are depicted in (a) and (b) for work-conserving policies

optimised for these respective metrics. In (c), (d), (e) and (f) work-conserving and non

work-conserving versions of TAGS and TAPTF are compared.

107

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

α q1 q2 q3

0.9 0.95 0.05 0.0

1.0 0.9 0.1 0.0

1.1 0.8 0.2 0.0

1.2 0.7 0.3 0.0

1.3 0.6 0.4 0.0

1.4 0.6 0.3 0.1

1.5 0.6 0.3 0.1

1.6 0.6 0.3 0.1

1.7 0.6 0.3 0.1

1.8 0.6 0.3 0.1

1.9 0.5 0.3 0.2

2.0 0.5 0.3 0.2

Figure 5.12: Distribution of tasks in TAPTF-WC - 3 Hosts, ρ = 0.7

(if available) would have for a TAGS policy under high system load. We can see both the

waiting time and slowdown maintain a relatively flat response, and the addition of work-

conserving migration allows TAGS-WC to service a wider range of workload variations than

TAGS could.

TAPTF and its work-conserving variant, TAPTF-WC, are shown Figures 5.13(e) and (f)

for three hosts under a high system load of 0.7. We can observe that the improvement in

waiting time and particularly slowdown has expanded as the system load increased. When

α = 2 we observed an improvement factor of 1.6 for waiting time and 1.84 in slowdown for

the TAPTF-WC policy over the standard TAPTF policy.

5.5 Analytical Comparison - Cost-based migration

In this section we examine a selection of scenarios where the act of task migration incurs

a cost to either or both of the source host and the destination host, as per the updated

TAPTF-WC model described in Section 5.3.4. We consider the case where the migration

costs are fixed, as well as where the costs are proportional to the original size of the task.

In each instance we consider both the migration costs (incurred by the source host) and

the resumption costs (incurred by the destination host). For brevity, in both instances we

108

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

 1000

 10000

 100000

 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS-WC
TAPTF-WC

(a) E(W)

 1

 10

 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS-WC
TAPTF-WC

(b) E(S)

 10000

 100000

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

T
im

e
U

ni
ts

Alpha

TAGS-WC
TAGS

(c) E(W) - TAGS

 1

 10

 100

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

T
im

e
U

ni
ts

Alpha

TAGS-WC
TAGS

(d) E(S) - TAGS

 1000

 10000

 100000

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF-WC
TAPTF

(e) E(W) - TAPTF

 1

 10

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF-WC
TAPTF

(f) E(S) - TAPTF

Figure 5.13: Performance of a three host distributed system with system load of 0.7. The

expected waiting time and slowdown are depicted in (a) and (b) for work-conserving policies

optimised for these respective metrics. In (c), (d), (e) and (f) work-conserving and non

work-conserving versions of TAGS and TAPTF are compared.

109

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

only consider cases where the migration and resumption costs are equivalent. One could

also easily model cases where the migration cost dominates the resumption cost, or vice

versa - the combinations are too numerous to enumerate them all. The loads and task size

distribution are varied as described in the previous section. We compare each TAGS-WC

and TAPTF-WC model (and their cost-based variants) to the original TAGS and TAPTF

models. While they are not necessarily directly comparable (as they are designed for different

application domains), it provides an interesting point of reference to consider the benefits of

work-conserving migration, if available, and the potentially negative effect of migration costs

that could occur in certain circumstances.

5.5.1 Fixed cost migration

In Figures 5.14, 5.15 and 5.16 we consider TAGS-WC and TAPTF-WC systems that incur

a fixed cost for task migration, under system loads of 0.3, 0.5 and 0.7. We vary the fixed

migration and resumption costs examining scenarios where γs = γd = 750, 1500 and 3000.

Figures 5.14(a) and (b) show the TAGS-WC policy, contrasted against the original TAGS

as well as TAGS-WC models that incorporate fixed costs for each task migration, under

a system load of 0.3. From the waiting time depicted in Figure 5.14(a) we can see that

when α ≥ 1.2 any gains made by a work-conserving TAGS policy are countered by the

fixed migration cost, with the original TAGS model performing marginally better than any

of the fixed cost based TAGS-WC models. Conversely, we can see that as α approaches

0.5, work-conserving migration shows some minor improvement, even when incurring costs.

Figure 5.14(b) depicts a comparison of slowdown, where the results show few surprises. As

the migration cost for TAGS-WC increases, the slowdown gets incrementally worse.

Figures 5.14(c) and (d) show the expected waiting time and slowdown for TAPTF,

TAPTF-WC and the TAPTF-WC fixed cost variants. There is only a marginal difference

in performance in all instances, with both waiting time and slowdown becoming incremen-

tally worse as the fixed migration cost increases. Even at the lowest fixed migration cost

(γd = γs = 750), the original TAPTF model (which restarts tasks from scratch) performs

better in all instances.

The expected waiting time and slowdown under a system load of 0.5 for the TAGS variants

are shown in Figures 5.15(a) and (b). From Figure 5.15(a) we can see a trend emerging,

where the cost based TAGS-WC policies suffer as the variation decreases (α approaches 2.0),

whilst maintaining good expected waiting time as the variation increases (α approaches 0.5)

110

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

 1000

 10000

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS
TAGS-WC

TAGS-WC COST 750
TAGS-WC COST 1500
TAGS-WC COST 3000

(a) E(W) - TAGS-WC COST

 0.1

 1

 10

 100

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
T

im
e

U
ni

ts

Alpha

TAGS
TAGS-WC

TAGS-WC COST 750
TAGS-WC COST 1500
TAGS-WC COST 3000

(b) E(S) - TAGS-WC COST

 1000

 10000

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF
TAPTF-WC

TAPTF-WC COST 750
TAPTF-WC COST 1500
TAPTF-WC COST 3000

(c) E(W) - TAPTF-WC COST

 0.1

 1

 10

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF
TAPTF-WC

TAPTF-WC COST 750
TAPTF-WC COST 1500
TAPTF-WC COST 3000

(d) E(S) - TAPTF-WC COST

Figure 5.14: Performance of a two host distributed system with system load of 0.3 and a fixed

migration cost, where γs = γd.

111

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

 1000

 10000

 100000

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS
TAGS-WC

TAGS-WC COST 750
TAGS-WC COST 1500
TAGS-WC COST 3000

(a) E(W) - TAGS-WC COST

 1

 10

 100

 1000

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
T

im
e

U
ni

ts

Alpha

TAGS
TAGS-WC

TAGS-WC COST 750
TAGS-WC COST 1500
TAGS-WC COST 3000

(b) E(S) - TAGS-WC COST

 1000

 10000

 100000

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF
TAPTF-WC

TAPTF-WC COST 750
TAPTF-WC COST 1500
TAPTF-WC COST 3000

(c) E(W) - TAPTF-WC COST

 0.1

 1

 10

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF
TAPTF-WC

TAPTF-WC COST 750
TAPTF-WC COST 1500
TAPTF-WC COST 3000

(d) E(S) - TAPTF-WC COST

Figure 5.15: Performance of a two host distributed system with system load of 0.5 and a fixed

migration cost, where γs = γd.

112

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

 10000

 100000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS
TAGS-WC

TAGS-WC COST 750

(a) E(W) - TAGS-WC COST

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
T

im
e

U
ni

ts

Alpha

TAGS
TAGS-WC

TAGS-WC COST 750

(b) E(S) - TAGS-WC COST

 1000

 10000

 100000

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF
TAPTF-WC

TAPTF-WC COST 750
TAPTF-WC COST 1500
TAPTF-WC COST 3000

(c) E(W) - TAPTF-WC COST

 1

 10

 100

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF
TAPTF-WC

TAPTF-WC COST 750
TAPTF-WC COST 1500
TAPTF-WC COST 3000

(d) E(S) - TAPTF-WC COST

Figure 5.16: Performance of a two host distributed system with system load of 0.7 and a fixed

migration cost, where γs = γd.

113

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

despite high fixed migration and resumption costs. With respect to the cost-based TAGS-WC

models, the slowdown increases significantly as the task size variation decreases, especially

where the fixed migration cost is high (γd = γs = 3000).

Figures 5.15(c) and (d) show the expected waiting time and slowdown for the TAPTF

variants. Again we see little appreciable difference between them, with waiting time and

slowdown increases gradually as the migration cost rises.

Figures 5.16(a) and (b) show the waiting time and slowdown of various TAGS models

under a high system load of 0.7. In this case, the TAGS-WC cost model is only shown where

γd = γs = 750. No parameters could be found for γd = γs = 1500 or 3000 as the load could

not be kept below 1 at each host. However, we can still see a continuing trend, where the

TAGS-WC cost-based model suffers as the task size variation decreases, as more and more

tasks are migrated given the load must be shared more evenly to keep the load below 1

on both hosts. As costs are incurred for each of these migrations, the waiting time rapidly

deteriorates. However, as the variation increases, the penalty TAGS incurs from restarting

tasks from scratch is much higher than the fixed cost of migrating a task in a work-conserving

fashion.

There are few surprises when considering the waiting time and slowdown for the TAPTF

variants, depicted in Figures 5.16(c) and (d). However, we note that as the task size variation

increases the original TAPTF model has the highest waiting time and slowdown as compared

to TAPTF-WC and each of its fixed cost-based variants.

5.5.2 Proportional cost migration

In Figures 5.17, 5.18 and 5.19 we consider TAGS-WC and TAPTF-WC systems that incur a

proportion cost for task migration, under system loads of 0.3, 0.5 and 0.7. The proportional

migration and resumption costs are varied to examine scenarios where βs = βd = 0.25, 0.5

and 0.75. This equates to penalties on the source and destination hosts of 25%, 50% and

75% of a task’s original service requirement respectively.

Figures 5.17(a) and (b) show the expected waiting time and slowdown for the TAGS

variants under a low system load of 0.3. For both the expected waiting time and slowdown, as

the per-unit migration costs increase, the metrics increase proportionally. We note that there

is increased divergence as the task size variation increases and the per-unit costs increase.

This makes intuitive sense as there tend to be more larger tasks, and as the migration costs

are proportional to the task size, there is increased overhead to migrate these tasks.

114

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

The expected waiting and slowdown times for various TAPTF policies are shown Fig-

ures 5.17(c) and (d). The results become incrementally worse as the per-unit migration costs

increases for both waiting time and slowdown. There is again some divergence as the task

size distribution becomes more variable, in conjunction with increased per-unit migration

cost. However, this is less pronounced than what was observed for the TAGS variants above.

The TAGS variants are examined under a moderate system load of 0.5 in Figures 5.18(a)

and (b), with the TAPTF variants examined under the same conditions in Figures 5.18(c)

and (d). Given that the migration costs are proportional to the task size, the order of

performance of the various TAGS and TAPTF variants in comparison to each other remain

unchanged. We begin to note the effect of the increased system load in conjunction with

increasing migration costs for the TAGS-WC cost-based variant, as they struggle to keep the

load below 1 at each host.

Figures 5.19(a) and (b) show the various TAGS policies under a high system load of 0.7.

Consistent with what occurred under this system load with a fixed migration cost, optimal

settings for TAGS-WC with proportional migration costs could only be computed where

βs = βd = 0.25. In this particular case, results could only be obtained where 0.9 ≤ α ≤ 2.0.

This is due to an inability to keep the load at both hosts under 1 in other instances. The

results obtained for TAGS-WC where βs = βd = 0.25 are consistently worse than TAGS and

TAGS-WC in nearly all cases.

Figures 5.19(c) and (d) show the results for the TAPTF variants, which are consistent

with all previously observed results. We can see the combination of high load and high per-

unit migration costs are beginning to take its toll on the TAPTF-WC cost-based variants

shown. This is especially the case as the task size variation increases. Indeed, with larger

tasks occurring more regularly, the cost of migrating these tasks is high.

5.6 Discussion

In this section we consider the implications of the results presented in Section 5.4 and Sec-

tion 5.5. Results for the two host scenario were shown in Section 5.4.1, and the three host

scenario were presented in Section 5.4.2. The results for a fixed migration cost model was

presented in Section 5.5.1, whilst proportional migration cost results were shown in Sec-

tion 5.5.2

Figure 5.3 shows a comparison of expected waiting time and slowdown for the two work-

conserving policies we are interested in, TAPTF-WC and TAGS-WC, under a two host system

115

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

 1000

 10000

 100000

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS
TAGS-WC

TAGS-WC COST 25
TAGS-WC COST 50
TAGS-WC COST 75

(a) E(W) - TAGS-WC COST

 0.1

 1

 10

 100

 1000

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
T

im
e

U
ni

ts

Alpha

TAGS
TAGS-WC

TAGS-WC COST 25
TAGS-WC COST 50
TAGS-WC COST 75

(b) E(S) - TAGS-WC COST

 1000

 10000

 100000

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF
TAPTF-WC

TAPTF-WC COST 25
TAPTF-WC COST 50
TAPTF-WC COST 75

(c) E(W) - TAPTF-WC COST

 0.1

 1

 10

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF
TAPTF-WC

TAPTF-WC COST 25
TAPTF-WC COST 50
TAPTF-WC COST 75

(d) E(S) - TAPTF-WC COST

Figure 5.17: Performance of a two host distributed system with system load of 0.3 and a

proportional migration cost, where βs = βd.

116

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

 1000

 10000

 100000

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS
TAGS-WC

TAGS-WC COST 25
TAGS-WC COST 50
TAGS-WC COST 75

(a) E(W) - TAGS-WC COST

 1

 10

 100

 1000

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
T

im
e

U
ni

ts

Alpha

TAGS
TAGS-WC

TAGS-WC COST 25
TAGS-WC COST 50
TAGS-WC COST 75

(b) E(S) - TAGS-WC COST

 1000

 10000

 100000

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF
TAPTF-WC

TAPTF-WC COST 25
TAPTF-WC COST 50
TAPTF-WC COST 75

(c) E(W) - TAPTF-WC COST

 0.1

 1

 10

 100

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF
TAPTF-WC

TAPTF-WC COST 25
TAPTF-WC COST 50
TAPTF-WC COST 75

(d) E(S) - TAPTF-WC COST

Figure 5.18: Performance of a two host distributed system with system load of 0.5 and a

proportional migration cost, where βs = βd.

117

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

 10000

 100000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS
TAGS-WC

TAGS-WC COST 25

(a) E(W) - TAGS-WC COST

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
T

im
e

U
ni

ts

Alpha

TAGS
TAGS-WC

TAGS-WC COST 25

(b) E(S) - TAGS-WC COST

 1000

 10000

 100000

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF
TAPTF-WC

TAPTF-WC COST 25
TAPTF-WC COST 50
TAPTF-WC COST 75

(c) E(W) - TAPTF-WC COST

 1

 10

 100

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF
TAPTF-WC

TAPTF-WC COST 25
TAPTF-WC COST 50
TAPTF-WC COST 75

(d) E(S) - TAPTF-WC COST

Figure 5.19: Performance of a two host distributed system with system load of 0.7 and a

proportional migration cost, where βs = βd.

118

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

with a system load of 0.3. Under such a low system load we expected very little difference in

performance, as even naive task assignment policies generally perform well. Here we see only

a slight improvement in performance as the variation in task sizes decreases. This is because

the TAPTF-WC policy capitalises on this reduction in variance by spreading the influx of

tasks between the two hosts rather than only allowing tasks to enter at the first host.

The visible difference in performance between the work and non work-conserving TAPTF

and TAGS policies is barely perceptible, again due to the low utilisation levels on all hosts.

What excess that is generated by the non work conserving TAPTF and TAGS policies is not

enough to significantly effect the performance metrics (which is immediately apparent when

compared to their work-conserving variants).

Figure 5.5 shows the two policies under a moderate system load of 0.5. Since the utilisa-

tion level has increased we are seeing a more noticeable performance difference between the

TAPTF-WC and TAGS-WC policies over a wider range of traffic variation - most obvious

under moderate load, where TAPTF-WC is exploiting both hosts rather than allowing the

first host to be disproportionally utilised as can be the case under the TAGS-WC policy.

This results in better performance for the TAPTF-WC policy, because as variation decreases

TAGS-WC can no longer exploit the ‘heavy-tailed’ properties of the task size distribution,

and is in fact disadvantaged by its own design.

The difference between a system with work-conserving migration available to one without

(illustrated again by contrasting the two variations of the TAPTF and TAGS policies) is more

noticeable under the higher system load, but are still small. The characteristic shape of each

metric graph are largely the same, with little divergence visible in comparisons for expected

waiting time and slowdown.

The two host system is depicted under a high system load of 0.7 in Figure 5.7. Under this

higher system load we can observe a substantial improvement in TAPTF-WC over the TAGS-

WC policy, increasing in magnitude as α increases and variation decreases. Again these gains

are made by exploiting the second (potentially idle) host more as variation decreases, rather

than allowing the first host to be disproportionally loaded by making it the only point of

entry for tasks. This is especially important under high loads, as utilisation has increased

and the expected queue length is longer, requiring more intelligent use of the resources

available to us to maintain good performance. Techniques that TAPTF-WC utilises such as

enabling multiple entry points and separating short and long task flows help maintain these

performance levels, even under high load.

Figure 5.9 depicts the expected waiting time and slowdown for TAPTF-WC and TAGS-

119

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

WC, under a three host system with a low system load of 0.3. Even under this low load we can

see an appreciable improvement in performance shown by TAPTF-WC under a wide range

of variation scenarios. This again can be attributed to the fact that we have more flexibility

in our task assignment policy when comparing to a work-conserving TAGS approach, with

TAPTF-WC able to utilise the available hosts more fully. This trend continues (with the

performance improvement expanding) under a system load of 0.5.

Similar trends continue as we consider a three host system under a high system load of 0.7,

depicted in Figure 5.13. TAPTF-WC shows a relatively larger performance improvement over

TAPTF, but the most interesting result is the performance of TAGS-WC. We can see that

without the burden of non work-conserving migration (and the wasted processing associated

with it), TAGS-WC is more suited to processing high system loads than TAGS was. Over

a wide range of workloads, TAGS-WC shows a relatively flat response for both waiting time

and slowdown, until it too is eventually unable to service the workload (when α > 1.6).

While the addition of work conservation only offers a small improvement between the two

TAPTF variants under low and moderate load, the same is not true of the TAGS variants.

TAGS by its very design can be a wasteful task assignment policy, due to only having a single

entry point for all tasks. Under certain scenarios (under task size distributions of moderate

to low variation) the number of hand-offs can be significant. The negative effect of these

hand-offs are compounded when combined with high system loads. A significant amount of

wasted processing occurs when tasks are migrated and restarted from scratch, with any prior

work being lost. As such a TAGS policy had the most to gain by adding work-conserving

migration. This is clearly depicted in Figures 5.9, 5.11 and 5.13.

Whilst not the focus of this chapter, we briefly explored the effect of a fixed cost migration

(incurred by both the source host to migrate and the receiver host to resume) in Section 5.5.

Fixed costs were examined where the migration and resumption costs were 750, 1500 and

3000 units. This equates to 25%, 50% and 75% of the mean task size respectively. These

costs were chosen as they are quite high, with a migration cost that is equivalent to the mean

being an extreme case. As we observed from Figures 5.14, 5.15 and 5.16 in a large number

of cases you would achieve better mean waiting time and slowdown by restarting tasks from

scratch when there is a large cost involved to migrate a task in a work-conserving fashion.

However, the results are important for tasks that, due to the requirements of the application

domain (e.g. interactive tasks, web requests) cannot simply be restarted from scratch, such

as those described in 5.1.1. For the TAGS variants, some interesting cases occurred under

higher loads. With respect to waiting time, a fixed-cost TAGS-WC maintained respectable

120

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

waiting time under extreme task size variation, as α approaches 0.5. Under a low system

load, fixed-cost migration had little effect on the expected metrics for both the TAGS and

TAPTF variants.

Proportional per-unit migration costs were examined where the migration and resumption

costs were 25%, 50% and 75% of the original task size of the task to be migrated. The

respective results found for both TAGS and TAPTF variants (in relation to each other)

where consistent, with performance decreasing as the proportional migration cost increased.

As with the fixed cost scenarios, costs of 25%, 50% and 75% would be considered high but

provide an interesting view of the performance and benefit of migration under such crippling

costs.

5.7 Conclusion

In this chapter we presented work-conserving extensions of the TAPTF policy, TAPTF-WC.

We also presented work-conserving variants of the TAGS task assignment policy (denoted as

TAGS-WC) as a special case of TAPTF-WC. We modelled TAPTF-WC (and TAGS-WC)

where migration costs were negligible, fixed and proportional to the original service require-

ment of a task. Where migration costs were negligible, TAPTF-WC exhibited consistently

good performance over a wide range of task distribution scenarios due to its flexible na-

ture, spreading the work over multiple hosts when prudent, and separating short task flows

from large via the use of dual queues. Tasks are migrated in a work-conserving manner,

reducing the penalty associated with task migration found in existing policies such as TAGS

and TAPTF which restart tasks upon migration. This makes the TAPTF-WC policy well

suited to environments where work-conserving migration facilities are available, such as web

server clusters (as described in Section 5.1). When comparing TAGS and TAPTF to their

respective work-conserving variants, we noted that TAGS-WC showed a larger improvement.

This was due to the more wasteful nature of the TAGS policy under scenarios of high system

load and more moderate task size variation, which was rectified by adding work-conserving

migration (TAGS-WC). A TAGS-WC approach is useful in conditions of high to extreme

variation, being ideally suited (by design) to such scenarios. Conversely, TAPTF-WC is well

suited to conditions of high to moderate and low variation, and high system loads. This is

due to its ability to deal with both highly variable workloads, keeping small and large tasks

from interfering with each other via dual queues and migration, and moderately variable

workloads, exploiting idle hosts as the tasks become more uniformly sized. As such, we find

121

CHAPTER 5. TASK ASSIGNMENT WITH WORK-CONSERVING MIGRATION

that the TAPTF-WC policy (encompassing TAGS-WC) is well suited for load distribution

under a wide range of different workloads in environments where task sizes are not known a

priori and negligible cost work-conserving migration is available.

122

Chapter 6

Approximating General service

distributions

Exponential distributions have traditionally been used to model the traffic (e.g. inter-arrival

and service distributions) experienced in computer networks. They are attractive as they are

amenable to analysis typically utilised in queueing models. Modern traffic analysis has shown

that many computing workloads are in fact ‘heavy-tailed’ and highly variable, and are well

represented by general distributions such as Log-normal [Mitzenmacher, 2004; Downey, 2005]

and Pareto. There has also been evidence suggesting long-tailed arrival patterns in some ap-

plication domains. However, the use of such distributions can make an analytical analysis of

some queueing metrics such as waiting time, busy period, slowdown, etc. difficult due to the

fact that the Markovian properties of certain stochastic processes in queues are no longer in

force. The use of Prony’s method to fit a series of exponential distributions to the original

General distribution can help avoid this problem, resulting in a Hyper-exponential distribu-

tion that represents the characteristics of the original distribution, but is more amenable to

analysis. Bounded representations of general distributions (such as Bounded Pareto) are of-

ten used, but they suffer from similar problems. We show that by default Prony’s method is

not ideally suited to fitting bounded distributions, and present two ways of improving the fit:

by normalising the Hyper-exponential resulting from Prony’s method between the bounds of

the distribution being approximated, and by re-evaluating Prony’s method to fit directly to

a Bounded Hyper-exponential. Following this, we re-evaluate our TAPTF model to utilise

a Hyper-exponential or a Bounded Hyper-exponential service distribution. This opens up

our TAPTF model, allowing it to handle additional service distributions that can be ap-

123

CHAPTER 6. APPROXIMATING GENERAL SERVICE DISTRIBUTIONS

proximated using Hyper-exponential or Bounded Hyper-exponential distributions, such as

Log-normal and Weibull. Fundamentally, this means the flexible TAPTF model can be used

with a wider variety of computing workloads. We demonstrate the accuracy of using such

Hyper-exponential approximations in queueing models by examining queueing metrics from

updated Random and TAPTF queueing systems that utilise Bounded Hyper-exponential

service distributions. Finally, we highlight a few of the mathematical properties of Hyper-

exponential and Bounded Hyper-exponential distributions that makes them so attractive to

use in analysis of queueing systems.

6.1 Introduction

Heavy-tailed workloads have been observed frequently in many computing and communica-

tions environments - such as files requested by users, files transmitted on a network, files

stored on a server and transmission duration’s of files [Crovella et al., 1998b; Crovella and

Bestavros, 1997]. Traffic analysis of the 1998 World Cup showed that the workload was con-

sistent with a heavy-tailed distribution, both when examined on a day by day basis [Ciardo

et al., 2001] and over the 92 day period of the World Cup [Arlitt and Jin, 2000]. Consistent

with these measurements, workload generating tools such as SURGE [Barford and Crovella,

1998] have been formulated to ‘stress-test’ web servers in a more realistic manner. This

is achieved by generating web workload (i.e. requests) whose service requirement follows a

heavy-tailed distribution. This phenomenon is covered in detail in Chapters 1 and 2.

‘Heavy-tailed’ distributions such as Pareto have very high variance, where 1% of tasks

can take 50% of the computing resources. However, the Pareto distribution is unsuitable to

use in queueing analysis, given that the expected value E[X] is undefined when α ≤ 1, and

the variance var(x) is undefined when α ≤ 2.

For the purpose of analysis, it is often assumed that the task sizes show some maximum

(but large) value. This is a reasonable assumption in many cases, such as a web server, which

would have some largest file. A Bounded Pareto distribution is therefore used, which has

an lower and upper limit on the task size distribution. The Bounded Pareto distribution

has been used often in recent analysis of task assignment policies [Broberg et al., 2005;

Harchol-Balter, 2002; Harchol-Balter et al., 1999]. The Bounded Pareto has all moments

finite, however advanced analysis (such as computing the standard deviation and variance

of common metrics such as waiting time and slowdown) is complex due to the difficulties in

manipulating the Laplace transforms of these metrics.

124

CHAPTER 6. APPROXIMATING GENERAL SERVICE DISTRIBUTIONS

It is well known that a complete analysis of the M/G/c queueing system is a difficult

problem due to the fact that the usual Markovian property underlying the birth and death

queueing models can no longer be assumed. Analysis of the M/G/1 queues is even quite com-

plex and various devices, such as the method of embedded Markov Chain, have to be resorted

to in order to obtain the solutions of the systems. Analysis of M/M/1 and M/M/c systems

are computationally trivial by comparison (as described in previous research [Osogami and

Harchol-Balter, 2003]). We will endeavour to approximate our ‘heavy-tailed’ Pareto distribu-

tion with a series of exponential distributions (known as a Hyper-exponential distribution)

while still maintaining the important characteristics of the original distribution.

Once we have a General model of the current traffic (such as Pareto), we wish to con-

vert it to a more analytically friendly representation. We fit our Pareto service distribution

as series of Exponential distributions (known as Hyper-exponential), while still maintaining

the important characteristics of the original distribution, such as the long tail. We do this

using a technique known as ‘Prony’s Method’ [Marple, 1986], which has been revisited in

more recent work by Feldmann and Whitt [Feldmann and Whitt, 1997]. This is described

in Section 6.2. In Section 6.3 we introduce the notion of a Bounded Hyper-exponential, and

re-evaluate Prony’s method in order to fit a Bounded Pareto directly to this distribution. In

Section 6.4 we measure the quality of fit achieved, through visual inspection and a comparison

of moments. We wish to represent our TAPTF M/BP/1 system as a M/Hn/1 or M/BHn/1

systems, without adversely affecting the integrity and realism of our original model. This re-

quires us to re-evaluate our model with a Hyper-exponential (or Bounded Hyper-exponential)

service distribution, shown in Section 6.5. Section 6.6 depicts a comparison of queueing met-

rics (for Random and TAPTF properties systems), contrasting the original Bounded Pareto

service models with approximated Bounded Hyper-exponential service models (computed in

Section 6.5) in each instance. In Section 6.7 we explore some of the properties of Hyper-

exponential and Bounded Hyper-exponential distributions (such as the higher moments and

Laplace transforms) that makes them so amenable to use in queueing system analysis. In

Section 6.8 we summarise our contributions, and explore further improvements that can be

made regarding the techniques presented in this chapter.

6.2 Fitting General Distributions to Hyper-exponential

We wish to fit a series of exponential functions, known as a Hyper-exponential distribution,

to a Pareto (or Bounded Pareto) distribution.

125

CHAPTER 6. APPROXIMATING GENERAL SERVICE DISTRIBUTIONS

................. 1cn cn−1 bcn−1 c1 bc

Figure 6.1: Prony’s Method Matching Points

The Pareto distribution has a probability density function (p.d.f) of:

f(x) =
αkα

xα+1
, k > 0, x > k (6.1)

The cumulative distribution function (c.d.f) is:

F (x) = Pr[X ≤ x]

= 1− (
k

x
)
α

(6.2)

The complementary cumulative distribution function (c.c.d.f) is:

F c(x) = 1− F (x)

= (
k

x
)
α

(6.3)

The Bounded Pareto distribution is bounded from below (by k), and above (by p). This

is a realistic for many computing workloads as typically a task (e.g. a web request or CPU

process) would have lower and (large) upper bound. It has a probability density function

(p.d.f) of:

f(x) =
αkα

1− (k/p)α
x−α−1, k ≤ x ≤ p (6.4)

The cumulative distribution function (c.d.f) is:

F (x) = Pr[X ≤ x]

=
1− (k/x)α

1− (k/p)α (6.5)

The complementary cumulative distribution function (c.c.d.f) is:

F c(x) = 1− F (x)

=
(k/x)α − (k/p)α

1− (k/p)α (6.6)

126

CHAPTER 6. APPROXIMATING GENERAL SERVICE DISTRIBUTIONS

We wish to fit these distributions to a series of exponential functions, known as a Hyper-

exponential. An n part Hyper-exponential has a probability density function (p.d.f) of:

hn(x) =
n∑

i=1

Piλie
−λix, where

n∑

i=1

Pi = 1 (6.7)

The cumulative distribution function (c.d.f) is:

Hn(x) = Pr[X ≤ x]

=
n∑

i=1

Pi(1− e−λix) (6.8)

The complementary cumulative distribution function (c.c.d.f) for an n part Hyper-exponential

is described as follows:

Hn
c(x) =

n∑

i=1

Pie
−λix (6.9)

In order to fit a long tailed distribution to a mixture of exponential distributions, we utilise

a technique known as Prony’s method [Marple, 1986; Feldmann and Whitt, 1997]. Techniques

for fitting long tailed data sets have also been devised previously [Riska et al., 2002a;b], but

in this chapter we focus on fitting distributions, not experimental data measurements. The

recursive fitting process begins at the tail, computing the pair (λ1, P1), then (λ2, P2) and

continues until (λn, Pn). After a segment is fitted, it is subtracted from the original c.c.d.f,

then the next segment is fitted to the remaining c.c.d.f. By doing this we are fitting an

individual exponential component to each of the points (c1, bc1), (c2, bc2) up until cn (as seen

in Figure 6.1). The higher indexed components have a tail that decays more rapidly (and

a higher λ parameter), and as such will not adversely affect the earlier fitted components.

Finally, we compute the last pair of parameters, (λn, Pn).

It is assumed that the ratios ci/ci+1 are sufficiently large, and the parameter b must be

chosen such that 1 < b < ci/ci+1, for all i. If the parameters λi are sufficiently separated, a

good fit should be obtained. Once the procedure completes, we should have a n part Hyper-

exponential c.c.d.f Hc that is larger than the original c.c.d.f, F c (from the distribution we

are fitting) at the matching points. That is:

Hc(xci) > F c(xci), 1 ≤ i < n (6.10)

127

CHAPTER 6. APPROXIMATING GENERAL SERVICE DISTRIBUTIONS

for x = 1 and b.

Given that F c will mostly likely be a long-tailed distribution, Feldmann and Whitt [Feld-

mann and Whitt, 1997] note that there will be a t0 such that:

F c(t) ≥ Hc(t) (6.11)

for all t ≥ t0. As such it is important to choose a c1 large enough that t0 is beyond the “area

of interest”. In our case, we are particularly interested in the fitting of a Bounded Pareto

distribution. Given that we are only interested in a finite region this poses no problems at

all - we focus our fitting efforts solely within the lower and upper bounds of the original

Bounded Pareto. Specifically, we set bc1 ≈ p and cn ≈ k, where p and k are the upper and

lower bounds respectively.

Feldmann and Whitt do not highlight the fact that this procedure can result in a poor

fit at the base of the distribution. Specifically, the last pair of parameters (λn, pn) are not

computed to match cn or bcn, so the fit can deteriorate markedly at the base.

6.3 Fitting General Distributions to Bounded Hyper-exponential

The use of bounded General distributions has become common place in the analysis of mod-

ern computer systems. They are often more amenable to analysis than their unbounded

counterparts, as they typically have all moments finite. They are also more realistic repre-

sentations of the computing phenomena they are modelling, where tasks have finite service

requirements, and are best modelled by finite distributions. Even so, it is often still desirable

to represent these distributions as Markovian, to utilise the wide range of existing M/M/c

knowledge.

Motivated by this, we introduce the notion of a Bounded Hyper-exponential distribution.

That is, we incorporate a lower and upper bound (as per the Bounded Pareto). The Bounded

Hyper-exponential has a probability density function (p.d.f) of:

bhn(x) =
n∑

i=1

Piλie
−λix

e−λik − e−λip
(6.12)

128

CHAPTER 6. APPROXIMATING GENERAL SERVICE DISTRIBUTIONS

The cumulative distribution function (c.d.f) is:

BHn(x) = Pr[X ≤ x]

=
n∑

i=1

Pi
e−λik − e−λix

e−λik − e−λip
(6.13)

The complementary cumulative distribution function (c.c.d.f) is:

BHn
c(x) = 1−BHn(x)

=
n∑

i=1

Pi
e−λix − e−λip

e−λik − e−λip
(6.14)

We wish to fit a general distribution as a Bounded Hyper-exponential. We can achieve this

in two ways. Obviously, this would be of most use if the original distribution is itself bounded

- it makes sense to fit one bounded distribution to another. First, we could utilise Prony’s

method (as described in Section 6.2), then normalise the resulting Hyper-exponential over

specific lower and upper bounds, creating a bounded (by normalisation) Hyper-exponential.

Second, and more accurately, we could modify Prony’s method in order to fit the General

distribution directly to a Bounded Hyper-exponential distribution. We describe this updated

process in the following section.

6.3.1 Updating Prony’s Method

We choose λ1 and P1 to match the c.c.d.f F c(t) at the arguments c1 and bc1, solving the two

equations:

P1
e−λ1xc1 − e−λ1p

e−λ1k − e−λ1p
= F c(xc1), for x = 1 and b (6.15)

for P1 and λ1, assuming c1, b, F c(c1) and F c(bc1) are known. We can then obtain:

e−λ1c1 − e−λ1p

e−λ1bc1 − e−λ1p
=

F c(c1)
F c(bc1)

(6.16)

Unfortunately we cannot isolate λ1 as was possible previously when fitting to an un-

bounded Hyper-exponential. However it is trivially solved using a numerical solver. Once

we solve for λ1, we can then compute:

P1 = F c(c1)
e−λ1k − e−λ1p

e−λ1c1 − e−λ1p
(6.17)

129

CHAPTER 6. APPROXIMATING GENERAL SERVICE DISTRIBUTIONS

As with the original Prony’s method, we assume that λi will be sufficiently larger than

λ1 for all i ≥ 2 so that the final approximation satisfies:

n∑

i=1

Pi
e−λit − e−λip

e−λik − e−λip
' P1

e−λ1t − e−λ1p

e−λ1k − e−λ1p
, for t ≥ c1 (6.18)

Now, for 2 ≤ i ≤ n, let:

F c
i(xci) = F c

i−1(xci)−
i−1∑

j=1

Pj
e−λjxci − e−λjp

e−λjk − e−λjp

for x = 1 and b (6.19)

where F c
1(t) = F c(t). We then solve the two equations:

Pi
e−λixci − e−λip

e−λik − e−λip
= Fi

c(xci), for x = 1 and b (6.20)

to obtain:

e−λici − e−λip

e−λibci − e−λip
=

F c
i(ci)

F c
i(bci)

(6.21)

We numerically solve for λi, and then compute:

Pi = F c
i(ci)

e−λik − e−λip

e−λici − e−λip
(6.22)

for 2 ≤ i ≤ k− 1. For the last parameter pair (λn, Pn) we note that Pn is determined by the

condition:

Pn = 1−
n−1∑

j=1

Pj (6.23)

Given that:

Pn
e−λncn − e−λnp

e−λnk − e−λnp
= F c

n(cn) (6.24)

where F c
n(cn) is defined, we obtain λn from the equation:

130

CHAPTER 6. APPROXIMATING GENERAL SERVICE DISTRIBUTIONS

e−λnk − e−λnp

e−λncn − e−λnp
=

Pn

F c
n(cn)

(6.25)

We can then numerically solve for λn. As with the original Prony’s method, providing

we obtain probability weights for each exponential segment (Pi > 0) and the parameters λi

are well separated, we should obtain a good fit to the original distribution.

Once the procedure completes, we should have a n part Bounded Hyper-exponential

c.c.d.f BHc that is larger than the original c.c.d.f, F c (from the distribution we are fitting)

at the matching points. That is:

BHc(xci) > F c(xci), 1 ≤ i < n (6.26)

for x = 1 and b.

If F c is a long-tailed distribution, then there will be a t0 such that:

F c(t) ≥ BHc(t) (6.27)

for all t ≥ t0.

Distribution E[X] E[X2]

BPAR 3000.00 1e+13

HYP 2684.82 6.56336e+12

NHYP 2691.42 6.58528e+12

BHYP 3269.62 1.19397e+13

Table 6.1: Matching moments, α = 0.5

6.4 Quality of fit

In this section we present four fitting examples, utilising the original Prony’s method as well

as our updated approach, suited to bounded input distributions. These are provided to give

a glimpse of the trends we have observed from fitting many permutations and combinations

of bounded input distributions to n-part Hyper-exponential distributions. We fitted to 10

131

CHAPTER 6. APPROXIMATING GENERAL SERVICE DISTRIBUTIONS

 1e-20

 1e-15

 1e-10

 1e-05

 1

 100000

 0.01 1 100 10000 1e+06 1e+08 1e+10

Bounded Pareto
HyperExponential

Normalised HyperExponential
Bounded HyperExponential

(a) p.d.f.

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0.01 1 100 10000 1e+06 1e+08 1e+10

Bounded Pareto
HyperExponential

Normalised HyperExponential
Bounded HyperExponential

(b) c.c.d.f

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.01 1 100 10000 1e+06 1e+08 1e+10

AE Hyperexponential
AE Normalised HyperExponential

AE Bounded HyperExponential

(c) Absolute Error - c.c.d.f.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.01 1 100 10000 1e+06 1e+08 1e+10

RE Hyperexponential
RE Normalised HyperExponential

RE Bounded HyperExponential

(d) Relative Error - c.c.d.f.

Figure 6.2: Fitting a Bounded Pareto Distribution (E[X] = 3000, α = 0.5, k = 0.0009, p =

1010) to a Hyper-exponential, Normalised Hyper-exponential and Bounded Hyper-exponential

132

CHAPTER 6. APPROXIMATING GENERAL SERVICE DISTRIBUTIONS

part Hyper-exponential in each instance, and used the same matching points (chosen so

the ratio between each point is equal, as described by Feldmann and Whitt [Feldmann and

Whitt, 1997]). Points c1 and cn were chosen to be as close to the upper and lower bounds

(respectively) as possible. It is worth noting that in most instances significantly better fits

can be obtained by alternate matching point allocations, but are not shown here to keep the

comparison consistent.

Figure 6.2 illustrates a Bounded Pareto distribution (E[X] = 3000, α = 0.5, k = 0.0009,

p = 1010) being approximated by a Hyper-exponential distribution (using Prony’s method),

a Normalised Hyper-exponential distribution (normalising the results from Prony’s method),

and a Bounded Hyper-exponential (using our updated Prony’s method).

From examination of the p.d.f and c.c.d.f, it appears that the Hyper-exponential obtained

via Prony’s method is a poor fit at the base and the tail of the distribution, diverging signif-

icantly. Even the Normalised and Bounded fits diverge toward the base, before converging

again. This is a known artifact stemming from the choice of matching parameters - given

that cn isn’t a true matching point in Prony’s method (as mentioned in Section 6.2). As

the ci parameters are evenly spaced (from c1 to cn) this leaves a ‘hole’ between the base of

the distribution and cn−1, the first true matching point. The Bounded Hyper-exponential

distribution follows the curve of the tail effectively, whilst the Normalised and standard

Hyper-exponential decays too rapidly. This is confirmed by the high relative error toward

the tail of the distribution shown by these fits.

We notice a significant difference in the comparison of moments (depicted in Table 6.1).

The Hyper-exponential obtained via Prony’s method is within 89% and 66% of the first and

second moments of the original distribution, respectively. The Normalised fit does not match

much better, within 90% of the first moment, and 66% of the second moment. The Bounded

Hyper-exponential fit (using our updated Prony’s method) is significantly more accurate,

within 92% of the first moment and 84% of the second moment. Accurate matching of the

second moment is crucial if if these approximations are to be used in queueing analysis.

Figure 6.3 illustrates another Bounded Pareto distribution (E[X] = 3000, α = 1.0,

k = 167.555, p = 1010), which we again approximate with various Hyper-exponential distri-

butions. From the p.d.f and c.c.d.f we can observe that the standard fit obtained via Prony’s

method is poor at both the base, and to a lesser extent, the tail of the distribution. The

Normalised and Bounded approximations provide a much tighter fit, especially at the critical

areas of the base and tail of the distribution. This is confirmed by examining the absolute

and relative error of these fits. We can see in the case of the Bounded Hyper-exponential fit,

133

CHAPTER 6. APPROXIMATING GENERAL SERVICE DISTRIBUTIONS

 1e-20

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

Bounded Pareto
HyperExponential

Normalised HyperExponential
Bounded HyperExponential

(a) p.d.f.

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

Bounded Pareto
HyperExponential

Normalised HyperExponential
Bounded HyperExponential

(b) c.c.d.f

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

AE Hyperexponential
AE Normalised HyperExponential

AE Bounded HyperExponential

(c) Absolute Error - c.c.d.f.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

RE Hyperexponential
RE Normalised HyperExponential

RE Bounded HyperExponential

(d) Relative Error - c.c.d.f.

Figure 6.3: Fitting a Bounded Pareto Distribution (E[X] = 3000, α = 1.0, k = 167.555, p =

1010) to a Hyper-exponential, Normalised Hyper-exponential and Bounded Hyper-exponential

the absolute error is around 0.1 for the majority of the fit, and significantly less at the base

and tail.

The comparison of moments (Table 6.2) shows that the first moments are similar in

all fits. The Hyper-exponential is within 82% of the first moment, and 91% of the second

moment. The Normalised fit is within 90% of the first moment, and 92% of the second

moment, matching the moments more accurately. The Bounded fit is within 89% of the first

moment, and 95% of the second moment.

Figure 6.3 illustrates a Bounded Pareto distribution (E[X] = 3000, α = 1.5, k = 1000.32,

p = 1010) and it’s corresponding Hyper-exponential approximations. Upon examination of

the p.d.f. and c.c.d.f we can see that the Normalised and Bounded fits are quite close, while

134

CHAPTER 6. APPROXIMATING GENERAL SERVICE DISTRIBUTIONS

Distribution E[X] E[X2]

BPAR 3000 1.67555e+12

HYP 2482.59 1.52573e+12

NHYP 2691.64 1.5428e+12

BHYP 2675.74 1.60094e+12

Table 6.2: Matching moments, α = 1.0

the unbounded Hyper-exponential fits poorly around the base of the distribution. This is

especially evident when examining the absolute and relative errors at the base for the hyper-

exponential fit, showing significant divergence from the original Bounded Pareto. We also

observe that the Normalised and Bounded fits maintain a relative error of around 0.1 for the

majority of the fit.

Table 6.3 depicts a comparison of the first and second moments of these distributions.

The Hyper-exponential fit matches the first moment poorly, within 61% of the original

Bounded Pareto. The second moment is matched more accurately, within 91%. The nor-

malised fit is significantly better, fitting with 97% of the first moment and 90% of the second

moment. The Bounded fit is also good, fitting with 94% of the first moment and 92% of the

second moment.

Distribution E[X] E[X2]

BPAR 3000.01 9.48839e+09

HYP 1850.16 8.55168e+09

NHYP 3093.6 8.57685e+09

BHYP 2811.19 8.69128e+09

Table 6.3: Matching moments, α = 1.5

Figure 6.5 illustrates a Bounded Pareto distribution (E[X] = 3000, α = 2.0, k = 1500,

p = 1010) being approximated by a Hyper-exponential distribution (using Prony’s method),

a Normalised Hyper-exponential distribution (normalising the results from Prony’s method),

and a Bounded Hyper-exponential (using our updated Prony’s method).

On initial visual inspection of both the p.d.f and the c.c.d.f, all 3 of our fitting attempts

seem very accurate. We can notice some divergence of the Hyper-exponential fit at the base

135

CHAPTER 6. APPROXIMATING GENERAL SERVICE DISTRIBUTIONS

 1e-22

 1e-20

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

Bounded Pareto
HyperExponential

Normalised HyperExponential
Bounded HyperExponential

(a) p.d.f.

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

Bounded Pareto
HyperExponential

Normalised HyperExponential
Bounded HyperExponential

(b) c.c.d.f

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

AE Hyperexponential
AE Normalised HyperExponential

AE Bounded HyperExponential

(c) Absolute Error - c.c.d.f.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

RE Hyperexponential
RE Normalised HyperExponential

RE Bounded HyperExponential

(d) Relative Error - c.c.d.f.

Figure 6.4: Fitting a Bounded Pareto Distribution (E[X] = 3000, α = 1.5, k = 1000.32, p =

1010) to a Hyper-exponential, Normalised Hyper-exponential and Bounded Hyper-exponential

136

CHAPTER 6. APPROXIMATING GENERAL SERVICE DISTRIBUTIONS

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

Bounded Pareto
HyperExponential

Normalised HyperExponential
Bounded HyperExponential

(a) p.d.f.

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

Bounded Pareto
HyperExponential

Normalised HyperExponential
Bounded HyperExponential

(b) c.c.d.f

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

AE Hyperexponential
AE Normalised HyperExponential

AE Bounded HyperExponential

(c) Absolute Error - c.c.d.f.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

RE Hyperexponential
RE Normalised HyperExponential

RE Bounded HyperExponential

(d) Relative Error - c.c.d.f.

Figure 6.5: Fitting a Bounded Pareto Distribution (E[X] = 3000, α = 2.0, k = 1500, p =

1010) to a Hyper-exponential, Normalised Hyper-exponential and Bounded Hyper-exponential

137

CHAPTER 6. APPROXIMATING GENERAL SERVICE DISTRIBUTIONS

Distribution E[X] E[X2]

BPAR 3000.00 7.07068e+07

HYP 1525.93 6.57345e+07

NHYP 3416.07 7.40877e+07

BHYP 2825.25 7.01227e+07

Table 6.4: Matching moments, α = 2.0

and the tail of the distribution, which is to be expected given that the original distribution is

bounded, despite setting matching points near the lower and upper bounds. This is confirmed

from examination of the relative and absolute errors, showing that the Hyper exponential is

a very poor match for the original distribution at these points.

Normalising the results obtained in Prony’s method obtains a better fit given that our

original distribution is bounded. This is especially evident in the base of the distribution

(near the lower bound) where the fit is improved greatly, which is highlighted by observing

the absolute error. However it did not improve the fit along the shape of the tail, decaying

more rapidly than the original distribution, illustrated by the deteriorating relative error in

the c.c.d.f.

When comparing the moments of the original and fitted distributions (shown in Table 6.4),

we find that the Hyper-exponential obtained by Prony’s method is only 56% accurate when

matching the first moment, and 93% accurate when matching the second moment. The

Normalised result from Prony’s method improves the match, approximating within 88% and

95% for the first and second moments respectively. Using our updated Prony’s method results

in a more accurate matching of moments, with an accuracy of 94% and 99% for the first and

second moments respectively.

6.5 Re-evaluating the TAPTF M/BP/1 model as M/Hn/1 and M/BHn/1

We need to update our original TAPTF model [Broberg et al., 2005] (presented in Chapter 4)

to allow the use of a Hyper-exponential or Bounded Hyper-exponential distribution. This also

improves the potentially applications of the TAPTF algorithm, allowing it to be utilised with

any General service distribution that can be effectively approximated using the techniques

described in Sections 6.2 and 6.3.Fortunately, only certain parameters need to be re-evaluated.

Most of the definitions remain unchanged.

138

CHAPTER 6. APPROXIMATING GENERAL SERVICE DISTRIBUTIONS

Recall that the probability density function (p.d.f) of a Hyper-exponential is:

hn(x) =
n∑

i=1

Piλie
−λix

As such, pm, the fraction of tasks whose final destination (where it runs to completion

on) is either Host m or its predecessor, is defined as follows:

pm = P (X ≤ sm)

=
∫ sm

k

n∑

i=1

Piλie
−λix

=
n∑

i=1

Pi(e−λik − e−λism) (6.28)

We also need to evaluate the expected moments of tasks that run-to-completion at Host m.

E(Xj
mO) and E(Xj

mR) are the jth moment of the distribution of tasks whose final destination

is Host m’s ordinary (O) queue and restart (R) queues respectively. We have:

E(Xj
mO) =

1
pm

∫ sm

k
xjhn(x)dx

=
1

pm

n∑

i=1

Pi

λi
j
(

j∑

l=0

jCle
−λikl!(λik)j−l −

j∑

l=0

jCle
−λism l!(λism)j−l)

=
1

pm

n∑

i=1

j∑

l=0

Pi

λi
j

jCll!λj−l(e−λikkj−l − e−λismsj−l
m)

=
1

pm

n∑

i=1

j∑

l=0

jClPil!
λi

l
(e−λikkj−l − e−λismsj−l

m) (6.29)

and

E(Xj
mR) =

1
pm − pm−1

∫ sm

k
xjhn(x)dx

=
1

pm − pm−1

n∑

i=1

j∑

l=0

jClPil!
λi

l
(e−λism−1sj−l

m−1 − e−λismsj−l
m) (6.30)

All other parameters remain unchanged.

139

CHAPTER 6. APPROXIMATING GENERAL SERVICE DISTRIBUTIONS

If we choose to use a Bounded Hyperexponential distribution, we must re-compute the

same parameters. The probability density function (p.d.f) of a Bounded Hyperexponential

is:

bhn(x) =
n∑

i=1

Piλie
−λix

e−λik − e−λip

As such, pm is defined as follows:

pm = P (X ≤ sm)

=
∫ sm

k

n∑

i=1

Piλie
−λix

e−λik − e−λip

=
n∑

i=1

Pi(e−λik − e−λism)
e−λik − e−λip

(6.31)

Again, we need to evaluate the expected moments of tasks that run-to-completion at Host

i. We have:

E(Xj
iO) =

1
pm

∫ sm

k
xjbhn(x)dx

=
1

pm

n∑

i=1

Pi

λi
j(e−λik − e−λip)

(
j∑

l=0

jCle
−λikl!(λik)j−l −

j∑

l=0

jCle
−λism l!(λism)j−l)

=
1

pm

n∑

i=1

j∑

l=0

Pi

λi
j

jCll!λj−l (e
−λikkj−l − e−λismsj−l

m)
(e−λik − e−λip)

=
1

pm

n∑

i=1

j∑

l=0

jClPil!
λi

l

(e−λikkj−l − e−λismsj−l
m)

(e−λik − e−λip)
(6.32)

and

E(Xj
iR) =

1
pm − pm−1

∫ sm

sm−1

xjbhn(x)dx

=
1

pm − pm−1

n∑

i=1

j∑

l=0

jClPil!
λi

l

(e−λism−1sm−1
j−l − e−λismsj−l

m)
(e−λik − e−λip)

(6.33)

All other parameters remain unchanged.

140

CHAPTER 6. APPROXIMATING GENERAL SERVICE DISTRIBUTIONS

6.6 Comparing M/BP/1 and M/BHn/1 queueing models

In Section 6.4 we found the Hyper-exponential approximations to be a good representation

of the original general distributions we were trying to fit. In Section 6.6.1 we first compare a

trivial 2 host random task assignment queueing system, using a Bounded Pareto and Bounded

Hyper-exponential service distributions. Then in Section 6.6.2, using the re-evaluated model

computed in Section 6.5 we can now compare the queueing results directly for a TAPTF

queueing system, to check the accuracy when utilising approximated service distributions.

6.6.1 Random Queueing Model

In this section we compare some common queueing metrics for a two host distributed system

under a system load of 0.5, with a Random task assignment policy. We observe the expected

waiting time and slowdown for the system with a Bounded Pareto service distribution, as

well as Normalised Hyper-exponential and Bounded hyper-exponential approximations of

that service distribution. These specific service distribution examples are drawn directly

from Section 6.4.

α k p E[W] BP E[S] BP E[W] BH E[S] BH E[W] NH E[S] NH

1.0 167.555 1010 279258000 833333 266823000 850586 257133000 821085

1.5 1000.32 1010 1581400 948.535 1448550 897.47 1429480 823.317

2.0 1500 1010 11784.5 5.23754 11258.1 6.97184 11820.6 6.14309

Table 6.5: Comparing queueing metrics for Random

Table 6.5 shows the comparison of random queueing metrics for three scenarios, where

the α parameter of the original Bounded Pareto service distribution is 1.0, 1.5 and 2.0. When

α is 1.0, the expected waiting time is within 95% and 92% for the Bounded and Normalised

Hyper-exponential fits respectively. The expected slowdown is approximated within 98% and

99% for the Bounded and Normalised fits respectively.

When α is 1.5, the expected waiting time is within 92% and 90% for the Bounded and

Normalised Hyper-exponential fits respectively. The expected slowdown is approximated

within 95% and 87% for the Bounded and Normalised fits respectively.

For the scenario where α is 2.0, the expected waiting time is within 95% and 90% for

the Bounded and Normalised Hyper-exponential fits respectively. The expected slowdown is

141

CHAPTER 6. APPROXIMATING GENERAL SERVICE DISTRIBUTIONS

approximated extremely accurately, within 95% and 99% for the Bounded and Normalised

fits respectively.

6.6.2 TAPTF Queueing Model

We now compare the same metrics for a two host distributed system under a system load

of 0.5, with the TAPTF task assignment policy. Again each workload scenario is drawn

from Section 6.4. In each instance the optimal parameters for the TAPTF policy (i.e. the

si and qi values) are utilised. We utilise the updated TAPTF model that was computed in

Section 6.5, that utilises a Bounded Hyper-exponential service distribution in place of the

original Bounded Pareto service distribution.

α k p E[W] BP E[S] BP E[W] BH E[S] BH E[W] NH E[S] NH

1.0 167.555 1010 216573 32.81 162133 27.30 158550 27.31

1.5 1000.32 1010 32420.5 7.95 24715.3 6.19 37573.6 9.51

2.0 1500 1010 3875.25 1.13 3203.5 1.21 5541.86 1.89

Table 6.6: Comparing queueing metrics for TAPTF

Table 6.6 shows the comparison of TAPTF queueing metrics for three scenarios, where

the α parameter of the original Bounded Pareto service distribution is 1.0, 1.5 and 2.0. When

α is 1.0, we observe a reasonable fit of within 75% and 73% for the Normalised and Bounded

Hyper-exponential models. The slowdown is approximated more accurately, both within

83% of the original Bounded Pareto TAPTF model. When α is 1.5, we can observe a fit

for the expected waiting time that is within 76% and 86% for the Bounded and Normalised

fits respectively. The expected slow down is approximated 77% and 84% for the Bounded

and Normalised fits respectively. In the case where α is 2.0, the expected waiting time is

approximated with 83% and 70% for the Bounded and Normalised fits respectively. The

expected slowdown is approximated within 93% and 60% respectively.

6.6.3 Discussion

In Section 6.6.1 we compared the queueing metrics for a 2 Host system with Random task

assignment. We compared the expected waiting time and slow down for systems where

the service distribution was Bounded Pareto, as well as Bounded and Normalised Hyper-

exponential approximations of the Bounded Pareto distribution. In the scenarios examined,

142

CHAPTER 6. APPROXIMATING GENERAL SERVICE DISTRIBUTIONS

we found the Hyper-exponential approximations to be a good representation of the original

Bounded Pareto queueing model, with nearly all results being over 90% accurate.

Section 6.6.2 depicted a comparison of the queueing metrics for a 2 Host system util-

ising the TAPTF task assignment policy. We found the Bounded and Normalised Hyper-

exponential TAPTF to be a reasonable approximation of the original TAPTF Bounded Pareto

model. We found the TAPTF model to be significantly more sensitive to the quality of fit

of the service distribution. This is not surprising given the model has more parameters that

depend on the service distribution both directly and indirectly (such as pi). We also note

the accuracy of the Hyper-exponential approximation can be improved significantly by util-

ising a different technique to choose the matching points, particularly focusing on the fit

around the base of the distribution. This is a known weakness with the Prony approach for

this particular fitting application, as discussed previously in this chapter, which we plan on

addressing in future work.

6.7 Applications of Hyper-exponential distributions in General queueing mod-

els

In the previous sections we observed that hyper-exponential approximations provided a good

representation of the highly variable General workloads they attempted to characterise. In

this section we use these hyper-exponential approximations to highlight some of the benefits

for M/G/1 (where G ≡ Hn or BHn) queueing analysis. We are mostly interested in the

application of Hn or BHn service distributions, but many of the benefits can also apply for

G/G/1 queueing models (where the arrival pattern is G ≡ Hn or BHn).

In particular, we would like to find some bounds (hard or otherwise) on the range of

performance experienced by tasks in a queueing system. Ideally we would like to find specific

Quality of Service bounds so that we can make promises to customers regarding the type of

performance they can expect in the system (e.g. 95% of all customers will have an expected

waiting time of less than time t). To achieve this, we need to find the probability distribution

of waiting time in our queueing system. We also wish to compute the higher moments (and

consequently the variance) of common metrics such as expected waiting time and slowdown,

to observe how accurately they reflect the behaviour of the majority of tasks in the queueing

system.

143

CHAPTER 6. APPROXIMATING GENERAL SERVICE DISTRIBUTIONS

6.7.1 General Hyper-exponential analysis

We defined the p.d.f of our Hyper-exponential in Section 6.2 of this chapter. We now wish

to obtain the Laplace transform Lhn(s) of the service distribution hn(t).

We proceed as follows:

Lhn(s) =
∫ ∞

0
e−sthn(t).dt (6.34)

=
∫ ∞

0
e−st

n∑

i=1

Piλie
−λit.dt (6.35)

=
n∑

i=1

Piλi

λi + s
(6.36)

We can trivially obtain the moments of the service distribution as follows:

E[Xn] = (−1)n dnLhn(s)
ds

∣∣∣∣
s=0

(6.37)

Using this procedure we find the first moment (mean), E[X]:

E[X] = (−1)
d

ds

n∑

i=1

Piλi

λi + s

∣∣∣∣∣
s=0

(6.38)

=
n∑

i=1

Pi

λi
(6.39)

The second moment, E[X2] is similarly easy to find:

E[X2] = (−1)2
d2

ds

n∑

i=1

Piλi

λi + s

∣∣∣∣∣
s=0

(6.40)

=
n∑

i=1

2Pi

λi
2 (6.41)

We can also find LW (s), the Laplace transform of the waiting time. This known re-

sult [Kleinrock, 1975a], which is true for any M/G/1 queue1, is defined as follows:

LW (s) =
s(1− ρ)

s− λ + λLhn(s)
(6.42)

=
s(1− ρ)

s− λ + λ
∑n

i=1
Piλi
λi+s

(6.43)

144

CHAPTER 6. APPROXIMATING GENERAL SERVICE DISTRIBUTIONS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000 500000

cdf

(a) - W (t)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000 500000

ccdf

(b) - W c(t)

Figure 6.6: The c.d.f of waiting time is shown in (a), for a hyper-exponential approximation

of a bounded Pareto distribution with α = 1.0, k = 1000.32 and p = 1010. The corresponding

c.c.d.f is shown in (b).

where ρ = λE[X], and X is the service time.

We can numerically invert this result in order to obtain w(t), the p.d.f of the waiting

time distribution. This is significant in that we can now perform some advanced analysis of

the behaviour of system that was not possible before. From the p.d.f we can now obtain the

cumulative distribution function (c.d.f) as follows:

W (t) = Pr[T ≤ t]

=
∫ t

0
w(t).dt (6.44)

The complementary cumulative distribution function (c.c.d.f) is:

W c(t) = 1−W (t)

(6.45)

Using the c.d.f and the c.c.d.f we can now make concrete guarantees regarding the waiting

time experienced by a certain percentage of tasks. Consider the example shown in Figure 6.6.

The waiting time distribution for a M/Hn/1 queueing system is shown, where the system
1Provided the queueing discipline is First-Come-First-Serve and the system is work-conserving.

145

CHAPTER 6. APPROXIMATING GENERAL SERVICE DISTRIBUTIONS

load ρ is 0.5. We can see from the c.d.f shown in Figure 6.6(a) that there is approximately

a 90% probability of some waiting time T being less than 100000.

We can now also obtain the nth moments of the waiting time distribution in two ways.

One is as follows:

E[Wn] = (−1)n dnLW (s)
ds

∣∣∣∣
s=0

(6.46)

Alternatively we can compute the nth waiting time moments as follows:

E[Wn] =
∫ ∞

0
tnw(t).dt (6.47)

The first moment (IE. the mean) of the waiting time distribution can now be computed.

We will proceed as follows, using LX(s) as the Laplace transform of the service distribution

to maintain generality:

E[W] = (−1)
d

ds

s(1− ρ)
s− λ + λLX(s)

∣∣∣∣
s=0

(6.48)

=
λ(ρ− 1)(LX(s)− 1− sL′X(s))

(s− λ + λLX(s))2

∣∣∣∣
s=0

(6.49)

When we set s = 0 we obtain an indeterminate result (0/0), so we must first apply

l’Hopital’s rule twice to the numerator and denominator. This is a relatively straightforward

process (albeit tedious and unwieldy if done by hand), giving:

E[W] =
∂s,2(λ(ρ− 1)(LX(s)− 1− sL′X(s)))

∂s,2((s− λ + λLX(s))2)

∣∣∣∣
s=0

(6.50)

=
λ(ρ− 1)(−L′′X(s)− sL′′′X(s))

2(1 + λL′X(s))2 + 2(s− λ + λLX(s))L′′X(s)

∣∣∣∣
s=0

(6.51)

We can now set s = 0 and after simplifying the expression, we obtain the famous

Pollaczek-Khinchin formula for expected waiting time:

E[W] =
(1− ρ)L′′X(0)

2(1 + λL′X(0))2
(6.52)

=
λE[X2]
2(1− ρ)

(6.53)

The second moment of the waiting time distribution can be found in a similar fashion:

146

CHAPTER 6. APPROXIMATING GENERAL SERVICE DISTRIBUTIONS

E[W 2] = (−1)2
d2

ds

s(1− ρ)
s− λ + λLX(s)

∣∣∣∣
s=0

(6.54)

=
λ(ρ− 1)(2(−1 + LX(s)− sL′X(s))(1 + λL′X(s)) + s(s− λ + λLX(s))L′′X(s)

(s− λ + λLX(s))3

∣∣∣∣
s=0

(6.55)

As was the case with the first moment, we get an indeterminate result when s = 0. We

have to apply l’Hopital’s rule three times to the numerator and denominator (omitted here

for brevity) and set s = 0 to obtain the following:

E[W 2] =
λ(−1 + ρ)(−3λ(L′′X(0)2 + 2(1 + λL′X(0))L′′′X(0))

6(1 + λL′X(0))3
(6.56)

=
λ(−1 + ρ)(−3λE2[X2] + 2(1− ρ)(−E[X3])

6(1− ρ)3
(6.57)

We can compute the variance in the waiting time as follows:

var[W] = E[W 2]− E[W]2 (6.58)

6.7.2 General Bounded Hyper-exponential analysis

The p.d.f of our Bounded Hyper-exponential was defined in Section 6.3 of the previous

chapter. We now wish to obtain the Laplace transform Lbhn(s) of the service distribution

bhn(t).

We proceed as follows:

Lbhn(s) =
∫ p

k
e−stbhn(t).dt (6.59)

=
∫ p

k
e−st

n∑

i=1

Piλie
−λit

e−λik − e−λip
.dt (6.60)

=
n∑

i=1

Piλi(e−(s+λi)k − e−(s+λi)p)
(e−λik − e−λip)(λi + s)

(6.61)

We can now obtain the nth moments of the service distribution as follows:

E[Xn] = (−1)n dnLbhn(s)
ds

∣∣∣∣
s=0

(6.62)

Using this procedure we find the first moment (mean), E[X]:

147

CHAPTER 6. APPROXIMATING GENERAL SERVICE DISTRIBUTIONS

E[X] = (−1)
d

ds

n∑

i=1

Piλi(e−(s+λi)k − e−(s+λi)p)
(e−λik − e−λip)(λi + s)

∣∣∣∣∣
s=0

(6.63)

=
n∑

i=1

Piλie
−(k+p)s(ek(s+λi)(1 + p(s + λi))− ep(s+λi)(1 + k(s + λi)))

(ekλi − epλi)(s + λi)2

∣∣∣∣∣
s=0

(6.64)

=
n∑

i=1

Pi(ekλi(1 + pλi)− ep(λi(1 + kλi))
(ekλi − epλi)λi

(6.65)

The second moment, E[X2] is similarly easy to find:

E[X2] = (−1)2
d2

ds

n∑

i=1

Piλi(e−(s+λi)k − e−(s+λi)p)
(e−λik − e−λip)(λi + s)

∣∣∣∣∣
s=0

(6.66)

=
n∑

i=1

Pi(ekλi(2 + pλi(2 + pλi))− ep(λi(2 + kλi(2 + kλi)))
(ekλi − epλi)λi

2 (6.67)

We can also find LW (s), the Laplace transform of the waiting time. This known result is

defined as follows:

LW (s) =
s(1− ρ)

s− λ + λLbhn(s)
(6.68)

=
s(1− ρ)

s− λ + λ
∑n

i=1
Piλi(e−(s+λi)k−e−(s+λi)p)

(e−λik−e−λip)(λi+s)

(6.69)

Unfortunately, we cannot easily numerically invert this result in order to obtain w(t), the

p.d.f of the waiting time distribution.

However, We can still obtain the moments of the waiting time distribution, as follows:

E[Wn] = (−1)n dnLW (s)
ds

∣∣∣∣
s=0

(6.70)

We computed the first two moments of waiting time generally in Section 6.7.1. It is just

a matter of substituting the appropriate moments of the Bounded Hyper-exponential service

distribution into those expressions.

The variance in the waiting time can then be computed as follows:

var[W] = E[W 2]− E[W]2 (6.71)

Given that we can now obtain the mean and the variance of certain metrics (such as the

waiting time), we can utilise Chebyshev’s Inequality [Ross, 2002] to find upper and lower

bounds on the probability of specific Quality of Service targets being met.

148

CHAPTER 6. APPROXIMATING GENERAL SERVICE DISTRIBUTIONS

6.8 Conclusion

Prony’s method (as described by Feldman and Whitt [Feldmann and Whitt, 1997]) is not well

suited to fitting a Hyper-exponential to a bounded General distribution, nor was it expected

to be. However, the recursive process that Prony’s method utilises is extremely well suited to

adaptation for our purposes. First we normalised the Hyper-exponential obtained by Prony’s

method in order to obtain a better fit when the original distribution is bounded. We then

adapted Prony’s method in order to fit a Bounded General distribution directly to a bounded

Hyper-exponential distribution, providing an even better fit. The “area of interest” we fit to

is simply between the lower and upper bounds of the original bounded distribution, resulting

in a Bounded Hyper-exponential distribution with similar statistical properties to the original

distribution it is approximating. We incorporated Hyper-exponential and Bounded Hyper-

exponential service distributions into Random and TAPTF queueing models and showed that

the metrics of interest were consistent with the original Bounded Pareto Random and TAPTF

models. The Bounded Hyper-exponential distribution so obtained can then be utilised to

find Laplace transforms of important queueing metrics such as waiting time and slowdown.

We then demonstrated that since the transform of a series of exponential distributions can

be presented as a rational function, the result can be readily differentiated to provide mean

values and higher moments (and consequently the variance) of these queueing metrics for

certain queueing systems.

149

Chapter 7

Obtaining advanced performance

metrics via simulation

In Chapter 4 we explored methodologies for modelling and analysis of queueing systems

under highly variable ‘heavy-tailed’ workloads. Despite many useful findings, we discovered

that certain metrics were, for all practical purposes, extremely difficult if not impossible to

compute for size-based task assignment policies like TAPTF.

For this reason, and also to validate the analytical results presented in previous chapters,

we wish to perform rigorous simulation of TAPTF, as well as other existing task assignment

approaches like TAGS and Random. We are still concerned with the mean metrics, but

also wish to observe measurements that were difficult to compute analytically, such as the

variance in the mean waiting time and slowdown. These measurements are particularly

important due to the highly variable nature of the workloads we are simulating, as the mean

metrics can often be misleading and highly unrepresentative of the experience of many tasks

in the system.

7.1 Simulation framework

We utilised the OMNeT++ Discrete Event Simulation System [Varga, 2001] as a platform

to perform comparative simulations of a variety of task assignment policies, under a wide

range of loads and workloads. OMNeT++ is a public-source, highly modular framework

that is commonly used to model communication networks, queueing networks, hardware

architectures and business processes.

We developed add-on modules to OMNeT++ (in C++) to accurately simulate the oper-

150

CHAPTER 7. OBTAINING ADVANCED PERFORMANCE METRICS VIA SIMULATION

Figure 7.1: Random 3 Host OMNeT++ model

Figure 7.2: TAGS 3 Host OMNeT++ model

151

CHAPTER 7. OBTAINING ADVANCED PERFORMANCE METRICS VIA SIMULATION

Figure 7.3: TAPTF 3 Host OMNeT++ model

ation of task assignment policies including Random, TAGS and TAPTF. These modules are

depicted in Figures 7.1 - 7.3 respectively.

Each task assignment policy was modelled with a task generator, a dispatcher (i.e. switch)

and a number of back-end hosts. The task generator generated tasks with a service require-

ment drawn from a Bounded Pareto distribution, and with inter-arrival times drawn from a

Poisson distribution. The dispatcher implemented the logic of the task assignment policy it

was modelling, directing tasks to specific or random back-end hosts where appropriate. The

back-end hosts receive tasks from the dispatcher (and from other back-end hosts in the case

of TAPTF and TAGS) and processes them according to the relevant task assignment policy.

Simulating these task assignment policies also allows us to collect a wide variety of queue-

ing metrics - many of which are difficult to compute analytically. Due to the modular nature

of OMNeT++ collecting these metrics was easy to achieve. By simply extending the stan-

dard message type that is utilised in OMNeT++, we were able to measure metrics on a

per-task basis and collate them at the ‘sink’ at the end of a simulation run.

[caption=Custom Task in OMNeT++,label=mytask] message MyTask fields: int myNum;

// Task number int myPriority = 0; // Used for TAPTF double mySize = 0.0; // Size gener-

ated from B(k,p,alpha) int hand-offs = 0; // Times task has been handed off double waste =

0.0; // Total wasted processing int recordMe = 0; // Task is warm-up or recorded int firstHost

= 0; // Host where task is assigned int lastHost = 0; // Host where task runs-to-completion

Listing ?? shows the custom message (i.e a Task) that was defined. Each task in the

system has a unique task number. In the case of TAPTF we also need to denote the priority

152

CHAPTER 7. OBTAINING ADVANCED PERFORMANCE METRICS VIA SIMULATION

of a task - as tasks that are restarted are placed in the restart queue at the following host,

which has priority over the ordinary queue at a given host. A task has a size than is generated

from a Bounded Pareto distribution BP (k, p, α) as has been the case in previous chapters. We

also count the number of hand-offs a given task experiences (where a task exceeds the cutoff

at a given host, and is restarted from scratch at the next host), and the wasted processing

generated from the hand-off. The hand-off and waste metrics only apply to TAPTF and

TAGS. We typically run a given simulation for a lengthy warm-up period so the queues can

reach a steady state before we take any measurements. During the warm-up period a task’s

recordMe variable is set to 0, and once the warm-up period has passed it is set to 1 so the sink

knows it needs to measure this task. For the TAGS and TAPTF policies, we also track which

host a task enters the system and also the host where a task runs-to-completion. Obviously

for the TAGS policy, tasks always enter at the first host, but we are still interested in where

they finish. For the TAPTF policy we can also measure which queue at a given host a task

runs-to-completion in.

7.2 Simulation methodology

Accurately simulating highly variable workloads is a very challenging proposition. Indeed,

we do not expect the simulation results to match the analytical results perfectly, but we

do expect to see the same general performance trends observed in Chapters 3 and 4. The

difficulty with simulating queueing systems with highly variable service distributions is the

sheer amount of simulation runs required for the observed mean of the samples to converge

to the analytical mean [Heidelberger, 1995].

The service requirements and inter-arrival times generated in the simulation follow a

Bounded Pareto and Poisson distribution respectively, and are generated using a mod-

ern, high quality random number generator known as Mersenne Twister [Matsumoto and

Nishimura, 1998]. The random number generator is seeded with unique seeds for each run so

that all runs are repeatable, and task assignment policies are directly comparable (as they

experience the exact same tasks and workload for a given load scenario).

The ideal simulation methodology would be as follows. Each experimental data point

(for a given task assignment policy) is derived from n independent samples generated by the

simulation platform. For each independent sample we run the queueing system for a lengthy

warm-up phase. For the two host scenarios, the warm-up phase consists of 100,000 tasks, after

which we measure the behaviour of task 100,001 (i.e. the waiting time and slowdown). For

153

CHAPTER 7. OBTAINING ADVANCED PERFORMANCE METRICS VIA SIMULATION

three hosts, the warm-up phase runs for 150,000 tasks, after which task 150,001 is measured.

From the n independent samples we can compute the sample mean as well as the variance,

standard deviation and confidence intervals of the sample mean.

In statistics, a sample of n = 30 is usually considered sufficient (or statistically significant)

for the Central Limit Theorem to apply (providing the variance of the distribution being

measured is finite) [Ross, 2001]. For our purposes this is nowhere near sufficient, and we

found that samples of 100, 300, 600, 1000 and even 3000 were often observed to provide

unacceptable results in our experiments. For our purposes the more samples taken the better,

but consideration must be taken as the experiments can take an unacceptable amount of time

to run. Measuring 5000 samples, which we hoped would provided an acceptable balance

between the time needed to run the simulations and the statistical significance of the results,

still resulted in measurements that diverged significantly from the analytical results. It was

not feasible to increase the number of independent samples any further.

Perhaps surprisingly, the divergence between the simulation and analytical results was

most apparent as the variation in the workload dropped (i.e. 1 ≤ α ≤ 2). This was partic-

ularly unfortunate as this was the key area where TAPTF improved performance over the

TAGS policy. However it makes sense given our knowledge of heavy-tailed distributions. As

α increases, the probability of these ‘rare’ large events becomes smaller (but, we emphasise, is

not negligible.) However there is a high probability of these ‘rare’ large events not occurring

at all in a sample space of n = 5000, providing misleading results.

To get acceptable results, we needed to change our simulation approach to enable us to

get a large number of samples quickly. We could not simply measure 500, 000 independent

samples (for each data point required) as that would take an unfeasible amount of time. We

observed that the majority of the simulation CPU time is taken up in the start-up phase

(before any tasks have been generated), rather than when the simulation is actually running.

Therefore instead of measuring a single task from each simulation run, we take a large sample

of tasks from a given run, and collate our metrics from that. For instance, we can run a

simulation for a warm-up period of 100, 000 tasks, then measure the next 500, 000 tasks.

The downside of this approach is that, strictly speaking, the samples are no longer inde-

pendent (i.i.d) samples. This could be disputed however, as it has been argued in prior work

on queueing systems that the dependencies of samples X1, X2, X2 ... Xn becomes weaker

as the samples become further apart. Despite these findings, we will refrain from computing

confidence intervals from the samples.

The simulation itself is naturally embarrasingly parallel, and is essentially a parameter-

154

CHAPTER 7. OBTAINING ADVANCED PERFORMANCE METRICS VIA SIMULATION

sweep style application. The simulation runs were ‘farmed’ out to eight machines to expediate

the execution of the hundreds of thousands of runs that are aggregated to make up the results

in this chapter. Despite this, due to the sheer number of runs required the simulations still

took nearly two weeks to complete.

7.3 Simulation results

In this section we present detailed simulation results showing the performance of the TAPTF,

TAGS and Random. We consider both two and three host configurations, and observe a wide

range of workloads (where α is varied from 0.5 to 2.0). We also consider a variety of system

loads (represented by ρ) ranging from low (0.3), moderate (0.5), and high (0.7).

We focus on the mean metrics (such as mean waiting time and slowdown), as well as

the variance those metrics. We also measure the waiting time and slowdown on a per host,

and in the case of TAPTF, per queue basis. Finally, we measure the number of hand-offs

generated in each scenario, as well as the corresponding wasted processing that occurs. For

each graph, where expected waiting times are measured, the TAGS and TAPTF models that

have parameters optimised for this metric are utilised. Likewise, where slowdown is shown,

TAGS and TAPTF models that have optimised parameters for this metric are used.

7.3.1 Two Hosts

Figures 7.4(a) and (b) depict the expected waiting time for a two host distributed system

under a low system load of 0.3. We can see that the results are largely consistent with the

figures obtained analytically in Chapter 4. TAPTF shows a marginal improvement in the

waiting time as the task size distribution becomes less variable.

Figures 7.4(c) and (d) show a different perspective. Here we observe the variance for both

the waiting time and slowdown. With respect to the variance in waiting time, the results

are clearly in favour of the TAPTF policy, over a wide range of α values (i.e. α > 1.1). As a

result we have more confidence in the mean metrics presented for TAPTF rather than TAGS

in Figure 7.4(a). Consequently, but over a smaller region (α > 1.5), we can make a similar

claim regarding our confidence in the mean slowdown metrics.

When we examine the results on a per host basis (Figures 7.4(e) and (f)), we can see as

expected, that there is very little difference in the expected waiting time for each host under a

Random task assignment policy. Random simply splits the incoming task stream and makes

no effort to reduce the variance experienced by tasks. We note that the first TAGS host

155

CHAPTER 7. OBTAINING ADVANCED PERFORMANCE METRICS VIA SIMULATION

 1000

 10000

 100000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

RAN SIM
RAN

TAGS OPTW SIM
TAGS

TAPTF OPTW SIM
TAPTF

(a) E(W) - ρ = 0.3

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

RAN SIM
RAN

TAGS OPTS SIM
TAGS

TAPTF OPTS SIM
TAPTF

(b) E(S) - ρ = 0.3

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 1e+13

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

RAN SIM
TAGS OPTW SIM

TAPTF OPTW SIM

(c) Var(W) - ρ = 0.3

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

RAN SIM
TAGS OPTS SIM

TAPTF OPTS SIM

(d) Var(S) - ρ = 0.3

 1e-04

 0.01

 1

 100

 10000

 1e+06

 1e+08

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF OPTW H1 SIM
TAPTF OPTW H2 SIM
TAGS OPTW H1 SIM
TAGS OPTW H2 SIM

RAN H1 SIM
RAN H2 SIM

(e) E(W) per host - ρ = 0.3

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 100

 10000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF OPTS H1 SIM
TAPTF OPTS H2 SIM
TAGS OPTS H1 SIM
TAGS OPTS H2 SIM

RAN H1 SIM
RAN H2 SIM

(f) E(S) per host - ρ = 0.3

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF OPTW H1 O SIM
TAPTF OPTW H2 O SIM
TAPTF OPTW H2 R SIM

(g) E(W) per queue - ρ = 0.3

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 100

 10000

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF OPTS H1 O SIM
TAPTF OPTS H2 O SIM
TAPTF OPTS H2 R SIM

(h) E(S) per queue - ρ = 0.3

Figure 7.4: Performance of a two host distributed system with system load of 0.3

156

CHAPTER 7. OBTAINING ADVANCED PERFORMANCE METRICS VIA SIMULATION

 1000

 10000

 100000

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

H
an

do
ffs

Alpha

TAGS OPTW SIM
TAPTF OPTW SIM

(a) Hand-offs - ρ = 0.3

 1000

 10000

 100000

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

H
an

do
ffs

Alpha

TAGS OPTS SIM
TAPTF OPTS SIM

(b) Hand-offs - ρ = 0.3

 1e+08

 1e+09

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS OPTW SIM
TAPTF OPTW SIM

(c) Waste - ρ = 0.3

 1e+07

 1e+08

 1e+09

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS OPTS SIM
TAPTF OPTS SIM

(d) Waste - ρ = 0.3

Figure 7.5: The number of hand-offs for systems optimised for waiting time or slowdown are

shown in (a) and (b) respectively. The corresponding waste is shown in (c) and (d).

has the lowest expected waiting time, while the second TAGS host has the highest expected

waiting time. This has little effect on the overall TAGS metrics as it processes the majority

of tasks to completion on the first host. This only becomes detrimental as the distribution of

service requirements becomes less variable, and the first host becomes overworked. The first

TAPTF host also has similarly low expected waiting time to TAGS, while exhibiting slightly

better expected waiting time at the second host. These trends are largely consistent when

examining the per host slowdown.

Figures 7.4(g) and (h) depicts the expected waiting time and slowdown for the TAPTF

on a per queue basis. We can observe for the waiting time, that the expected values increase

as we go from the first queue to the last queue. Unsurprisingly, the Ordinary queue at Host 1

157

CHAPTER 7. OBTAINING ADVANCED PERFORMANCE METRICS VIA SIMULATION

 1000

 10000

 100000

 1e+06

 1e+07

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

RAN SIM
RAN

TAGS OPTW SIM
TAGS

TAPTF OPTW SIM
TAPTF

(a) E(W) - ρ = 0.5

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

RAN SIM
RAN

TAGS OPTS SIM
TAGS

TAPTF OPTS SIM
TAPTF

(b) E(S) - ρ = 0.5

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 1e+13

 1e+14

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

RAN SIM
TAGS OPTW SIM

TAPTF OPTW SIM

(c) Var(W) - ρ = 0.5

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

RAN SIM
TAGS OPTS SIM

TAPTF OPTS SIM

(d) Var(S) - ρ = 0.5

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF OPTW H1 SIM
TAPTF OPTW H2 SIM
TAGS OPTW H1 SIM
TAGS OPTW H2 SIM

RAN H1 SIM
RAN H2 SIM

(e) E(W) per host - ρ = 0.5

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF OPTS H1 SIM
TAPTF OPTS H2 SIM
TAGS OPTS H1 SIM
TAGS OPTS H2 SIM

RAN H1 SIM
RAN H2 SIM

(f) E(S) per host - ρ = 0.5

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF OPTW H1 O SIM
TAPTF OPTW H2 O SIM
TAPTF OPTW H2 R SIM

(g) E(W) per queue - ρ = 0.5

 0.01

 0.1

 1

 10

 100

 1000

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF OPTS H1 O SIM
TAPTF OPTS H2 O SIM
TAPTF OPTS H2 R SIM

(h) E(S) per queue - ρ = 0.5

Figure 7.6: Performance of a two host distributed system with system load of 0.5.

158

CHAPTER 7. OBTAINING ADVANCED PERFORMANCE METRICS VIA SIMULATION

 100

 1000

 10000

 100000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

H
an

do
ffs

Alpha

TAGS OPTW SIM
TAPTF OPTW SIM

(a) Hand-offs - ρ = 0.5

 1000

 10000

 100000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

H
an

do
ffs

Alpha

TAGS OPTS SIM
TAPTF OPTS SIM

(b) Hand-offs - ρ = 0.5

 1e+08

 1e+09

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS OPTW SIM
TAPTF OPTW SIM

(c) Waste - ρ = 0.5

 1e+07

 1e+08

 1e+09

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS OPTS SIM
TAPTF OPTS SIM

(d) Waste - ρ = 0.5

Figure 7.7: The number of hand-offs for systems optimised for waiting time or slowdown are

shown in (a) and (b) respectively. The corresponding waste is shown in (c) and (d).

has the lowest expected waiting time and slowdown. This queue services the smallest range

of tasks, keeping the performance measures low. Conversely, the Restart queue at Host 2

tends to service the largest tasks, which has a negative impact on key performance measures.

However, when optimised for slowdown, the Ordinary queue has worse expected slowdown

than the restart queue at the second host, due to the fact that it services the widest range

of task sizes. As such, there is increased probability of small tasks sharing that queue with

larger tasks, which can lead to higher slowdown.

The average number of hand-offs that occur in systems optimised for waiting time and

slowdown is shown in Figures 7.5(a) and (b). TAPTF shows a significant reduction in

hand-offs for both cases as the workload becomes less variable. By the time α reaches 2,

159

CHAPTER 7. OBTAINING ADVANCED PERFORMANCE METRICS VIA SIMULATION

TAPTF has half as many hand-offs as TAGS. The corresponding wasted processing is shown

in Figures 7.5(c) and (d). The corresponding reduction in wasted processing is not as large

as you would think, but clearly is significant enough to result in improved performance of

TAPTF over TAGS, as highlighted by Figure 7.4

The waiting time and slowdown metrics shown in 7.6(a) and (b) for a system load of

0.5 are consistent with the analytical results found previously. In keeping with these results,

we see a clear improvement for TAPTF over TAGS for a wider range of α values on the

horizontal axis.

The variance in the waiting time and slowdown is depicted in Figures 7.6(c) and (d)

respectively. Regarding the variance in waiting time, we can see that the breadth and mag-

nitude of the improvement of TAPTF over TAGS has increased as the system load was raised

to 0.5. Under a key area of high variance (0.9 ≤ α < 1.4) we can see that while TAGS has

slightly better mean waiting time than TAPTF, the opposite is true regarding the variance

in waiting time. We also note reduced variance in slowdown where α > 1.5, corresponding

with an improvement in mean slowdown over the same region.

On a per host basis (7.6(e) and (f)), we again observe that for expected waiting time,

TAGS shows both the best (Host 1) and the worst (Host 2) performance results. Again we

note that this is not as troublesome as it seems under a moderate utilisation of 0.5, as the

overwhelming majority of tasks are processed by the first host. This only becomes detrimental

as the workload tends toward being less variable. TAPTF has a much less variable spread of

expected waiting times for its respective hosts. TAGS does much better when optimised for

expected slowdown in this case, being only marginally bested by TAPTF as α decreases.

The per queue metrics measured for expected waiting time and slowdown under a system

load of 0.5, depicted in 7.6(g) and (h), are consistent with the trends observed earlier under

lower load. When optimised for expected waiting time, the metrics increase as we consider

Host 1’s Ordinary queue, Host 2’s Ordinary queue, and finally Host 2’s restart queue - which

has the largest expected waiting time. As we saw when the system load was 0.3, when

optimised for slowdown the Ordinary queue at Host 2 has a larger expected slowdown than

the Restart queue at the same host. On reflection this is not that surprising, given what we

know about the size ranges of tasks these two queues service. Tasks in the Restart queue

are much more likely to be queueing behind other tasks of a similar size. Tasks in the

Ordinary queue could potentially range from the smallest task, k, to the largest task, p. As

the slowdown metric considers the waiting time proportional to a task’s size, these findings

make sense.

160

CHAPTER 7. OBTAINING ADVANCED PERFORMANCE METRICS VIA SIMULATION

 1000

 10000

 100000

 1e+06

 1e+07

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

RAN SIM
RAN

TAGS OPTW SIM
TAGS

TAPTF OPTW SIM
TAPTF

(a) E(W) - ρ = 0.7

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

RAN SIM
RAN

TAGS OPTS SIM
TAGS

TAPTF OPTS SIM
TAPTF

(b) E(S) - ρ = 0.7

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 1e+13

 1e+14

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

RAN SIM
TAGS OPTW SIM

TAPTF OPTW SIM

(c) Var(W) - ρ = 0.7

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

RAN SIM
TAGS OPTS SIM

TAPTF OPTS SIM

(d) Var(S) - ρ = 0.7

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF OPTW H1 SIM
TAPTF OPTW H2 SIM
TAGS OPTW H1 SIM
TAGS OPTW H2 SIM

RAN H1 SIM
RAN H2 SIM

(e) E(W) per host - ρ = 0.7

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF OPTS H1 SIM
TAPTF OPTS H2 SIM
TAGS OPTS H1 SIM
TAGS OPTS H2 SIM

RAN H1 SIM
RAN H2 SIM

(f) E(S) per host - ρ = 0.7

 1000

 10000

 100000

 1e+06

 1e+07

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF OPTW H1 O SIM
TAPTF OPTW H2 O SIM
TAPTF OPTW H2 R SIM

(g) E(W) per queue - ρ = 0.7

 0.1

 1

 10

 100

 1000

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF OPTS H1 O SIM
TAPTF OPTS H2 O SIM
TAPTF OPTS H2 R SIM

(h) E(S) per queue - ρ = 0.7

Figure 7.8: Performance of a two host distributed system with system load of 0.7

161

CHAPTER 7. OBTAINING ADVANCED PERFORMANCE METRICS VIA SIMULATION

 100

 1000

 10000

 100000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

H
an

do
ffs

Alpha

TAGS OPTW SIM
TAPTF OPTW SIM

(a) Hand-offs - ρ = 0.7

 100

 1000

 10000

 100000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

H
an

do
ffs

Alpha

TAGS OPTS SIM
TAPTF OPTS SIM

(b) Hand-offs - ρ = 0.7

 1e+08

 1e+09

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS OPTW SIM
TAPTF OPTW SIM

(c) Waste - ρ = 0.7

 1e+08

 1e+09

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS OPTS SIM
TAPTF OPTS SIM

(d) Waste - ρ = 0.7

Figure 7.9: The number of hand-offs for systems optimised for waiting time or slowdown are

shown in (a) and (b) respectively. The corresponding waste is shown in (c) and (d).

Figures 7.7(a) and (b) illustrates the number of hand-offs for policies optimised for waiting

time and slowdown, where the system load is 0.5. We can clearly see the reduction in

the number of hand-offs (in both instances) has increased for TAPTF over TAGS. The

TAPTF policy has nearly three times less hand-offs in the example illustrated in Figure 7.7(a).

Correspondingly, the reduction in wasted processing is also increasing, as highlighted by

Figures 7.7(c) and (d).

Figures 7.8(a) and (b) show the expected waiting time and slowdown under a high system

load of 0.7. We can see from the figures that the trends identified via analytical measurement

are followed very closely by the simulation results. As expected, the range of improvement

for TAPTF over TAGS on the horizontal axis has expanded for both the waiting time and

162

CHAPTER 7. OBTAINING ADVANCED PERFORMANCE METRICS VIA SIMULATION

slowdown as the system load has increased.

The variance in waiting time and slowdown for this scenario are shown in Figures 7.8(c)

and (d) respectively. We can see a significant improvement in the variance in waiting time

that is largely consistent with that exhibited in Figure 7.8(a), for the expected waiting time.

TAPTF not only improved on the expected waiting time, but there is also significantly less

variance in the waiting time values that were measured, giving us great confidence in the

mean. The variance in slowdown is also reduced where α ≥ 1.4. This corresponds with the

improvement shown in the mean slowdown depicted in Figure 7.8(b).

Similar trends are becoming evident when we consider the measurements on a per host

basis, shown in Figures 7.8(e) and (f). As expected, the waiting time and slow down for the

Random policy are indistinguishable for both hosts. The TAGS policy, optimised for waiting

time, again has both the best (Host 1) and worst (Host 2) expected waiting time. In the case

of TAPTF (optimised for waiting time), the difference in expected waiting time for the two

hosts is not so pronounced. For the policies optimised for slowdown, TAPTF shows much

better expected slowdown for its second Host than TAGS. This becomes important as the

variance reduces (i.e. α approaches 2), as more hosts need to be processed on the second

host for both TAGS and TAPTF.

Figures 7.8(g) and (h) continue to exhibit similar trends in performance for the TAPTF

policy, for the expected waiting time and slowdown on a per queue basis. The only change

occurs for mean slowdown, where α > ge1.7 we can observe at Host 2 that the Ordinary

queue has better slowdown than the Restart queue.

We can begin to see a trend develop when examining Figures 7.9(a) and (b). As the

system load increases, the performance of TAGS is obviously suffering. It is easy to identify

why. All tasks are dispatched initially to the first host. As the variance begins to decrease

(coupled with high system loads), the amount of hand-offs generated is expanding rapidly.

From Figures 7.9(c) and (d) we can see that, consequently, the amount of wasted processing

created by the TAGS policy has increased significantly also. The amount of hand-offs and

waste generated by the TAPTF policy remains relatively steady in comparison.

7.3.2 Three Hosts

Figures 7.10(a) and (b) depict the expected waiting time for a three host distributed system

under a low system load of 0.3. We can see some divergence in the metrics, especially

as the variance decreases (and α increases). However the general performance trends are

163

CHAPTER 7. OBTAINING ADVANCED PERFORMANCE METRICS VIA SIMULATION

 100

 1000

 10000

 100000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

RAN SIM
RAN

TAGS OPTW SIM
TAGS

TAPTF OPTW SIM
TAPTF

(a) E(W) - ρ = 0.3

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

RAN SIM
RAN

TAGS OPTS SIM
TAGS

TAPTF OPTS SIM
TAPTF

(b) E(S) - ρ = 0.3

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 1e+13

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

RAN SIM
TAGS OPTW SIM

TAPTF OPTW SIM

(c) Var(W) - ρ = 0.3

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

RAN SIM
TAGS OPTS SIM

TAPTF OPTS SIM

(d) Var(S) - ρ = 0.3

 1e-08

 1e-06

 1e-04

 0.01

 1

 100

 10000

 1e+06

 1e+08

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF OPTW H1 SIM
TAPTF OPTW H2 SIM
TAPTF OPTW H3 SIM
TAGS OPTW H1 SIM
TAGS OPTW H2 SIM
TAGS OPTW H3 SIM

RAN H1 SIM
RAN H2 SIM
RAN H3 SIM

(e) E(W) per host - ρ = 0.3

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 100

 10000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF OPTS H1 SIM
TAPTF OPTS H2 SIM
TAPTF OPTS H3 SIM
TAGS OPTS H1 SIM
TAGS OPTS H2 SIM
TAGS OPTS H3 SIM

RAN H1 SIM
RAN H2 SIM
RAN H3 SIM

(f) E(S) per host - ρ = 0.3

 1e-08

 1e-06

 1e-04

 0.01

 1

 100

 10000

 1e+06

 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

T
im

e
U

ni
ts

Alpha

TAPTF OPTW H1 O SIM
TAPTF OPTW H2 O SIM
TAPTF OPTW H2 R SIM
TAPTF OPTW H3 O SIM
TAPTF OPTW H3 R SIM

(g) E(W) per queue - ρ = 0.3

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 100

 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

T
im

e
U

ni
ts

Alpha

TAPTF OPTS H1 O SIM
TAPTF OPTS H2 O SIM
TAPTF OPTS H2 R SIM
TAPTF OPTS H3 O SIM
TAPTF OPTS H3 R SIM

(h) E(S) per queue - ρ = 0.3

Figure 7.10: Performance of a three host distributed system with system load of 0.3

164

CHAPTER 7. OBTAINING ADVANCED PERFORMANCE METRICS VIA SIMULATION

 1000

 10000

 100000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

H
an

do
ffs

Alpha

TAGS OPTW SIM
TAPTF OPTW SIM

(a) Hand-offs - ρ = 0.3

 10000

 100000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

H
an

do
ffs

Alpha

TAGS OPTS SIM
TAPTF OPTS SIM

(b) Hand-offs - ρ = 0.3

 1e+08

 1e+09

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS OPTW SIM
TAPTF OPTW SIM

(c) Waste - ρ = 0.3

 1e+08

 1e+09

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS OPTS SIM
TAPTF OPTS SIM

(d) Waste - ρ = 0.3

Figure 7.11: The number of hand-offs for systems optimised for waiting time or slowdown

are shown in (a) and (b) respectively. The corresponding waste is shown in (c) and (d).

similar. We also note that for each three host scenario, some of the TAPTF parameters (q1,

q2 and q3) were tuned by hand rather than found via a solver, as described in Chapter 4.

As such, the performance could be improved further for all TAPTF three host cases. The

simulated performance of TAGS and TAPTF are largely indistinguishable here, despite a

small improvement being evident when comparing the analytical results.

The variance in waiting time and slowdown for this scenario are show in Figures 7.10(c)

and (d) respectively. Despite TAPTF only showing a small improvement in expected waiting

time over TAGS (Figure 7.10(a)), we can see significantly less variance in the waiting time in

Figure 7.10(c). There is also a respectable reduction in the variability of slowdown measured,

highlighted in Figure 7.10(d).

165

CHAPTER 7. OBTAINING ADVANCED PERFORMANCE METRICS VIA SIMULATION

Figures 7.10(e) and (f) show the expected waiting time and slowdown on a per host

basis. For both expected waiting time and slowdown, the results for each host in the random

system are indistinguishable, as anticipated. Again, TAGS is shown to have both the best

(Host 1) and the worst (Host 3) expected waiting time. This has little material effect on

the performance of TAGS however. With three hosts available (and thus more flexibility in

choosing the cutoffs), as well as low system load, means that TAGS performs exceptionally

well under these circumstances. Due to this very low utilisation and flexibility in choosing

cutoffs, both TAGS and TAPTF have exceptionally low expected waiting time at the first

host as the task size variation decreases.

Figure 7.10(g) shows similar trends that were exhibited in the two host scenarios for

per queue waiting time. As we move along the prospective queues in a TAPTF system,

we note that the expected waiting time increases. In Figure 7.10(h) we observe that while

the Ordinary queue at Host 1 has extremely low slowdown due to the tight range of tasks it

services and the low overall system load. When α > 1.5 we observe that the Restart queue at

Host 2 has better slowdown than the Ordinary queue. At all other times, the converse is true.

The slowdown for both the Ordinary and Restart queues at Host 3 are indistinguishable.

Despite almost indistinguishable performs gains for the three host scenario (with a system

load of 0.3), Figures 7.11(a) and (b) show a healthy reduction in the number of hand-offs

demonstrated by a TAPTF policy over a TAGS policy. For policies optimised for both waiting

time and slowdown, we can see a significant reduction in hand-offs as the task size variation

decreases. Correspondingly, we can also see a reasonable reduction in the amount of wasted

processing, depicted in Figures 7.11(c) and (d).

Figures 7.12(a) and (b) show the expected waiting time and slowdown respectively, for

a three host system under a moderate load of 0.5. A reasonable improvement in waiting

time for TAPTF over TAGS is measured via the simulation, despite the improvement being

more pronounced in the analytical comparison. TAPTF’s improvement in slowdown is also

evident and consistent with the analytical trends found in Chapter 4.

Figures 7.12(c) and (d) illustrate the variance in waiting time and slowdown for this

three host scenario. With respect to the variance in waiting time, TAPTF shows a clear

and distinct improvement over TAGS over a wide range of α parameters, where α ≥ 0.9.

A commendable improvement in the variance in slowdown measured is demonstrated by

TAPTF over TAGS where α > 1, despite only recording a relatively modest performance

increase in the expected slowdown.

Per host metrics for expected waiting time and slowdown are shown in Figures 7.12(e)

166

CHAPTER 7. OBTAINING ADVANCED PERFORMANCE METRICS VIA SIMULATION

 1000

 10000

 100000

 1e+06

 1e+07

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

RAN SIM
RAN

TAGS OPTW SIM
TAGS

TAPTF OPTW SIM
TAPTF

(a) E(W) - ρ = 0.5

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

RAN SIM
RAN

TAGS OPTS SIM
TAGS

TAPTF OPTS SIM
TAPTF

(b) E(S) - ρ = 0.5

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 1e+13

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

RAN SIM
TAGS OPTW SIM

TAPTF OPTW SIM

(c) Var(W) - ρ = 0.5

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

RAN SIM
TAGS OPTS SIM

TAPTF OPTS SIM

(d) Var(S) - ρ = 0.5

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF OPTW H1 SIM
TAPTF OPTW H2 SIM
TAPTF OPTW H3 SIM
TAGS OPTW H1 SIM
TAGS OPTW H2 SIM
TAGS OPTW H3 SIM

RAN H1 SIM
RAN H2 SIM
RAN H3 SIM

(e) E(W) per host - ρ = 0.5

 1e-06

 1e-04

 0.01

 1

 100

 10000

 1e+06

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF OPTS H1 SIM
TAPTF OPTS H2 SIM
TAPTF OPTS H3 SIM
TAGS OPTS H1 SIM
TAGS OPTS H2 SIM
TAGS OPTS H3 SIM

RAN H1 SIM
RAN H2 SIM
RAN H3 SIM

(f) E(S) per host - ρ = 0.5

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF OPTW H1 O SIM
TAPTF OPTW H2 O SIM
TAPTF OPTW H2 R SIM
TAPTF OPTW H3 O SIM
TAPTF OPTW H3 R SIM

(g) E(W) per queue - ρ = 0.5

 0.01

 0.1

 1

 10

 100

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF OPTS H1 O SIM
TAPTF OPTS H2 O SIM
TAPTF OPTS H2 R SIM
TAPTF OPTS H3 O SIM
TAPTF OPTS H3 R SIM

(h) E(S) per queue - ρ = 0.5

Figure 7.12: Performance of a three host distributed system with system load of 0.5

167

CHAPTER 7. OBTAINING ADVANCED PERFORMANCE METRICS VIA SIMULATION

 1000

 10000

 100000

 1e+06

 0.6 0.8 1 1.2 1.4 1.6 1.8 2

H
an

do
ffs

Alpha

TAGS OPTW SIM
TAPTF OPTW SIM

(a) Hand-offs - ρ = 0.5

 10000

 100000

 1e+06

 0.6 0.8 1 1.2 1.4 1.6 1.8 2

H
an

do
ffs

Alpha

TAGS OPTS SIM
TAPTF OPTS SIM

(b) Hand-offs - ρ = 0.5

 1e+08

 1e+09

 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS OPTW SIM
TAPTF OPTW SIM

(c) Waste - ρ = 0.5

 1e+08

 1e+09

 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS OPTS SIM
TAPTF OPTS SIM

(d) Waste - ρ = 0.5

Figure 7.13: The number of hand-offs for systems optimised for waiting time or slowdown

are shown in (a) and (b) respectively. The corresponding waste is shown in (c) and (d).

and (f) respectively. As has been the case in all previous observations of per host metrics,

TAGS has the best and worst expected waiting times (for Host’s 1 and 3 respectively). The

expected slowdown for TAGS at the second host is more favourable, especially as the variation

increases (and α decreases). Also at the second host, TAPTF exhibits improved expected

slowdown especially as variance decreases. As more and more tasks are assigned to the second

TAPTF host, the overall expected slowdown improves, as illustrated by Figure 7.12(b). As

expected, the mean waiting time and slowdown for the Random policy at each host are

almost identical.

There are not too many surprises in the per queue metrics depicted in Figure 7.12(g) and

(h). The expected waiting time increases as we progress through the queues at each host, up

168

CHAPTER 7. OBTAINING ADVANCED PERFORMANCE METRICS VIA SIMULATION

until the final host. For performance reasons, the Ordinary queue at Host 3 does not have

any tasks assigned to it until α = 1.6 as it is too risky due to the variability in the task

size distribution. For mean slowdown, the Ordinary queue at the first host has the lowest

slowdown (due to its tight range of task sizes that it services). From α > 1.2 we observe that

the Ordinary queue at Host 2 has the next best slowdown, followed by the Restart queue

at the same host. Following those queues, the Restart queue at Host 3 has larger slowdown

still, with the Ordinary queue having the worst slowdown when used.

From Figures 7.13(a) and (b) we can see a significant increase for TAGS in the number

of hand-offs (for both waiting time and slowdown optimised cases). This increase begins

from where the workload is still extremely variable (α = 0.9) and expands as α approaches

2. The amount of wasted processing generated by TAGS has increased also, as highlighted

by Figures 7.13(c) and (d). Corresponding with the hand-offs, this increase in waste starts

from a level of high variation (α = 0.9), and continues to expand as the task size variation

decreases. TAPTF remains relatively steady with respect to the number of hand-offs, and

the corresponding waste generated, over the same area.

Figure 7.14(a) and (b) depict a three host scenario under a high system load of 0.7. This

scenario is of particular interest to us, as it represents the point where the TAGS policy

reaches its limits and cannot adequately service the incoming workload in many instances.

From Figure 7.14(a) and (b) we can see that the simulation and analytical results follow a

consistent performance trend. We can see for both the expected waiting time and slowdown,

when α is less than 0.8, and when α is greater than 1.4, there is no results shown for TAGS.

This is simply because at those regions, no cutoff parameters exist that can keep the load at

each host below 1.0. It is not feasible to run a system at continuous overload, as the queue

lengths will increase unbounded. We can observe from the figures than TAPTF maintains a

relatively steady expected waiting time and slowdown from 0.9 ≤ α ≤ 2.0.

Figure 7.14(c) and (d) show the variance in waiting time and slowdown for this high

load scenario. The variance exhibited by TAPTF and TAGS is largely consistent with the

corresponding expected waiting time and slowdown depicted in Figure 7.14(a) and (b), as

are the areas where TAGS cannot operate due to the reasons outlined above. TAPTF can

operate successfully in areas where TAGS cannot, whilst still maintaining acceptable variance

in waiting time and slowdown, clearly besting TAGS and the base-line Random policy.

The per host metrics are shown in Figures 7.14(e) and (f) for the expected waiting time

and slowdown respectively. TAPTF maintains good mean waiting time at the first and

second host, where the vast majority of tasks are serviced (and run-to-completion). TAPTF

169

CHAPTER 7. OBTAINING ADVANCED PERFORMANCE METRICS VIA SIMULATION

 1000

 10000

 100000

 1e+06

 1e+07

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

RAN SIM
RAN

TAGS OPTW SIM
TAGS

TAPTF OPTW SIM
TAPTF

(a) E(W) - ρ = 0.7

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

RAN SIM
RAN

TAGS OPTS SIM
TAGS

TAPTF OPTS SIM
TAPTF

(b) E(S) - ρ = 0.7

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 1e+13

 1e+14

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

RAN SIM
TAGS OPTW SIM

TAPTF OPTW SIM

(a) Var(W) - ρ = 0.7

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

RAN SIM
TAGS OPTS SIM

TAPTF OPTS SIM

(b) Var(S) - ρ = 0.7

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF OPTW H1 SIM
TAPTF OPTW H2 SIM
TAPTF OPTW H3 SIM
TAGS OPTW H1 SIM
TAGS OPTW H2 SIM
TAGS OPTW H3 SIM

RAN H1 SIM
RAN H2 SIM
RAN H3 SIM

(c) E(W) per host - ρ = 0.7

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF OPTS H1 SIM
TAPTF OPTS H2 SIM
TAPTF OPTS H3 SIM
TAGS OPTS H1 SIM
TAGS OPTS H2 SIM
TAGS OPTS H3 SIM

RAN H1 SIM
RAN H2 SIM
RAN H3 SIM

(d) E(S) per host - ρ = 0.7

 1000

 10000

 100000

 1e+06

 1e+07

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF OPTW H1 O SIM
TAPTF OPTW H2 O SIM
TAPTF OPTW H2 R SIM
TAPTF OPTW H3 O SIM
TAPTF OPTW H3 R SIM

(e) E(W) per queue - ρ = 0.7

 0.1

 1

 10

 100

 1000

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAPTF OPTS H1 O SIM
TAPTF OPTS H2 O SIM
TAPTF OPTS H2 R SIM
TAPTF OPTS H3 O SIM
TAPTF OPTS H3 R SIM

(f) E(S) per queue - ρ = 0.7

Figure 7.14: Performance of a three host distributed system with system load of 0.7

170

CHAPTER 7. OBTAINING ADVANCED PERFORMANCE METRICS VIA SIMULATION

 1000

 10000

 100000

 1e+06

 0.8 1 1.2 1.4 1.6 1.8 2

H
an

do
ffs

Alpha

TAGS OPTW SIM
TAPTF OPTW SIM

(a) Hand-offs - ρ = 0.7

 1000

 10000

 100000

 1e+06

 0.8 1 1.2 1.4 1.6 1.8 2

H
an

do
ffs

Alpha

TAGS OPTS SIM
TAPTF OPTS SIM

(b) Hand-offs - ρ = 0.7

 1e+08

 1e+09

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS OPTW SIM
TAPTF OPTW SIM

(c) Waste - ρ = 0.7

 1e+08

 1e+09

 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
U

ni
ts

Alpha

TAGS OPTS SIM
TAPTF OPTS SIM

(d) Waste - ρ = 0.7

Figure 7.15: The number of hand-offs for systems optimised for waiting time or slowdown

are shown in (a) and (b) respectively. The corresponding waste is shown in (c) and (d).

has consistently better expected waiting time at both Host 2 and Host 3 than TAGS does (at

the same hosts). The same can also be said for the expected slowdown, with the measured

values at Host 2 and 3 for TAPTF being lower than TAGS the vast majority of the time.

This would have a significant material effect on the overall performance metrics.

Figures 7.14(g) and (h) show the per queue simulation results for the TAPTF policy. The

waiting time results are largely consistent with what was described for three host scenarios

under loads of 0.3 and 0.5. The per queue slowdown results are also mostly consistent with

prior observations. The only change of note is the Restart queues at Hosts 2 and 3 showing

very similar slowdown figures when α ≥ 1.3.

Figures 7.15(a) and (b) show the number of hand-offs generated by the TAGS and TAPTF

171

CHAPTER 7. OBTAINING ADVANCED PERFORMANCE METRICS VIA SIMULATION

policies for a three host scenario under a high system load of 0.7. As mentioned previously,

the TAGS policy was not able to be utilised when α > 1.4, as it could not keep the load at

each host below 1. However we can see a rapid increase in the number of hand-offs for both

cases (where optimised for waiting time or slowdown) in the areas TAGS is able to operate in.

On the other hand, TAPTF maintains a relatively steady number of hand-offs in these cases.

The increased number of hand-offs that TAGS generates naturally results in an increased

amount of wasted processing, as highlighted by Figures 7.15(c) and (d). Conversely, TAPTF

actually has a slight drop in wasted processing as the task size variation decreases.

7.4 Discussion

In this section we discuss the findings presented in Section 7.3 - where a range of two host

(Section 7.3.1) and three host (Section 7.3.2) simulation scenarios were investigated.

When considering the mean metrics in all cases for the TAPTF, TAGS and Random

policies, the analytical results from Chapter 4 were contrasted against the numerical results

obtained from our simulation platform. As discussed in Section 7.2, simulating queueing

systems with highly variable workloads (coupled with large events that are ‘rare’ but crucial

to consider) is very difficult. As such, while we did not expect our simulation results to match

perfectly, we expected similar performance trends to be present over the ranges of task size

variation and system loads tested.

This was certainly the case, and the simulation results assist us in verifying the correctness

of the original TAPTF model presented in Chapter 4.

We were also able to measure the variance in waiting time and slowdown for the TAPTF,

TAGS and Random queueing systems simulated previously. In the case of TAPTF, we have

been unable to compute the variance in waiting time or slowdown due to the difficulty in

obtaining transforms for the Bounded Pareto service distribution, coupled with the use of

priority queues, making it a very challenging problem. Through simulation we were able to

confirm our original hypothesis regarding the design of the TAPTF task assignment policy

- that it would be effective in reducing the variance experienced by customers. It achieves

this via the use of dual queues, grouping like-sized tasks together. We consistently observed

significant reductions by TAPTF over TAGS and Random in the variance in waiting time,

and in certain areas of observation, slowdown.

We also measured the number of hand-offs (and the subsequent waste) generated by the

TAPTF and TAGS models. This became especially critical as the system load increases,

172

CHAPTER 7. OBTAINING ADVANCED PERFORMANCE METRICS VIA SIMULATION

having a significantly detrimental effect on the performance as the amount of wasted pro-

cessing increases. If we wished to model application domains where tasks have an initial

start-up cost (upon a task starting or restarting service, which is not uncommon) we suspect

this problem would be amplified for TAGS (and to a much lesser extend, TAPTF).

The trends observed from the analytical results relating to the performance as the sys-

tem load increases were confirmed via the simulation presented in this chapter. From the

simulation results, we observed that the improvement that TAPTF provides increases in

magnitude and breadth (i.e over a wider range of workload variations) as the system load

increases. Indeed, when we considered a three host case under a system load of 0.7, we found

that TAGS could not operate under certain workloads. TAPTF had no problem handling

such workloads, and (whilst not depicted here) TAPTF can perform under system loads of

0.8 and 0.9. This has been verified both analytically and via simulation. TAPTF spreads the

load over multiple hosts, and as it does not have single bottleneck (i.e Host 1) it can handle

these higher loads easily.

7.5 Conclusion

The OMNeT++ simulation framework provided us with platform to generate a wide range of

queueing metrics, many of which we have been unable to compute analytically at this point.

We were able to verify the analytical model found in Chapter 4 via simulation, as well

as measure new metrics including the variance of the waiting time and slowdown. We also

measured per host and per queue metrics, as well as the number of hand-offs and wasted

processing generated by TAGS and TAPTF. This ultimately gives us a greater insight into the

operation of the TAPTF policy, providing further understanding regarding how it provides

improved performance under specific areas and scenarios. This insight can be used to optimise

the TAPTF model further and pursue new methods of task assignment.

173

Chapter 8

Discussion

In this thesis we have investigated some key issues relating to the problem of effective task

assignment strategies for distributed systems under highly variable workloads. We were

particularly motivated by the specific problems associated with modern computing workloads.

Most past research in task assignment (or scheduling) has been focused on less variable,

exponential workloads. Significant recent research has revealed than modern computing

workloads are highly variable, and are distributions that characterise them are ‘heavy-tailed’.

In light of these findings we focused our efforts on the modelling and improvement of task

assignment policies under these highly variable workloads.

Our first two research questions were focused on devising more effective task assignment

policies under two specific application domains - batch computing, and web serving clusters.

Both policies (TAPTF and TAPTF-WC) endeavoured to maximise the performance and

utilisation of a distributed system in each respective application domain.

We then considered techniques to simplify the modelling and analysis of queueing sys-

tems that incorporate General distributions by approximating such distributions as Hyper-

exponential. We also re-computed our TAPTF model to utilise a Hyper-exponential (or

Bounded Hyper-exponential) service distribution. This allows the TAPTF model to be used

with nearly any General service distribution (e.g. Pareto, Bounded Pareto, Log-normal, etc.),

simply by first approximating it as Hyper-exponential or Bounded Hyper-exponential.

Finally, we performed a rigorous simulation of key task assignment policies, measuring

a wide range of metrics. A simulation framework to record important queueing metrics

was presented, allowing us to measure many metrics that were not possible to compute

via analytical means. Several issues regarding simulating highly variable workloads were

174

CHAPTER 8. DISCUSSION

identified, and the variance of key metrics such as expected waiting time and slowdown were

obtained.

Specifically, the following research questions have been addressed in this thesis:

A) How can we improve task assignment policies for batch computing environ-

ments?

B) How can we improve task assignment policies for interactive computing en-

vironments?

C) How can we simplify the analysis of distributed systems under highly-variable

workloads?

D) How can we obtain advanced performance metrics of task assignment policies?

8.1 Contribution

In response to the research questions mentioned above and originally posed in Section 1.1,

the following contributions were made:

8.1.1 Task assignment based on prioritising traffic flows

Task Assignment based on Prioritising Traffic Flows (TAPTF) is a size-based partitioning

approach specifically designed to address the problems caused by highly variable workloads in

batch and scientific computing systems. TAPTF assumes no prior knowledge of the size of a

task. TAPTF address many of the performance issues that existing techniques suffer from, by

its highly flexible operational parameters. TAPTF uses dual queues at each host, and groups

similar-sized tasks together in an effort to maximise performance and reduce the variance

of tasks in a given queue. Tasks that unduly delay other tasks are migrated to the next

host in the system and restarted from scratch, ensuring smaller tasks behind it in the queue

are not disproportionally delayed. TAPTF also improves utilisation by spreading incoming

tasks over more hosts as the workload variation decreases. The TAPTF policy reduces the

number of ‘hand-offs’ as compared to the TAGS policy, and consequently reduces the amount

of wasted processing.

175

CHAPTER 8. DISCUSSION

8.1.2 Task assignment with work conserving migration

Application domains such as high volume web serving clusters have different operational

requirements to that of batch and scientific domains. Specifically, it is not acceptable to

migrate a task (e.g. a lengthy web request) and restart it from scratch at another host.

Consequently, we introduce the Task Assignment with Work-Conserving Migration (TAPTF-

WC) policy, that is specifically designed for this application domain. TAPTF-WC has all the

benefits provided by the TAPTF policy, allowing it to mitigate the negative effects of highly

variable workloads, whilst allowing for work-conserving migration to occur. This is crucial

for this application domain as, like batch and scientific computing domains, the workloads

experienced by web servers can be highly variable in nature. As TAPTF-WC is specifically

designed to handle these workloads, it exhibits good performance under a wide variety of

workload and system load conditions. In addition, we also gained insight by the effects of

application domains where the act of migration incurs a fixed or proportional cost placed on

either (or both) the source or destination node.

8.1.3 Approximating General service Distributions

The technique utilised to approximate a general distribution (like Pareto or Log-normal)

as a sum of exponential distributions (known as a Hyper-exponential) is called Prony’s

method [Feldmann and Whitt, 1997]. Exponential distributions are especially useful in

queueing theory analysis due to their tractability, with their transforms and higher moments

trivial to compute. The Bounded Pareto distribution is commonly utilised in queueing anal-

ysis of task assignment policies, as they accurately characterise the highly variable workloads

that have been measured in many computing environments. Unfortunately, an unbounded

Hyper-Exponential approximation of a Bounded Pareto distribution is not going to be suit-

able. Evidently, we find that a Bounded Hyper-exponential approximation is much better

suited when the original distribution itself is bounded. This approach results in a significantly

more accurate approximation overall, with certain statistical properties of interest matching

perfectly. The accuracy of this technique is verified by integrating the Hyper-exponential

and Bounded Hyper-exponential distributions into our original TAPTF model, and com-

paring queueing metrics. As a useful consequence of this process, the TAPTF model can

now be utilised with nearly any general distribution that can be effectively approximated by

a Hyper-exponential or Bounded Hyper-exponential distribution. This allows the TAPTF

policy to be utilised with a wider range of potential workloads.

176

CHAPTER 8. DISCUSSION

8.1.4 Obtaining advanced performance metrics via simulation

At this point, there are still a number of important metrics for our TAPTF model than can-

not be computed analytically. Fortunately, we can compute a wide spectrum of metrics via

simulation of our proposed task assignment policy, giving us further insight into its behaviour

under certain workload conditions. Extensive simulation was performed, comparing one of

our proposed approaches, TAPTF, against existing task assignment policies. The simulations

provide two valuable purposes. First, we wish to compare the simulations against analytical

models of TAPTF and other existing approaches as a means to verify their integrity. Sec-

ond, we wish to obtain metrics that have thus far proved too difficult to obtain analytically.

Specifically, we are interested in the variance of the waiting time and slowdown, for the whole

system, for each host and for each queue. Such metrics (among others) provide us with a

more detailed picture of the behaviour of tasks in the system, and can ultimately provide us

with approximate bounds on performance. This becomes crucial as we ultimately endeavour

to provide end-users with specific Quality of Service bounds that can be guaranteed. Con-

sequently, these simulations will provide further insight into the problem of task assignment

under highly variable workloads.

8.2 Future Work

There is still critical future work that needs to be achieved, in examining the techniques

that assist us in the area of task assignment for distributed systems. Unfortunately there

are still many aspects of this area that are difficult to model analytically, making us reliant

on modelling via simulation. Simulation models are not without their problems, especially

under highly variable workload conditions, as highlighted by Chapter 7. In this section we

highlight some of these key areas for future exploration.

In Chapters 4 and 5 we introduced two new task assignment policies, Task Assignment

based on Prioritising Traffic Flows (TAPTF) and Task Assignment with Work Conserving

Migration (TAPTF-WC). Both policies were supported by a rigorous analytical model based

on the fundamentals of queueing theory. Mean metrics for waiting time and slowdown could

be obtained trivially thanks to our model. However, characterising the variance in the metrics

is a significantly more difficult proposition. Obtaining the higher moments of the expected

waiting and slowdown (needed to compute the variance) is difficult due to the challenging

nature of computing the Laplace transform of the waiting time and slowdown distributions.

Understanding the variance experienced by tasks in our system gives us a greater under-

177

CHAPTER 8. DISCUSSION

standing of the behaviour of the majority of tasks, as often mean metrics can be misleading

(especially under highly variable workloads). For this very reason we obtained numerical

measurements of the variance via simulation, under a variety of scenarios, for both waiting

time and slowdown in Chapter 7.

Having said that, computing the variance analytically is a challenging task, but perhaps

not impossible. There is a known result (the Laplace transform for waiting time, LW)

that can be used to compute the second moment of waiting time in a M/G/1 queue (such

as the Ordinary queue in TAPTF and TAPTF-WC) [Kleinrock, 1975b]. There is another

result [Kleinrock, 1975b] that describes the Laplace transform of the busy period for a priority

queue. This can be used to solve for the Laplace transform of the waiting time for a single

server M/G/1 priority queue system. However, the question of whether we can successfully

adapt this result to suit the modelling of Restart queues in TAPTF and TAPTF-WC appears

unclear at this point, for many reasons. A number of analytical challenges exist due to the

complexity of the TAPTF and TAPTF-WC models. Not least of these are:

• The difficulty in obtaining transforms of the service distribution (when it is Pareto or

Bounded Pareto)

• The size-based partitioning that occurs in both approaches (complicating the service

distribution further)

• The non work-conserving nature of TAPTF

• The work-conserving migration that occurs in TAPTF-WC

The techniques shown in Chapter 6 can potentially address (among other things) the

first problem, as it is trivial to compute the Laplace transform of a Hyper-exponential or

Bounded Hyper-exponential distribution. The other issues will require further considera-

tion. Furthermore, computing the Laplace transform for the slowdown in either TAPTF or

TAPTF-WC may be an even more difficult proposition. Nonetheless, obtaining such results

for the TAPTF and TAPTF-WC policies would be a significant achievement.

TAPTF and TAPTF-WC are also largely dependent on the respective parameters that

governs their operation. In the case of two hosts, we can compute the optimal model pa-

rameters (q1, q2, s1), ensuring they are set for the best possible waiting time or slowdown.

When dealing with three hosts, we can compute the optimal cutoffs (s1, s2), but we must

tune the influx of tasks (q1, q2, q3) by hand. As we consider larger systems (i.e. more than

178

CHAPTER 8. DISCUSSION

3 hosts) it becomes increasingly difficult to compute optimal parameters. We could likely

solve slightly larger problems (e.g. 3, 4 or 5 host) with a more powerful solver package, but

that is just an interim solution. Ideally we would like some closed form equations to compute

the parameters. These could essentially be based on a large amount of experimentation, and

would not be optimal parameters, rather being approximate rules-of-thumb.

Another useful extension would be to consider the situation where the workload changes

over time. Currently we solve for fixed workloads, finding optimal or near optimal parameters

for a given workload (characterised by a task size distribution and an arrival rate). An ‘online’

TAPTF or TAPTF-WC policy would be extremely useful, where a record of the workload is

kept at the dispatcher, and the model parameters are re-computed as needed. Care would

be needed to strike an appropriate balance between frequency of updated and the overhead

of re-computing the parameters [Dahlin, 2000; Mitzenmacher, 2000].

Such an automated system could operate in a manner similiar to the EQUILOAD [Cia-

rdo et al., 2001] and ADAPTLOAD [Riska et al., 2002c] web dispatching systems. However,

given the assumption of no a priori knowledge of the service requirement of incoming tasks,

back-end servers would need to report run-times of tasks to the dispatcher once they have run

to completion. A dispatcher could maintain a histogram representing a rolling snapshot of

the recent workload and choose appropriate size ranges for TAPTF and TAPTF-WC respec-

tively. However, as mentioned above, this would depend on having convenient closed-form

solutions or approximations to efficiently compute near-optimal size ranges for arbritrar-

ily large clusters. It would be valuable to integrate such an automated system into web

(e.g. Apache [The Apache Software Foundation, 2007]) and batch computing dispatchers

(e.g. Portable Batch System [Henderson, 1995], Load Sharing Facility [Platform Computing,

2007]) to improve performance under highly variable workloads.

In Chapter 6 we considered techniques for fitting General distributions to Hyper-exponential

or Bounded Hyper-exponential distributions. The resulting Hyper-exponential representa-

tions have countless applications in queueing theory. Based on some preliminary experi-

mentation we have since observed that significant improvements in the quality of fit could

be achieved by utilising different techniques in choosing the matching points. Specifically,

improvements could be made in the critical areas of fit around the base and the tail of the

distribution. An algorithm that chooses good matching points depending on the General

distribution (e.g. Pareto, Bounded Pareto, Log-normal, Weibull) that is to be approximated

would be extremely valuable. By choosing more appropriate matching points we can hope-

fully improve the quality of fit for a wide range of General distributions.

179

CHAPTER 8. DISCUSSION

Chapter 7 presented a wide range of queueing metrics that were measured via simulation.

The highly variable nature of the workloads we are interested in makes obtaining good results

via simulation challenging. Performing longer running simulations, with a larger sample size

may provide results that are closer to the analytical results previously observed, and would

allow confidence intervals to be computed, giving us tighter bounds on important metrics

such as expected waiting time and slowdown. However increasing the simulation sample

size further would require significantly larger resources, and would require the simulation

platform to be distributed over many machines. Alternatively, other approaches to speeding

up simulation could potentially be adapted to suit our needs [Heidelberger, 1995].

8.3 Conclusion

In this thesis many important advances were made in the understanding, modelling and

performance of task assignment strategies for distributed systems. Each contribution was

made with close consideration to the difficulties caused by modern, highly variable computing

workloads.

A task assignment strategy for batch and super-computing clusters was proposed, called

Task Assignment based on Prioritising Traffic Flows (TAPTF). TAPTF exploited the charac-

teristics of ‘heavy-tailed’ workloads, providing a flexible and high performing task assignment

policy, and reduced some of the processing overhead that was problematic with an existing

technique, TAGS. TAPTF was particularly effective under conditions of high system load,

spreading the load over multiple servers and ensuring the first host does not become a bot-

tleneck.

Task Assignment with Work Conserving Migration (TAPTF-WC) was a task assignment

strategy proposed for use in high volume web serving clusters. TAPTF-WC works on similar

principles to TAPTF, but most importantly allows work-conserving migration to occur, which

is consistent with the operational capabilities of many web cluster architectures. TAPTF has

demonstrated good performance over a wide range of workloads and system load scenarios.

Both the TAPTF and TAPTF-WC policies are supported by a rigorous analytical models

based on fundamental results in queueing theory.

In an effort to approximate General distributions as Bounded Hyper-exponential distri-

butions, an modified ‘Prony’s Method’ was presented. This modified technique is specifically

suited to approximating Bounded distributions, showing significantly increased accuracy over

the standard approach prescribed by Prony et al. The TAPTF model was re-computed to

180

CHAPTER 8. DISCUSSION

incorporate a Bounded Hyper-exponential service distribution. As a number of different

General distributions can be approximated in this fashion, the utility of TAPTF has been

significantly increased as it now can handle a wider range of potential workload distributions.

The Bounded Hyper-exponential distribution also has other applications, such as modelling

highly variable arrival patterns (e.g. G/G/1 or G/M/1).

Through simulation, additional metrics and bounds were measured for TAPTF and other

task assignment policies. Simulation allowed us to measure global, per host and per queue

metrics, as well as the variance and bounds (via majority bars), providing greater insight into

the operation of the TAPTF policy. Many of these metrics cannot be computed analytically.

There is still significant future work that can be undertaken in this area of research, as

outlined in Section 8.2. As we become more dependent on the services that computers pro-

vide, the need to effectively service large volumes of customers with highly variable demands

will remain. The demand for highly popular services are increasingly unlikely to be satis-

fied by a single monolithic server. As a consequence, the need for effective task assignment

strategies for distributed systems that satisfy a wide range of workloads will only become

more critical.

181

Bibliography

K. Adams and O. Agesen. A comparison of software and hardware techniques for x86 virtual-

ization. In ASPLOS-XII: Proceedings of the 12th international conference on Architectural

support for programming languages and operating systems, pages 2–13, New York, NY,

USA, 2006. ACM Press. ISBN 1-59593-451-0.

S. K. Adhya, S. Das-Purkayastha, and S. Ganguly. Asymmetric splice: optimizing TCP

forwarder performance for the HTTP/1.1 protocol. In ICCC ’02: Proceedings of the 15th

international conference on Computer communication, pages 239–251, Washington, DC,

USA, 2002. International Council for Computer Communication. ISBN 1-891365-08-8.

Amazon.com, Inc. Amazon Elastic Compute Cloud (Amazon EC2), 2007. Available at

http://aws.amazon.com/ec2.

M. Arlitt and T. Jin. Workload characterization of the 1998 World Cup web site. IEEE

Network, 14:30–37, May/Jun 2000.

M. F. Arlitt, D. Krishnamurthy, and J. Rolia. Characterizing the scalability of a large web-

based shopping system. ACM Transactions on Internet Technology, 1(1):44–69, 2001. ISSN

1533-5399.

L. Aversa and A. Bestavros. Load balancing a cluster of web servers using distributed packet

rewriting. In Proceedingss of the 19th IEEE International Performance, Computing and

Communications Conference (IPCCC), pages 30–37, February 2000.

N. Bansal and M. Harchol-Balter. Analysis of SRPT scheduling: investigating unfairness. In

SIGMETRICS ’01: Proceedings of the 2001 ACM SIGMETRICS international conference

on Measurement and modeling of computer systems, pages 279–290, New York, NY, USA,

2001. ACM Press. ISBN 1-58113-334-0.

182

BIBLIOGRAPHY

P. Barford and M. Crovella. Generating representative web workloads for network and server

performance evaluation. In SIGMETRICS ’98/PERFORMANCE ’98: Proceedings of the

1998 ACM SIGMETRICS joint international conference on Measurement and modeling of

computer systems, pages 151–160, New York, NY, USA, 1998. ACM Press. ISBN 0-89791-

982-3.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and

A. Warfield. Xen and the art of virtualization. In SOSP ’03: Proceedings of the nineteenth

ACM symposium on Operating systems principles, pages 164–177, New York, NY, USA,

2003. ACM Press. ISBN 1-58113-757-5.

A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir, L. Peterson, T. Roscoe,

T. Spalink, and M. Wawrzoniak. Operating system support for planetary-scale network

services. In Symposium on Networked Systems Design and Implementation, Mar 2004.

B. L. Bill Devlin, Jim Gray and G. Spix. Scalability terminology, farms, clones, partitions,

and packs, racs and raps. Technical Report MS-TR-99-85, Microsoft Research, 1999. URL

http://www.microsoft.com.

J. Broberg, Z. Tari, and P. Zeephongsekul. Task assignment based on prioritising traffic flows.

In T. Higashino, editor, Proceedings of the 8th International Conference on Principles of

Distributed Systems (OPODIS 2004). Springer-Verlag, 2005. ISBN 3-540-27324-7.

J. Broberg, Z. Tari, and P. Zeephongsekul. Task assignment with work-conserving migration.

Journal of Parallel Computing (Special Issue on Performance Evaluation of Networks for

Parallel, Cluster and Grid Computing Systems), 2006. To appear.

P. J. Brockwell and R. A. Davis. Time series: theory and methods. Springer-Verlag New

York, Inc., New York, NY, USA, 1986. ISBN 0-387-96406-1.

L.-F. Cabrera. The influence of workload on load balancing strategies. In Proceedings of the

Winter USENIX Conference, pages 446–458, 1986.

L.-F. Cabrera. The influence of workload on load balancing strategies. Mobility: processes,

computers, and agents, pages 214–227, 1999.

J. Cao, W. Cleveland, D. Lin, and D. Sun. Internet traffic tends toward Poisson and inde-

pendent as the load increases. Nonlinear Estimation and Classification, Dec 2002.

183

BIBLIOGRAPHY

V. Cardellini, M. Colajanni, and P. S. Yu. Efficient state estimators for load control policies

in scalable web server clusters. In COMPSAC ’98: Proceedings of the 22nd International

Computer Software and Applications Conference, pages 449–457, Washington, DC, USA,

1998. IEEE Computer Society. ISBN 0-8186-8585-9.

V. Cardellini, M. Colajanni, and P. S. Yu. Dynamic load balancing on web-server systems.

IEEE Internet Computing, 3(3):28–39, 1999. ISSN 1089-7801.

V. Cardellini, E. Casalicchio, M. Colajanni, and P. S. Yu. The state of the art in locally

distributed web-server systems. ACM Computing Surveys, 34(2):263–311, 2002. ISSN

0360-0300.

V. Cardellini, M. Colajanni, and P. S. Yu. Request redirection algorithms for distributed

web systems. IEEE Transactions on Parallel and Distributed Systems, 14(4):355–368, 2003.

ISSN 1045-9219.

T. Casavant and J. Kuhl. A taxonomy of scheduling in general-purpose distributed computing

systems. IEEE Transactions on Software Engineering, 14(2):141–154, 1988. ISSN 0098-

5589.

G. Ciardo, A. Riska, and E. Smirni. Equiload: a load balancing policy for clustered web

servers. Performance Evaluation, 46(2-3):101–124, 2001. ISSN 0166-5316.

Cisco Systems. Scaling the internet web servers, 1997. URL http://www.cisco.com/warp/

public/cc/pd/cxsr/400/tech/scale wp.pdf.

A. Cobham. Priority assignment in waiting line problems. Journal of the Operations Research

Society, 2:70–76, 1953.

A. Cohen, S. Rangarajan, and J. H. Slye. On the performance of TCP splicing for URL-aware

redirection. In USENIX Symposium on Internet Technologies and Systems, 1999. URL

citeseer.ist.psu.edu/cohen99performance.html.

M. Colajanni, V. Cardellini, and P. S. Yu. Dynamic load balancing in geographically dis-

tributed heterogeneous web servers. In ICDCS ’98: Proceedings of the The 18th Interna-

tional Conference on Distributed Computing Systems, page 295, Washington, DC, USA,

1998a. IEEE Computer Society. ISBN 0-8186-8292-2.

184

BIBLIOGRAPHY

M. Colajanni, P. S. Yu, and D. M. Dias. Analysis of task assignment policies in scalable

distributed web-server systems. IEEE Transactions on Parallel and Distributed Systems,

9(6):585–600, 1998b. ISSN 1045-9219.

R. W. Conway, W. L. Maxwell, and L. W. Miller. Theory of Scheduling. Courier Dover

Publications, 1967. ISBN 0486428176.

M. E. Crovella and A. Bestavros. Self-similarity in world wide web traffic: evidence and

possible causes. IEEE/ACM Transactions on Networking, 5(6):835–846, 1997. ISSN 1063-

6692.

M. E. Crovella, M. Harchol-Balter, and C. D. Murta. Task assignment in a distributed

system: Improving performance by unbalancing load. In S. Leutenegger, editor, SIG-

METRICS ’98/PERFORMANCE ’98: Proceedings of the 1998 ACM SIGMETRICS joint

international conference on Measurement and modeling of computer systems, New York,

NY, USA, 1998a. ACM Press. ISBN 0-89791-982-3.

M. E. Crovella, M. S. Taqqu, and A. Bestavros. Heavy-tailed probability distributions in the

World Wide Web. Birkhauser Boston Inc., Cambridge, MA, USA, 1998b. ISBN 0-8176-

3951-9.

D. Ferrari. A study of load indices for load balancing schemes. Technical Report CSD-85-262,

UC Berkeley, 1985.

M. Dahlin. Interpreting stale load information. IEEE Transactions on Parallel and Dis-

tributed Systems, 11(10):1033–1047, 2000. ISSN 1045-9219.

J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl. Globally distributed

content delivery. IEEE Internet Computing, pages 50–58, September/October 2002.

L. Doolittle and J. Nelson. Boa webserver, 1991. Available at http://www.boa.org.

A. B. Downey. Lognormal and Pareto distributions in the internet. Computer Communica-

tions, 28(7):790–801, May 2005.

A. B. Downey. Evidence for long-tailed distributions in the internet. In IMW ’01: Proceedings

of the 1st ACM SIGCOMM Workshop on Internet Measurement, pages 229–241, New York,

NY, USA, 2001. ACM Press. ISBN 1-58113-435-5.

185

BIBLIOGRAPHY

D. L. Eager, E. D. Lazowska, and J. Zahorjan. The limited performance benefits of migrating

active processes for load sharing. In SIGMETRICS ’88: Proceedings of the 1988 ACM

SIGMETRICS conference on Measurement and modeling of computer systems, pages 63–

72, New York, NY, USA, 1988. ACM Press. ISBN 0-89791-254-3.

A. Feldmann and W. Whitt. Fitting mixtures of exponentials to long-tail distributions to

analyze network performance models. In INFOCOM ’97: Proceedings of the INFOCOM

’97. Sixteenth Annual Joint Conference of the IEEE Computer and Communications Soci-

eties. Driving the Information Revolution, pages 1096–1104, Washington, DC, USA, 1997.

IEEE Computer Society. ISBN 0-8186-7780-5.

D. Ferrari and S. Zhou. A load index for dynamic load balancing. In ACM ’86: Proceedings

of 1986 ACM Fall joint computer conference, pages 684–690, Los Alamitos, CA, USA,

1986. IEEE Computer Society Press. ISBN 0-8186-4743-4.

D. Ferrari and S. Zhou. An empirical investigation of load indices for load balancing appli-

cations. In Performance ’87: Proceedings of the 12th IFIP WG 7.3 International Sympo-

sium on Computer Performance Modelling, Measurement and Evaluation, pages 515–528.

North-Holland, 1988. ISBN 0-444-70347-0.

D. Gross and C. M. Harris. Fundamemtals of Queueing Theory. Wiley-Interscience, 1998.

M. Harchol-Balter. Task assignment with unknown duration. Journal of the ACM, 49(2):

260–288, 2002. ISSN 0004-5411.

M. Harchol-Balter. The effect of heavy-tailed job size distributions on computer system de-

sign. In Proceedings of ASA-IMS Conference on Applications of Heavy Tailed Distributions

in Economics, Engineering and Statistics, June 1999.

M. Harchol-Balter and A. B. Downey. Exploiting process lifetime distributions for dynamic

load balancing. ACM Transactions on Computer Systems, 15(3):253–285, 1997. ISSN

0734-2071.

M. Harchol-Balter, M. E. Crovella, and C. D. Murta. On choosing a task assignment policy

for a distributed server system. Journal of Parallel and Distributed Computing, 59(2):

204–228, 1999.

186

BIBLIOGRAPHY

M. Harchol-Balter, C. Li, T. Osogami, A. Scheller-Wolf, and M. S. Squillante. Analysis of

task assignment with cycle stealing under central queue. IEEE International Conference

on Distributed Computer Systems, 00:628, 2003a. ISSN 1063-6927.

M. Harchol-Balter, C. Li, T. Osogami, A. Scheller-Wolf, and M. S. Squillante. Cycle stealing

under immediate dispatch task assignment. In SPAA ’03: Proceedings of the fifteenth

annual ACM symposium on Parallel algorithms and architectures, pages 274–285, New

York, NY, USA, 2003b. ACM Press. ISBN 1-58113-661-7.

M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agrawal. Size-based scheduling to im-

prove web performance. ACM Transactions on Computer Systems, 21(2):207–233, 2003c.

ISSN 0734-2071.

L. He, S. A. Jarvis, D. P. Spooner, and G. R. Nudd. Optimising static workload allocation

in multiclusters. In Proceedings of the International Parallel and Distributed Processing

Symposium (IPDPS’04), pages 39–43, Los Alamitos, CA, USA, 2004. IEEE Computer

Society. ISBN 0-7695-2132-0.

P. Heidelberger. Fast simulation of rare events in queueing and reliability models. ACM

Transactions on Modelling and Compututer Simulations, 5(1):43–85, 1995. ISSN 1049-

3301.

R. L. Henderson. Job scheduling under the portable batch system. In IPPS ’95: Proceed-

ings of the Workshop on Job Scheduling Strategies for Parallel Processing, pages 279–294,

London, UK, 1995. Springer-Verlag. ISBN 3-540-60153-8.

G. Irlam. Unix file survey, 1993. Available at http://www.base.com/gordoni/ufs93.html.

A. K. Iyengar, M. S. Squillante, and L. Zhang. Analysis and characterization of large-scale

web server access patterns and performance. World Wide Web, 2(1-2):85–100, 1999. ISSN

1386-145X.

K. Kant, R. Iyer, and P. Mohapatra. Architectural impact of secure socket layer on internet

servers. In ICCD ’00: Proceedings of the 2000 IEEE International Conference on Computer

Design, page 7, Washington, DC, USA, 2000. IEEE Computer Society. ISBN 0-7695-0801-

4.

187

BIBLIOGRAPHY

D. Kendall. Stochastic processes occurring in the theory of queues and their analysis by the

method of the embedded markov chain. Annals of Mathematical Statistics, pages 338–354,

1953.

L. Kleinrock. Queueing Systems Volume 1: Theory. John Wiley and Sons., 1975a.

L. Kleinrock. Queueing Systems Volume 2: Computer Applications. John Wiley and Sons.,

1975b.

L. Kleinrock. Time-shared systems: a theoretical treatment. Journal of the ACM, 14(2):

242–261, 1967. ISSN 0004-5411.

T. Kunz. The influence of different workload descriptions on a heuristic load balancing

scheme. IEEE Transactions on Software Engineering, 17(7):725–730, 1991. ISSN 0098-

5589.

D. A. Maltz and P. Bhagwat. TCP splicing for application layer proxy performance. Research

Report RC 21139, IBM, Mar. 1998.

S. L. Marple. Digital spectral analysis: with applications. Prentice-Hall, Inc., Upper Saddle

River, NJ, USA, 1986. ISBN 0-132-14149-3.

M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensional equidistributed

uniform pseudorandom number generator. ACM Transactions on Modeling and Computer

Simulation, 8(1):3–30, 1998.

D. A. Menasce, V. A. F. Almeida, R. Fonseca, and M. A. Mendes. A methodology for

workload characterization of e-commerce sites. In EC ’99: Proceedings of the 1st ACM

conference on Electronic commerce, pages 119–128, New York, NY, USA, 1999. ACM

Press. ISBN 1-58113-176-3.

D. S. Milojicic;, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou. Process migration.

ACM Computing Surveys, 32(3):241–299, 2000. ISSN 0360-0300.

M. Mitzenmacher. The power of two choices in randomized load balancing. IEEE Transac-

tions on Parallel and Distributed Systems, 12(10):1094–1104, 2001. ISSN 1045-9219.

M. Mitzenmacher. A brief history of generative models for power law and lognormal distri-

butions. Internet Mathematics, 1(3):226–251, 2004.

188

BIBLIOGRAPHY

M. Mitzenmacher. How useful is old information? IEEE Transactions on Parallel and

Distributed Systems, 11(1):6–20, 2000. ISSN 1045-9219.

M. Mitzenmacher. How useful is old information (extended abstract). In PODC ’97: Pro-

ceedings of the sixteenth annual ACM symposium on Principles of distributed computing,

pages 83–91, New York, NY, USA, 1997. ACM Press. ISBN 0-89791-952-1.

M. Nelson, B.-H. Lim, and G. Hutchins. Fast transparent migration for virtual machines. In

Proceedings of the 2005 USENIX Annual Technical Conference, pages 391–394, 2005.

R. D. Nelson and T. K. Philips. An approximation to the response time for shortest queue

routing. In SIGMETRICS ’89: Proceedings of the 1989 ACM SIGMETRICS international

conference on Measurement and modeling of computer systems, pages 181–189, New York,

NY, USA, 1989. ACM Press. ISBN 0-89791-315-9.

R. D. Nelson and T. K. Philips. An approximation for the mean response time for shortest

queue routing with general interarrival and service times. Performance Evaluation Review,

17:123–139, 1993.

H. T. M. Neto, J. M. Almeida, L. C. D. Rocha, W. Meira, P. H. C. Guerra, and V. A. F.

Almeida. A characterization of broadband user behavior and their e-business activities.

SIGMETRICS Perform. Eval. Rev., 32(3):3–13, 2004. ISSN 0163-5999.

M. Nuttall and M. Sloman. Workload characteristics for process migration and load balanc-

ing. ICDCS ’97: Proceedings of the 17th International Conference on Distributed Com-

puting Systems (ICDCS’97), 00:133–140, 1997. ISSN 1063-6927.

T. Osogami and M. Harchol-Balter. Necessary and sufficient conditions for representing

general distributions by coxians. Computer Performance: Modelling Techniques and Tools

(LNCS 2794), pages 182–199, September 2003.

V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficient and portable Web server. In

Proceedings of the USENIX 1999 Annual Technical Conference, 1999.

Platform Computing. Load sharing facility, 2007. Available at http://www.platform.com.

I. A. Rai, G. Urvoy-Keller, and E. W. Biersack. Analysis of LAS scheduling for job size

distributions with high variance. In SIGMETRICS ’03: Proceedings of the 2003 ACM

189

BIBLIOGRAPHY

SIGMETRICS international conference on Measurement and modeling of computer sys-

tems, pages 218–228, New York, NY, USA, 2003. ACM Press. ISBN 1-58113-664-1.

I. A. Rai, G. Urvoy-Keller, M. K. Vernon, and E. W. Biersack. Performance analysis of LAS-

based scheduling disciplines in a packet switched network. In SIGMETRICS ’04/Perfor-

mance ’04: Proceedings of the joint international conference on Measurement and modeling

of computer systems, pages 106–117, New York, NY, USA, 2004. ACM Press. ISBN 1-

58113-873-3.

A. Riska, V. Diev, and E. Smirni. Efficient fitting of long-tailed data sets into phase-type

distributions. SIGMETRICS Performance Evaluation Review, 30(3):6–8, 2002a. ISSN

0163-5999.

A. Riska, V. Diev, and E. Smirni. Efficient fitting of long-tailed data sets into hyperex-

ponential distributions. In Proceedings of the IEEE Internet Performance Symposium

(GLOBECOM), volume 3, pages 2513–2517, November 2002b.

A. Riska, W. Sun, E. Smirni, and G. Ciardo. ADAPTLOAD: Effective balancing in custered

web servers under transient load conditions. In ICDCS ’02: Proceedings of the 22 nd

International Conference on Distributed Computing Systems (ICDCS’02), pages 104–111,

Washington, DC, USA, 2002c. IEEE Computer Society. ISBN 0-7695-1585-1.

S. M. Ross. Simulation. Academic Press, 2001.

S. M. Ross. Introduction to Probability Models. Academic Press, 2002.

M.-C. Rosu and D. Rosu. An evaluation of TCP splice benefits in web proxy servers. In

WWW ’02: Proceedings of the 11th international conference on World Wide Web, pages

13–24, New York, NY, USA, 2002. ACM Press. ISBN 1-58113-449-5.

L. Schrage. A proof of the optimality of the shortest remaining service time discipline.

Operations Research, 16:670–690, 1968.

B. Schroeder and M. Harchol-Balter. Evaluation of task assignment policies for supercomput-

ing servers: The case for load unbalancing and fairness. Cluster Computing, 7(2):151–161,

2004. ISSN 1386-7857.

B. Schroeder and M. Harchol-Balter. Web servers under overload: How scheduling can help.

ACM Transactions on Internet Technology, 6(1):20–52, 2006. ISSN 1533-5399.

190

BIBLIOGRAPHY

A. Silberschatz and P. Galvin. Operating System Concepts (Fifth Edition). Addison-Wesley

Publishing Company, 1998.

D. R. Smith. A new proof of the optimality of the shortest remaining processing time

discipline. Operations Research, 26:197–199, 1978.

S. Sozaki and R. Ross. Approximations in finite capacity multiserver queues with Poisson

arrivals. Journal of Applied Probability, 13:826–834, 1978.

O. Spatscheck, J. S. Hansen, J. H. Hartman, and L. L. Peterson. Optimizing TCP forwarder

performance. IEEE/ACM Transactions on Networking, 8(2):146–157, 2000. ISSN 1063-

6692.

J. Spirn. Queuing networks with random selection for service. IEEE Transactions on Software

Engineering, 5(3):287–289, 1980. ISSN 0098-5589.

W. Stallings. Operating System (Second Edition). Prentice Hall, 1995.

W. Stallings. High-Speed Networks and Internets: Performance and Quality of Service.

Prentice-Hall, 2002.

A. Tanenbaum. Modern Operating Systems. Prentice Hall, 1995.

X. Tang and S. T. Chanson. Optimizing static job scheduling in a network of heterogeneous

computers. In ICPP ’00: Proceedings of the 2000 International Conference on Parallel

Processing, page 373, Washington, DC, USA, 2000. IEEE Computer Society. ISBN 0-

7695-0768-9.

Z. Tari, J. Broberg, A. Y. Zomaya, and R. Baldoni. A least flow-time first load sharing

approach for distributed server farm. Journal of Parallel and Distributed Computing, 65

(7):832–842, 2005. ISSN 0743-7315.

The Apache Software Foundation. Apache http server project, 2007. Available at

http://www.apache.org.

A. Varga. The OMNeT++ discrete event simulation system. In Proceedings of the European

Simulation Multiconference (ESM’01), June 2001.

C. A. Waldspurger. Memory resource management in vmware esx server. In OSDI ’02:

Proceedings of the 5th symposium on Operating systems design and implementation, pages

181–194, New York, NY, USA, 2002. ACM Press.

191

BIBLIOGRAPHY

A. Ward and W. Whitt. Predicting response times in processor-sharing queues. Analysis of

Communication Networks: Call Centres, Traffic and Performance, pages 1–29, 2000.

R. W. Weber. On the optimal assignment of customers to parallel servers. Journal of Applied

Probability, 15:826–834, 1978.

A. Wierman and M. Harchol-Balter. Classifying scheduling policies with respect to unfairness

in an M/GI/1. In SIGMETRICS ’03: Proceedings of the 2003 ACM SIGMETRICS inter-

national conference on Measurement and modeling of computer systems, pages 238–249,

New York, NY, USA, 2003. ACM Press. ISBN 1-58113-664-1.

A. Wierman and M. Harchol-Balter. Classifying scheduling policies with respect to higher

moments of conditional response time. In SIGMETRICS ’05: Proceedings of the 2005

ACM SIGMETRICS international conference on Measurement and modeling of computer

systems, pages 229–240, New York, NY, USA, 2005. ACM Press. ISBN 1-59593-022-1.

W. Winston. Optimality of the shortest line discipline. Journal of Applied Probability, 14:

181–189, 1977.

R. W. Wolff. Stochastic Modeling and the Theory of Queues. Prentice-Hall, 1989.

Wolfram Research. Mathematica version 5.0, 2003.

192

