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Abstract

Server farms have become very popular in recent years since they effectively address the problem of

large delays, a common problem faced by many organisations whose systems receive high volumes

of traffic. Recently, there has been a wide use of these server farms in two main areas, namely,

Web hosting and scientific computing. The performance of such server farms is highly reliant on

the underlying task assignment policy, a specific set of rules that defines how the incoming tasks

are assigned to and processed at hosts. The aim of a task assignment policy is to optimise certain

performance criteria such as the expected waiting time, slowdown or flow-time. One of the key factors

that affect the performance of these policies is the service time distribution of tasks. There is extensive

evidence indicating that the service times (processing times) of modern computer workloads closely

follow heavy-tailed distributions that possess high variance. However, in certain environments, the

service time distributions of tasks are unknown. Imposing parametric assumptions (e.g. heavy-tailed,

exponential, etc.) in such cases can lead to inaccurate and unreliable inferences.

Traditional task assignment policies such as Random and Round-Robin do not perform well under

realistic workload conditions (e.g. heavy-tailed), because they have not been designed to optimise the

performance under such workload conditions. Considerable efforts have been made in recent years

to devise more efficient policies. These policies use special techniques (such as unbalancing the load

among hosts and reducing the task size variability in hosts queues, etc.) to improve the performance.

Although these policies perform well in certain environments under specific workload conditions,

they have several major limitations. These include the assumption of known service times, inability

to efficiently assign tasks in time sharing server farms, poor performance under changing workload

conditions and poor performance under multiple server farms.

This thesis aims at proposing novel task assignment policies for assigning tasks in server farms

under two main classes of realistic workload conditions, namely, the heavy-tailed and arbitrary ser-

vice time distributions. Arbitrary service time distributions are assumed, for cases where the under-

lying service time distribution of tasks is unknown. Under such conditions, the design of policies is



an extremely challenging problem due to the complexity involved in the analytical modelling. In this

thesis we employ stochastic modelling techniques to model the performance of systems and to guide

the design of new policies to optimise the performance.

We focus on devising task assignment policies that can assign (or schedule) dynamic web content

(e.g. databases requests, various scripts, etc.) and scientific workloads (e.g. complex algorithms,

mathematical models, etc.), because there has been a rapid increase in these workloads in recent years.

For such workloads, the server is typically the bottleneck resource (as opposed to the bandwidth),

making server side scheduling more important. Service times of much dynamic web content and

scientific workloads are not known a priori and very difficult to estimate.

The first problem addressed in this thesis is how to efficiently schedule tasks in a time sharing

server under heavy-tailed service time distributions. Scheduling is the fundamental way to minimise

response times of tasks and even a small change to the scheduling policy can result in massive im-

provements in the performance. We concentrate on a particular scheduling policy called, multi-level

time sharing policy (MLTP), which performs well under distributions with the property of decreasing

failure rate, a key property of modern heavy-tailed traffic. Existing performance models related to

MLTP are based on very unrealistic conditions such as exponential service time distributions, infinite

number of levels and infinitely small quanta. We derive a performance model for MLTP under finite

levels when the quanta are not infinitely small and investigate the behaviour of MLTP under various

workload conditions. We show that MLTP with optimal quanta can result in significant performance

improvements over other policies under a range of workload conditions.

The second problem addressed in the thesis is how to design efficient task assignment policies

for time sharing server farms. Existing policies have been mainly designed for assigning tasks in

batch computing server farms and therefore, they perform poorly under time sharing server farms.

We propose three task assignment policies called, MLMS, MLMS-M and MLMS-PM dedicated to

time sharing server farms. The core features of these policies include the global and local reduction

of task size variance, provision of preferential treatment to small tasks and task migration between

hosts. These features enable these policies to perform well under a range of workload conditions. For

example, MLMS-M with five levels outperforms TAGS by a factor of 6.75 under high system loads

and high task size variabilities.

The third problem addressed in this thesis is the way to efficiently assign tasks in multiple server

farms under heavy-tailed service time distributions. Existing task assignment policies are not very

efficient in assigning tasks in multiple server farms, because they have not been designed to exploit

the properties of such environments. We propose MCTPM for a multiple server farm, which is based

on a flexible multi-tier host architecture. MCTPM controls the traffic flow into server farms via a
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global dispatching device so as to optimise the performance. In addition, it supports preemptive

task migration between servers in the same farm as well as between servers in different farms. The

performance analysis of MCTPM shows that it outperforms other policies under a range of scenarios.

For example, MCTPM outperforms MC-TAGSPM by a factor of 5 under moderate system loads and

low task size variabilities.

The last problem investigated in thesis is the way to design adaptive task assignment policies that

make no assumptions about the underlying service time distribution of tasks. We propose a novel

task assignment policy, called ADAPT-POLICY, which is based on multiple static-based task assign-

ment policies. ADAPT-POLICY defines a set of policies for the server farm based on the specific

properties of the farm. These policies are selected in such a way that they have different performance

characteristics under different workload conditions (i.e. service time distributions). ADAPT-POLICY

adaptively changes the task assignment policy to suit the most recent traffic conditions. The exper-

imental performance analysis of ADAPT-POLICY shows that it outperforms other policies under a

range of evolving traffic conditions.
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Chapter 1

Introduction

The rapid growth of the Internet over the last ten years has resulted in a rapid increase in the amount

of traffic reaching web servers. According to the traffic-analysis surveys, Internet traffic has doubled

every year since 1997 until 2003 [Odlyzko, 2003]. The Internet continues to grow at phenomenal rates

due to emergence of new technologies such as Web 2.0 [Krogfoss et al., 2011]. This has resulted in

a significant increase in the demand for computational resources.

Distributed systems offer a cost-effective and scalable solution to the increasing service demands

placed on servers. One such popular distributed system model is called the server farm model (cluster-

based distributed system), which consists of a set of loosely coupled hosts offering mirrored services

and hosting replicated content. Figure 1.1 illustrates the host architecture of a typical web server farm.

Server farms have become very popular in recent years since they effectively address the problem of

large delays, a common problem faced by many organisations whose systems receive high volumes

of traffic. Recently, there has been a wide use of these server farms in two main areas, namely,

Web hosting and scientific computing. The performance of such server farms is highly reliant on

the underlying task assignment policy, a specific set of rules that defines how the incoming tasks

are assigned to and processed at back-end hosts. The aim of a task assignment policy is to optimise

certain performance criteria such as the expected waiting time, slowdown or flow-time.

Considerable efforts have been made in recent years to devise task assignment policies that can

efficiently assign tasks in server farms. Unfortunately, these policies possess major limitations such

as the assumption of known service times [Zhang and Sun, 2005; Ciardo et al., 2001; Harchol-Balter

et al., 1999; Tari et al., 2005; Fu and Tari, 2003], inability to efficiently assign tasks in time shar-

ing systems [Harchol-Balter, 2002; Broberg et al., 2004; 2006; Ciardo et al., 2001; Harchol-Balter

et al., 1999; Tari et al., 2005; Fu and Tari, 2003], poor performance under changing workload con-
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Figure 1.1: A cluster-based distributed computing system

ditions [Harchol-Balter, 2002; Broberg et al., 2004; 2006; Ciardo et al., 2001; Harchol-Balter et al.,

1999; Tari et al., 2005; Fu and Tari, 2003], poor performance under multi-cluster distributed sys-

tems [Harchol-Balter, 2002; Broberg et al., 2004; 2006; Zhang and Sun, 2005; Ciardo et al., 2001;

Harchol-Balter et al., 1999; Tari et al., 2005; Fu and Tari, 2003] and the assumption of exponential

service time distributions [Zhang and Fan, 2008]. These issues are discussed in detail in Section 1.1.

Devising efficient task assignment policies is an extremely challenging problem, particularly un-

der realistic workload conditions because under such conditions, it is very difficult to analytically

model the performance of task assignment policies. Under many contexts (i.e. workload conditions),

there exists no ‘optimal’ task assignment policy for assigning tasks. This has led to the development

of many task assignment policies and the following associated open problem:

OPEN PROBLEM: Is there an optimal task assignment policy for assigning tasks in server farms

under a specific set of conditions?

This thesis aims at proposing novel task assignment policies to assign tasks in server farms under real-

istic computer workload conditions. Although computing workloads have numerous characteristics,

the most important characteristic, which has a direct impact on the performance is the service time

distribution of tasks (jobs). In this thesis we focus on the following two realistic workload scenarios.

1. Heavy-tailed service time distributions: There is extensive evidence indicating that the ser-

vice times (processing times) of modern computer workloads follow heavy-tailed distribu-
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tions that possess high variance [Arlitt and Williamson, 1996; Barford et al., 1999; Arlitt and

Williamson, 1997; Barford and Crovella, 1998; Crovella et al., 1998b; Crovella and Bestavros,

1997; Harchol-Balter and Downey, 1997; Willinger et al., 1997; Karagiannis et al., 2004; Ar-

litt and Jin, 2000; Cheng et al., 2010; Markovich, 2011; Loiseau et al., 2011]. The traditional

assumption was that the processing requirements are exponentially distributed. Heavy-tailed

distributions differ from exponential distributions in numerous ways. These distributions have

thicker tails compared to those of exponential distributions and unlike exponential distribu-

tions, these do not possess traits such as constant failure rate and memoryless property of the

exponential distribution.

2. Arbitrary service time distributions: An arbitrary service time distribution simply means that

no assumptions are made regarding the underlying service time distribution of tasks. Although

the heavy-tailed service time distributions have been justified for a majority of cases, for certain

other cases, there is no evidence to show that the service times of tasks can be represented using

a particular type of distribution [Zhang and Sun, 2005] due to the following two main reasons.

(a) Service times of certain tasks are not always recorded. As such, it is difficult to find a

sufficient number of data sets, which can be used to fit a probability distribution to the

entire population of task sizes.

(b) Even if such data sets are available, they may come from heterogeneous family of distri-

butions and any attempt to fit a particular distribution to it would be impossible. More-

over, there is also a possibility for the service time distribution of tasks to vary over time

due to the non-stationary nature of traffic [j. Lin et al., 2006; Bertsimas and Mourtzinou,

1997; Zhang et al., 2003; Zhang and Sun, 2005].

It is important to point out that the task assignment policies that can handle arbitrary service time

distributions may be used for assigning tasks under heavy-tailed service time distributions as well.

However, if there is clear evidence [Arlitt and Williamson, 1996; Barford et al., 1999; Arlitt and

Williamson, 1997; Willinger et al., 1997; Markovich, 2011] to show that the service times of tasks

follow heavy-tailed distributions, this is not recommended due the following two reasons.

1. The generic task assignment policies (i.e. policies that can handle arbitrary service time distri-

butions) may be computationally intensive.

2. Specific techniques may be utilised to further improve the performance if there is prior knowl-

edge about the presence of heavy-tailed service time distributions.
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Throughout this thesis we assume that the service times of tasks are not known a priori. The particular

focus on such tasks is because the recent advances in the Web has resulted in a rapid growth in the

dynamic content [Krogfoss et al., 2011; Group, 2009]. Moreover, a significant growth is observed

in the amount of scientific workloads being generated. This is justified by the increasing number of

distributed computing facilities being built around the world specifically to serve scientific workloads.

Service times of much scientific workloads and dynamic web content are rarely known in advance

and are difficult to estimate. In addition, for such workloads, the server is typically the bottleneck

resource as opposed to the bandwidth and therefore, scheduling of tasks at the server side plays an

important role when it comes to the performance.

There are two main metrics used to evaluate the performance of task assignment policies, namely,

the expected waiting time and expected slowdown, the expected waiting time being the most com-

monly used performance metric. Slowdown is defined as the ratio between a task’s waiting time and

its service time and it measures the fairness of a scheduling policy under a given task assignment

policy. Indeed, the aim is to minimise the value of these performance metrics. In this thesis we use

the expected waiting time as the main performance metric. In Chapter 3, however, we use both the

expected waiting time and expected slowdown.

The rest of this chapter is organised as follows. Section 1.1 summarises the main limitation of

existing task assignment policies. Section 1.2 presents the research questions addressed in this thesis

followed by the key contributions of this thesis are presented in Section 1.3. The structure of the rest

of this thesis is summarised in Section 1.4.

1.1 Limitations of existing work

We have identified the following five main limitations in existing work.

1. Several existing solutions assume that the sizes of tasks (i.e. processing requirement) are known

a priori or can be estimated a priori [Harchol-Balter et al., 1999; Ciardo et al., 2001; Tari

et al., 2005; Zhang and Sun, 2005]. Although this assumption reduces the complexity of the

task assignment problem significantly, such solutions can only be used for assigning particular

types of tasks, in particular static web content. For many other types of computer workloads

(such as dynamic content and scientific workloads), it is not possible to estimate the service

times prior to execution. As discussed, devising efficient task assignment policies for assigning

such tasks (i.e. dynamic web content and scientific workloads) is important because there has

been a rapid increase in these type of workloads in recent years [Krogfoss et al., 2011; Group,

2009].
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2. Existing task assignment policies do not scale well [Harchol-Balter, 2002; Broberg et al.,

2004], particularly if the number of servers in the farm is relatively high. This means that

the performance of these policies degrades as the number of servers increases. The main rea-

son for this is that these existing task assignment policies restart certain tasks from scratch.

This results in a significant excess load on the system, which in turn degrades the performance

of the system.

3. Existing task assignment policies that can efficiently assign tasks under heavy-tailed service

time distributions have been designed for batch computing systems. These policies serve tasks

either in a first-come-first-served (FCFS) manner until completion or up to a predefined time

limit [Harchol-Balter, 2002; Broberg et al., 2004; Psounis et al., 2005; Broberg et al., 2006].

Very little work has been done to improve the performance of time sharing server farms under

heavy-tailed service time distributions. Moreover, much existing work on time sharing policies

investigates only the performance in a single server system. These works are based on very

unrealistic assumptions, namely, the exponential service time distributions, infinitely small

quantum and infinite number of priority classes [Aalto, 2006; Aalto et al., 2007; 2004]. Neither

infinitely small quantum nor infinite number of priority levels can be implemented on real

computer systems.

4. Existing task assignment policies [Harchol-Balter, 2002; Broberg et al., 2004; 2006; Zhang and

Sun, 2005; Ciardo et al., 2001; Harchol-Balter et al., 1999; Tari et al., 2005; Fu and Tari, 2003]

proposed for stand-alone server farms are not efficient in multiple server farm environments

because these have not been designed to exploit the properties of such environments. As such,

existing task assignment policies do not perform well under multiple server farm environments.

5. Existing task assignment policies cannot be used when the service time distribution of tasks is

not known a priori. As was pointed out, although the heavy-tailed service distributions have

been observed extensively, for certain environments, heavy-tailed or another parametric type of

distribution cannot be assumed due the lack of evidence for the presence of such distributions

[Zhang and Sun, 2005]. Under such conditions, existing task assignment policies [Harchol-

Balter, 2002; Broberg et al., 2004; 2006; Zhang and Sun, 2005; Ciardo et al., 2001; Harchol-

Balter et al., 1999; Tari et al., 2005; Fu and Tari, 2003] cannot efficiently assign tasks, as

they are based on particular types of service time distributions such as Pareto, exponential and

log-normal.
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1.2 Research questions

The problem of task assignment in server farms has been extensively studied over the last several

years. Yet existing work possesses major limitations as described in Section 1.1. With ample ev-

idence showing that service time distributions of most tasks no longer follow exponential service

time distributions, there is an urgent need to devise more efficient task policies that can handle non-

traditional (i.e. non-exponential) workloads. Taking into account the limitations of existing work, we

have addressed and solved the following four important research questions.

1. How can we efficiently schedule tasks in a time sharing server under heavy-tailed service time

distributions?

In this research question we investigate the way to improve the performance in a time sharing

server under heavy-tailed workloads. We concentrate on a particular scheduling policy called,

multi-level time sharing policy (MLTP), as there is evidence indicating that MLTP can result

in significant performance improvements over other policies, if the service time distribution of

tasks possesses the property of decreasing failure rate [Aalto et al., 2004; 2007], a key property

of modern heavy-tailed distributions. MLTP gives preferential treatment to small tasks (i.e.

tasks with small service times) as well as reduces the variability of tasks sizes in queues. In

doing so, MLTP improves the performance (i.e. expected waiting time, slowdown, etc.) of

small tasks, which in turn improves the overall performance of the system under heavy-tailed

service time distributions. Note that under heavy-tailed service time distributions, probability

of small tasks appearing is very high, while the probability of large tasks appearing is very low.

Much existing work on MLTP has been carried out under very unrealistic conditions such as

infinitely small quanta, infinite number of levels and exponential service time distributions. We

investigate the performance of MLTP, under heavy-tailed workloads (service time distributions)

under finite number of levels, when the quanta are not infinitely small quanta. Such a policy is

more consistent with those implemented on real computer systems and the findings will enable

system designers to better understand how the factors such as the quanta, system load, number

of levels and task size variability will affect the performance of MLTP.

2. How can we efficiently assign tasks in time sharing server farms under heavy-tailed workload

conditions?

Here we investigate the way to improve the performance in time sharing server farms under

heavy-tailed workloads. Many existing task assignment policies [Tari et al., 2005; Harchol-

Balter et al., 1999; Harchol-Balter, 2002; Broberg et al., 2004; 2006; Zhang and Sun, 2005;
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Ciardo et al., 2001] have been designed for batch computing server farms that process tasks

either in a FCFS manner until completion or up to a predefined time limit. The expected waiting

time of a task in a FCFS queue is proportional to the variance of the service time distribution

[Kleinrock, 1975]. As the heavy-tailed service time distributions possess very high variance,

the expected waiting time of these policies are not satisfactory under heavy-tailed service time

distributions. We focus on designing efficient task assignment policies specifically for time

sharing systems taking into consideration the specific properties of time sharing systems (e.g.

task preemption facilities).

3. How can we efficiently assign tasks in multiple batch server farms under heavy-tailed workload

conditions?

This research question investigates the way to improve the performance in multiple server

farms by devising more efficient task assignment policies. Existing task assignment policies

[Harchol-Balter, 2002; Broberg et al., 2004; 2006; Ciardo et al., 2001; Harchol-Balter et al.,

1999; Tari et al., 2005; Fu and Tari, 2003] are not very efficient in assigning tasks in multiple

server farms because they have not been designed to exploit the properties of such environ-

ments. With the availability of high speed networks (e.g. a fibre optics network can provide

maximum data transfer rates of more than 100 Gbps) and operating systems with specific prop-

erties such as preemptive migration, there exist many windows of opportunity to design more

efficient task assignment policies for assigning tasks in multiple server farms. Such policies

can better utilise the resources in multiple server farm environments and therefore, can perform

better compared to those that optimise the performance in stand-alone server farms.

4. How can we efficiently assign tasks in server farms when the service time distribution of tasks

is not known a priori?

The previous three research questions pertain to performance optimisation under heavy-tailed

workloads. In this research question we investigate the way to design adaptive task assignment

policies, which makes no assumptions regarding the underlying service time distribution of

tasks. As was pointed out, many existing policies [Harchol-Balter, 2002; Broberg et al., 2004;

2006; Ciardo et al., 2001; Harchol-Balter et al., 1999; Tari et al., 2005; Fu and Tari, 2003]

assume particular (parametric) service time distribution (e.g. Pareto, Exponential, etc.) and a

set of fixed (static) parameters for that particular parametric distribution. Due to these assump-

tions, these policies can easily compute their optimal scheduling parameters (server cut-offs,

etc.) off-line so as to optimise a given performance criteria such as the expected waiting time
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and expected slowdown. The main issue with these approaches is that since their scheduling

parameters are computed off-line to optimise the performance under a specific scenario, these

approaches [Harchol-Balter, 2002; Broberg et al., 2006; 2004; Harchol-Balter et al., 1999]

cannot respond to variations that occur in the incoming service time distribution. As such,

performance of these policies degrades under constantly evolving operational conditions.

1.3 Contribution

1. How can we efficiently schedule tasks in a time sharing server under heavy-tailed service time

distributions?

We devote our attention to a particular time sharing policy called, Multi-level time sharing Pol-

icy (MLTP). There are two main reasons for this: 1) MLTP requires no prior knowledge about

actual task sizes and therefore, it can be used for scheduling a wide range of task types in-

cluding dynamic web content and scientific workloads and 2) MLTP has shown significant per-

formance improvements under distributions with the property of decreasing failure rate [Aalto

et al., 2004; 2007], a key property of modern traffic represented by heavy-tailed distributions.

MLTP consists of multiple queues (levels). Each new task that arrives at the system is placed

at the lowest level (queue), where the task is served in a FCFS manner until it receives max-

imum of amount of service called, Quantum 1. If the service time of the task is less than or

equal to Quantum 1, the task departs the system. Otherwise, the task is placed at the second

queue, where the task is serviced in a FCFS manner until it receives at most Quantum 2, where

Quantum 2 represents the maximum amount of service a task can receive in the second queue.

The task propagates through the system of queues until the total processing time the task has

so far received is equal to its service time at which point it leaves the system. Via its multi-

level queueing model, MLTP speeds up the flow of small tasks. This results in significant

performance improvements under heavy-tailed service time distributions.

Existing work that investigates the performance of MLTP are based on the assumptions that

the number of levels are infinite and the quanta are infinitely small [Aalto et al., 2007; 2005;

2004], because under these conditions it is relatively easy to model the behaviour of tasks under

MLTP. However, neither infinite levels nor infinitely small quanta are practical or ever feasible

to implement on real computer systems. A handful of studies that investigate the performance

MLTP under positive quanta are based on the assumption that both the inter-arrival times and

service times follow exponential distributions [Coffman and Kleinrock, 1968].
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We devise a performance model for MLTP without assuming infinite number of levels and in-

finitely small quanta. Using this performance model, we investigate the performance of MLTP

under a range of workload scenarios. First we show that MLTP with optimal set of quanta

(MLTP-O) significantly outperforms both the MLTP with equal quanta (MLTP-E) and FCFS,

especially when the system load and variability of service times are high. Second we investi-

gate the impact of number of levels on the performance and show that as the number of levels

increases, the performance (i.e. expected waiting time and expected slowdown) of both MLTP-

O and MLTP-E improves. We investigate the behaviour of quanta for the case of two queues.

We show that under a given workload condition, the set of quanta that will result in the best

performance is unique for almost all the workload conditions. In addition, we investigate the

effect of overestimating and underestimating the optimal quanta and discuss the measures that

can be taken to minimise the performance degradation due to overestimating or underestimat-

ing the optimal set of quanta. Finally, we investigate the performance of MLTP-E under a large

number of queues. For both performance metrics, we show that the relationship between the

performance and the number of levels has a power law relationship and the coefficients of the

power curve are functions of both the variability of tasks and the system load.

2. How do we efficiently assign tasks in time sharing server farms under heavy-tailed workload

conditions?

We propose three novel task assignment policies that are suitable for assigning tasks in three

different types of time sharing server farms. These policies are called, Multi-level Multi-server

Task Assignment Policy (MLMS), Multi-level Multi-server Task Assignment Policy based on

Task Migration (MLMS-M) and Multi-level Multi-server Task Assignment Policy based on

Preemptive Task Migration (MLMS-PM). These policies improve the performance first by

giving preferential treatment to small tasks and second by reducing the task size variability in

queues. MLMS reduces the variability of tasks locally (i.e. within hosts), while MLMS-M and

MLMS-PM utilise both local (within hosts) and global (host level) task size variance reduction

mechanisms. The local variance reduction is accomplished by using MLTP to schedule tasks,

while the host level variance reduction (global) is accomplished by supporting preemptive and

non-preemptive task migration between hosts. Task migration allows the tasks with similar

sizes to be processed at the same host by migrating tasks with similar sizes into the same

host. This improves the performance under heavy-tailed service time distributions, because it

reduces the variance of task sizes in host queues. MLMS-PM is based on preemptive migration,
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while MLMS-M facilities non-preemptive migration.1

The analytical performance analysis of MLMS indicates that MLMS outperforms recent task

assignment policies under certain conditions. For example, under high system loads and high

task size variabilities, MLMS with twenty levels outperforms TAGS (Task Assignment based

on Guessing Size) [Harchol-Balter, 2002] by a factor of 5. The analytical performance analysis

of MLMS-M and MLMS-PM indicates that these policies significantly outperform recent task

assignment policies. For example, MLMS-M with five levels outperforms TAGS by a factor

of 6.75 under highly variable heavy-tailed workloads and high system loads. Under the same

conditions, MLMS-PM with 5 levels outperforms TAGS-PM [Broberg et al., 2006; Harchol-

Balter, 2002] by a factor of 4. The improvement in the performance depends on the variability

of traffic, system load, number of levels and number of hosts. The most significant improve-

ment (in the performance) is noticed under very high task size variabilities and high system

loads. The performance of MLMS-M improves with the number hosts for certain task size

variabilities, while the performance MLMS-PM improves with the number of hosts for all the

cases considered.

3. How can we efficiently assign tasks in multiple batch server farms under heavy-tailed workload

conditions?

First we propose Multi-tier Task Assignment Policy with Minimum Excess Load (MTTMEL)

for a stand-alone batch server farm. This policy addresses the core limitations of existing task

assignment policies (e.g. poor performance under high task size variabilities, poor performance

under low and moderate task size variabilities, poor performance under high system loads,

poor performance in large-sized server farms, etc.). MTTMEL is based on a flexible multi-

tier host architecture, where the hosts in tiers only process tasks whose sizes are within a

certain size range. By grouping and processing tasks in such a manner MTTMEL reduces

the variance of tasks in host queues, and this leads to significant performance improvements.

This multi-tier host architecture of MTTMEL offers a high degree of flexibility in terms of the

number of tiers as well as the hosts to be used in server farms. These parameters (i.e. number

of tiers and number of hosts) can be computed to optimise the performance under a given

workload scenario (e.g. a system load and task size variability). Furthermore, this multi-tier

host architecture speeds up the flow of small tasks by processing the small tasks in a relatively

1Under preemptive migration, information about current status of the task such as the process address space and register
content are migrated from the source host to the destination host, which resumes the execution of the task. Non-preemptive
migration does not require the current status of the running tasks to be migrated from the source host to the destination
node.
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large number of hosts. This minimises the expected waiting time of small tasks, which leads to

an improvement in the overall performance.

Second we extend MTTMEL and propose Multi-Cluster Task Assignment based on Preemptive

Migration (MCTPM) for assigning tasks in multiple server farms. MCTPM is based on the

same multi-tier host architecture introduced in MTTMEL. MCTPM controls the traffic flow

into server farms via a global dispatching device so as to optimise the performance. MCTPM

also supports preemptive task migration between servers in the same farm as well as between

servers in different farms. Preemptive migration feature of MCTPM ensures that MCTPM can

resume the execution of a task that was previously suspended at a different host.

The experimental and analytical performance analysis of MCTPM shows that it significantly

outperforms both the traditional and recent policies under a wide range of workload conditions.

For example, MCTPM outperforms MC-TAGSPM [Harchol-Balter, 2002] by a factor of 5

under moderate system loads and low task size variabilities.

4. How do we efficiently assign tasks in server farms when the service time distribution of tasks

is not known a priori?

We propose an adaptive task assignment policy, called ADAPT-POLICY, which is based on the

concept of multiple static-based task assignment policies. ADAPT-POLICY defines a set of

policies for a given distributed system taking into account the specific properties of the system.

These policies are selected in such a way that they have different performance characteristics

under different workload conditions (i.e. service time distributions, etc.). The objective is to

use the task assignment policy with the best performance (i.e. the one with the least expected

waiting time) to assign tasks. Which task assignment policy performs the best depends on the

traffic conditions that vary over time. ADAPT-POLICY determines the best task assignment

using the service time distribution of tasks (and various other traffic properties), which is esti-

mated on-line and then it adaptively changes the task assignment policy to suit with the most

recent traffic conditions.

ADAPT-POLICY consists of three main stages, namely, the on-line data collection, on-line

density estimation and on-line selection of task assignment policies. The aim of on-line data

collection is to collect the service times of tasks that are needed to estimate the service time

distribution and its distributional properties. In the density estimation stage probability den-

sity function, cumulative density function and moments of the probability density function

are estimated. The technique ADAPT-POLICY uses to estimate these distributions, and their
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properties are called, the non-parametric kernel-based density function estimation [Wand and

Jones, 1995]. These techniques do not impose many restrictions on the underlying probability

distributions, they are therefore, considered a much more general approach to estimation with a

wider range of validity than the corresponding parametric method of estimation such as method

of moments and maximum likelihood estimation [Wand and Jones, 1995; Mood et al., 1974].

In the last stage ADAPT-POLICY determines the best task assignment policy to assign the next

batch tasks and then adaptively changes the task assignment accordingly. Simulation results

show that ADAPT-POLICY outperforms other task assignment policies (e.g. ADAPT-TAGS

[Harchol-Balter, 2002]), under a wide range of scenarios.

1.4 Organisation of thesis

Chapter 2 provides a detail discussion of related work. The first research question is investigated

in Chapter 3, while Chapter 4 investigates the second research question. Chapter 5 deals with the

third research question and Chapter 6 addresses the last research question. The thesis is concluded in

Chapter 7.
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Background and Related Work

The aim of this chapter is twofold. First it provides some background information required to under-

stand the rest of this thesis. Second it provides an overview of some important existing work related

to the new contributions made in this thesis. As discussed, this thesis proposes novel task assignment

policies that can efficiently assign tasks in server farms under two main classes of workloads, namely,

the heavy-tailed and arbitrary service time distributions. The performance models for these policies

are developed by applying queuing theoretic modelling techniques. Therefore, to understand these

solutions, it is important to have an understanding of queueing theoretic modelling and workload

properties. These are discussed in Section 2.1.

The performance of server farms is highly dependent on both the scheduling policy (used to

schedule tasks at back-hosts) as well as the task assignment policy (used for assigning tasks into

back-end hosts). Section 2.2 provides some details about well known scheduling policies. Sections

2.3 and 2.4 discuss traditional and recent task assignment policies respectively. Chapter is concluded

in Section 2.5.

2.1 Background

This section provides some background knowledge required to understand the rest of this thesis.

First we will give a brief introduction to the queuing theoretic modelling that is used throughout this

thesis to model the performance of task assignment policies. Second we discuss the properties of

heavy-tailed workloads and introduce the Bounded Pareto distribution, which is used to represent

heavy-tailed workloads throughout this thesis. Third we discuss how to represent task arrivals into

systems. Finally, we give a brief overview of distributed systems model that we consider in this

thesis.
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2.1.1 Introduction to queuing theory

Throughout this thesis we utilise queueing theoretic principles to model the performance of vari-

ous task assignment policies. Queueing theory provides a stochastic and probabilistic approach to

investigate the operation of queues. Figure 2.1 illustrates a basic queueing process.

Figure 2.1: A queueing process

Kendall’s notation [Kendall, 1953] is used to describe a queueing system. Kendall’s notation

represents a queueing system in a form of A/B/C/D/E, where A, B, C, D and E represent the arrival

pattern of tasks, service pattern of tasks, number of servers, system capacity and service discipline

respectively.

The arrival pattern describes the distribution of inter-arrival times of tasks, while the service

pattern describes the distribution of services times of tasks. The arrival pattern to a queueing system

is typically described in terms of the average time between two successive arrivals or the average

number of arrivals per some unit of time. Third parameter describes the number of servers in a

queueing system. The fourth parameter, the capacity, is the maximum number of customers allowed

to enter the system. This quantity is often referred to as the buffer size and this can be either bounded

or unbounded. Finally, the service discipline describes the manner in which the tasks are selected

for service. First-come-first-served (FCFS), Last-come-first-served (LCLS) and shortest remaining

processing time (SRPT) are a few examples of service disciplines, FCFS being the most common

one.

2.1.2 Workload properties

The service time distribution (denoted by the second parameter of Kendall’s notation) plays an im-

portant role when designing a task assignment policy. As was discussed earlier, this thesis proposes

novel task assignment policies to assign tasks under heavy-tailed and arbitrary service time distri-

butions. Under heavy-tailed distributions there is a very high probability that the size of task being
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very small (short), while the probability that a size of task being very large (long) is very small. This

results in a service time distribution that has a very high variance (second moment). Although the

probability of very large task appearing is very small, the load imposed on the system by these (very

small number of) large tasks can be as high as 50% of the system load. Moreover, when the service

time distribution exhibits very high variance, several small tasks can get behind a very large task.

This results in significant performance degradations, particularly if the tasks are processed in a FCFS

manner until completion [Harchol-Balter, 2002; Broberg et al., 2006; Harchol-Balter et al., 1999;

Kleinrock, 1975]. To what extent the performance degrades is determined by the variability of traffic

(variability level) [Zikos and Karatza, 2010; Harchol-Balter, 2002; Crovella et al., 1998a]. Another

important property of heavy-tailed service time distributions is the property of deceasing failure rate.

This means that the longer a task has processed, the longer it is expected to continue processing.

It is important to realise that the term heavy-tailed is a generic term. When it comes to modelling

and simulating performance of systems under such distributions, we need to carry out the analysis

under a particular parametric heavy-tailed distribution. One of the most commonly used and widely

appearing heavy-tailed distributions relating to computing workloads (e.g. Internet traffic) is the

Pareto distribution. In this thesis we represent heavy-tailed traffic using the Bounded Pareto distribu-

tion. The Bounded Pareto distribution has been used extensively in previous work [Harchol-Balter,

2002; Broberg et al., 2004; 2006; Harchol-Balter et al., 1999; Tari et al., 2005; Fu and Tari, 2003;

Crovella et al., 1998a] to represent heavy-tailed traffic, since it allows analytically tractable models

and performance comparisons with numerous existing policies, which are also based on the Bounded

Pareto distribution. The probability density function of the Bounded Pareto distribution is given by

f (x) =
αkα

1− ( k
p)

α x−α−1, k ≤ x≤ p, (2.1)

where k, p and α represent the smallest task size, the largest task size and the variability of traffic

respectively. α is called the tail parameter and it is inversely proportional to the variance of the service

time distribution. The value of α depends on the type of tasks. For example, α lies in the range [1.1,

1.3] for the sizes of files transferred over the Internet [Crovella and Bestavros, 1997; Crovella et al.,

1998b]. Unix process CPU requirements have an α value of 1.0 [Harchol-Balter and Downey, 1997].

α is typically computed off-line and the scheduling parameters (e.g. server cut-offs, fractions of tasks

assigned to hosts, etc.) for policies are computed based on this α and certain other properties such as

the average arrival rate.

In most cases the performance metrics (i.e. expected waiting or expected slowdown) of task

assignment policies are associated with the moments of the service time distribution. The jth moment
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of the Bounded Pareto distribution is given by

E[X j] =





αkα (k j−α−p j−α )
(α− j)(1−(k/p)α ) , if α 6= j,

k
(1−( k

p ))
(ln p− lnk), if α = j.

(2.2)

Throughout this thesis we assume that the upper bound, p (of the Bounded Pareto distribution)

is fixed and is equal to 107. By letting p equal to a high value such as 107, we ensure that we

represent realistic heavy-tailed service time distributions. It is also assumed that the mean (i.e. E[X])

of the Bounded Pareto distribution is equal to 3000 [Harchol-Balter et al., 1999].1 These values have

been used extensively in previous work when evaluating the performance of task assignment policies

[Broberg et al., 2004; 2006; Harchol-Balter, 2002; Harchol-Balter et al., 1999].

2.1.3 Poisson process

The second important parameter in a queueing system is the arrival process. Many existing task as-

signment policies [Harchol-Balter, 2002; Broberg et al., 2004; 2006; Tari et al., 2005; Harchol-Balter

et al., 1999; Zhang and Sun, 2005] are based on the assumption that tasks arrive at the system follow-

ing a Poisson process. In this thesis we make the same assumption. This is a reasonable assumption

under a wide range of traffic conditions, especially when we model the behaviour of aggregate traffic

[Cao et al., 2001; Williamson, 2001].2 Poisson process is a stochastic process (random variables

indexed by time), where the probability of more than one task arriving at a given instance is equal

to 0. When tasks are arriving according to a Poisson process, the number of tasks that arrive in two

consecutive periods of time is independent of each other (independent increments). Moreover, when

tasks arrive according to a Poisson process, it can be shown that the inter-arrival times follow an

exponential distribution with the mean of 1
λ , where λ is called the rate of the Poisson process.

The system load is defined as λE[X ], where λ and E[X ] refer to the average arrival rate into

the system and the mean of the service time distribution. In this thesis we evaluate the performance

(of policies) under three different system loads where possible. They are 0.3 (a low system), 0.5 (a

moderate system load) and 0.7 (a high system load).

1Note that the average service time of a web page is equal to 3000 bytes [Harchol-Balter et al., 1999].
2Poisson process typically appears in nature when we observe the aggregate effect of a large number of arrivals into

systems.
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2.1.4 Cluster-based distributed systems (server farms)

This thesis proposes task assignment policies for a homogeneous cluster (i.e. server farm) that con-

sists of n number of back-end hosts that are identical to each other in all respects (i.e. processing,

memory capacities, etc.). Figure 2.2 illustrates the host architecture of a typical server farm. This

model consists of a front-end dispatching device (e.g. router, switch, etc.), which receives new tasks

and directs these tasks to back-end hosts. The back-end hosts have the ability to broadcast or multi-

cast requests to different back-end hosts. This architecture has become very popular in recent years

due its cost effectiveness and scalability. A server farm can be constructed by networking a group of

low cost commodity personal computers and capacity of the farm can be increased simply by adding

more servers to farm.

Figure 2.2: A cluster-based distributed computing system (Server farm)

There exist two types of server farms, namely, the batch computing server farms and the time

sharing server farms. Batch computing server farms typically process tasks in a FCFS basis until

completion or up to a predefined time limit. Under a batch computing system, if a task is preempted,

then the preempted task is not generally processed at the same host rather processed at a different

host.3 Time sharing distributed systems (e.g. web server farms), on the hand, can preempt a currently

processing task and process the task at a later stage (at the same host).

Certain server farms support task migration, whereas some others do not. Task migration can be

of two types: work-conserving migration (preemptive migration) and non work-conserving migration

3Tasks processed in batch computing systems typically have specific requirements.

21 (May 27, 2012)



CHAPTER 2. BACKGROUND AND RELATED WORK

(non-preemptive migration). Under preemptive migration, information about current status of the task

such as the process address space and the register content are migrated from the source host to the

destination host, which resumes the execution of the task. Non-preemptive migration does not require

the current status of the running tasks to be migrated from the source host to the destination node.

Therefore, it is less expensive compared to that of preemptive migration. The drawback though is

that this type of migration requires the task to be restarted from scratch at the destination host. In this

thesis we consider both preemptive and non-preemptive task assignment policies.

2.1.5 Optimisation problems

Task assignment policies [Harchol-Balter, 2002; Broberg et al., 2004; 2006; Crovella et al., 1998a]

(proposed for server farms) typically have scheduling parameters (e.g. server cut-offs, etc.) associ-

ated with them. In order to find the optimal values for these scheduling parameters, complex non-

linear optimisation problems needed to be solved [Harchol-Balter, 2002; Broberg et al., 2004; 2006;

Crovella et al., 1998a]. In this thesis we use the following two methods to solve these optimisation

problems.

• Mathematica [Wolfram Research, 2003]: Mathematica is used in Chapter 3 to solve optimisa-

tion problems associated with single server systems.

• Particle swarm optimisation (PSO) [Kennedy and Eberhart, 1995] algorithm: Unfortunately,

Mathematica cannot solve optimisation problems related to multi-server systems because these

problems are extremely complex non-linear optimisation problems that have many decision

variables. Therefore, in Chapters 4, 5 and 6, we use PSO to solve these problems. PSO is an

evolutionary algorithm, which iteratively improves (optimises) its solution with respective to a

given measure of quality. PSO places its particles in the search space of the objective function,

where the objective function is evaluated at each iteration. The movement of the particles in

the search space is determined by a simple Mathematical formula, which takes into account the

position and the velocity of particles. It is not our intention to discuss the PSO in detail as here

we simply use it as a technique for solving the optimisation problems. More details about PSO

can be found in Kennedy and Eberhart [1995] and Poli et al. [2007].

Let us now consider a particular optimisation problem. This problem relates to a scheduling policy

called Multi-level-time-sharing (MLTP) which is discussed in Chapter 3. In this optimisation problem

quanta for MLTP is computed such that the expected waiting time is minimised. Figure 2.3 compares

the (minimum) expected waiting time (denoted by E[W ]) obtained using Mathematica and PSO. We
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Figure 2.3: Evaluation of PSO using MLTP

note that the results obtained using Mathematica and PSO algorithm are more or less the same for all

the scenarios.

2.2 Scheduling policies

Scheduling is the fundamental way to minimise the response times of tasks, where even a small

change to the scheduling policy can result in a massive improvement in the performance. This sec-

tion discusses some basic concepts of scheduling. Scheduling policies can be categorised into two

main types: preemptive scheduling policies and non-preemptive scheduling policies. The difference

between preemptive and non-preemptive scheduling policies is that non-preemptive scheduling poli-

cies process tasks until completion (without interruption), whereas preemptive scheduling policies

can suspend a currently executing task and resume its execution at a later stage.

2.2.1 Non-preemptive scheduling policies

This section discusses four important non-preemptive scheduling policies: 1) First-come-first-served

(FCFS), 2) Last-come-last-served (LCFS), 3) Random and 4) Shortest Job First (SJF).
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• First-come-first-served (FCFS): FCFS [Kleinrock, 1975; Gross and Harris, 1998] is the most

commonly used and widely appearing scheduling policy, which processes tasks on a first come

first served basis until completion. When the system finishes processing a task, the task at the

head of queue will be served next.

• Last-come-first-served (LCFS): When the server finishes processing a task, LCFS [Klein-

rock, 1975; Gross and Harris, 1998] processes the task that arrived last at the system (until

completion).

• Random: Random [Gross and Harris, 1998; Kleinrock, 1975] chooses the next task to be

served randomly and processes it until completion.

It is important to point out that the expected waiting time for FCFS, LCLS and Random are the

same. The expected waiting time for M/G/1 FCFS queue is given by the Pollaczek-Khinchin

(P-K) formula [Kleinrock, 1975]

E[W ]FCFS =
λE[X2]

2(1−λE[X ])
, (2.3)

where E[X ] and E[X2] denote 1st and 2nd moments of the service time distribution of tasks. λ
denotes the average arrival rate into the system.

Note that the variances of the waiting time under these policies, however, are not the same. Let

Var(T )(FCFS), Var(T )(Random) and Var(T )(LCLS) be the variance of waiting time under FCFS,

LCLS and Random. Then,

Var(T )(FCFS) < Var(T )(Random) < Var(T )(LCLS). (2.4)

The variance of waiting time under LCLS is very high compared to that of FCFS.

• Shortest Job First (SJF): Under SJF [Kleinrock, 1976], when the system finishes processing

a task, the task with the smallest size is served next. While this task is being processed, if

the system receives a new task that has a smaller task size (than the current task) then the

new task will only be served after processing the current task. SJF outperforms FCFS under

a wide range of workload conditions. However, SJF could significantly penalise large tasks

under certain workload conditions. In addition, it assumes that the sizes of tasks are known in

advance. This means that it cannot be used for scheduling tasks such as dynamic web content

whose service times are not known in advance.
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• Non-preemptive priority scheduling: A non-preemptive priority scheduling system [Klein-

rock, 1975; 1976] maintains a separate queue for each priority class. When the system finishes

processing a task, the task at the end of (non-empty) highest priority queue is processed next.

While this task is being processed, if the system receives a new task that has a higher prior-

ity (than the one being processed), then the new task will only be served after processing the

current task (until completion).

2.2.2 Preemptive scheduling policies

This section discusses preemptive scheduling policies. These policies are used in various time sharing

systems (such as server farms and routers) to schedule tasks.

• Round-Robin: Under Round-Robin [Kleinrock, 1975; 1976] tasks are served in a FCFS man-

ner up to a maximum amount of time called the quantum. If the service time of the task is

less than or equal to the quantum, then the task departs the system. Otherwise, the task is pre-

empted and placed at the end of the queue, where the task is served in a similar manner (up to

the quantum). This process continuous until the task is fully processed at which point the task

departs the system.

• Processor Sharing (PS): The limiting case of Round-Robin when the quantum size approaches

zero is called the processor sharing. The expected waiting time for M/G/1 PS queue [Kleinrock,

1975; 1976] is given by

E[W ] =
λE[X ]

1−λE[X ]
, (2.5)

where λ and E[X ] represent the average arrival rate into the system and the mean of the service

time distribution respectively. M/G/1 PS performs better than M/G/1 FCFS, if the squared

coefficient of variance (SCV) of the service time distribution is greater than 1. We note that the

expected waiting time for PS does not depend on E[X2], the second moment of the service time

distribution, which indicates that the variance of the service time distribution has no impact on

the expected waiting time. This has to do with the fact that PS assumes a infinitely small

quantum. In real systems the quantum is not infinitely small (never zero) and it is a positive

value, which is computed based on a number of factors (such as the context switch overhead).

• Foreground-background scheduling (FB): FB [Nuyens and Wierman, 2008] is a preemptive

scheduling policy, which gives priority to the task with the least amount of service. Let us

briefly explain the behaviour of FB using two tasks. Let us assume that Task 2 arrives at the
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system, while Task 1 is being serviced. When Task 2 arrives at the system, Task 1 has received

certain amount of service. Let this be x. Upon the arrival of Task 2, Task 1 is preempted from

service and Task 2 is serviced up to x. Once it receives x amount of service, both tasks are

serviced concurrently until completion. The expected waiting time of a task of size x and the

overall expected waiting time of a task under M/G/1 FB are given by

E[W (x)] =
x

1−λ
∫ x

0 F(t)dt
+

λ
∫ x

0 tF(t)dt

(1−λ
∫ x

0 F(t)dt)2
, (2.6)

E[W ] =
∫ ∞

0
E[W (x)] f (x)dx, (2.7)

where F(t) and λ denote the service time distribution and the average arrival rate into the

system respectively. F(t) = 1−F(t) is the survival function.

Let E[W ]FB and E[W ]PS be the expected waiting time for FB and expected waiting time for

processor sharing respectively. If the service time distribution of tasks has a decreasing failure

rate (DFR, i.e. the longer a task has run, the longer it is expected to continue to run), then

E[W ]FB < E[W ]PS. (2.8)

If the service time distribution has an increasing failure rate, then

E[W ]FB > E[W ]PS. (2.9)

If the service time distribution has a constant failure rate (i.e. exponential distribution), then

E[W ]FB = E[W ]PS. (2.10)

FB is not efficient because it preempts the current task whenever a new task arrives at the

system. Under high arrival rates, this can be very inefficient and costly. Furthermore, FB can

be difficult to implement in time sharing systems because time sharing systems process tasks

up to a fixed amount of time (quantum). If the size of a task is greater than the quantum, the

task is preempted (from service) and processed at a later stage.

• Multi-level time sharing (MLTP): MLTP [Schrage, 1967] has recently gained considerable

attention because it has shown improved performance under modern (realistic) traffic condi-
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tions (e.g. service time distributions with the property of decreasing failure rate, service time

distributions with high variance, etc.). MLTP consists of multiple queues and it gives pref-

erential treatment to tasks with small service times. MLTP is discussed in detail in Chapter

3.

• Multi-level processor sharing (MLPS): MLPS [Schrage, 1967; Aalto et al., 2007; 2005] is

the limiting case of MLTP, where the quantum approaches zero and the number of levels ap-

proaches infinity. Under specific conditions, FB can be considered a coarse-grained approxi-

mation of MLPS.

2.3 Traditional task assignment policies

Existing task assignment policies proposed for assigning tasks in server farms can be categorised

into two main types, namely, the traditional task assignment policies and advanced task assignment

policies. This section presents the details of four well known traditional task assignment policies,

namely, Random, Round-Robin, Central-Queue and Join the Shortest Queue. These policies only

perform well under exponential service time distributions and their performance is very poor under

empirical workloads (such as heavy-tailed service time distributions). However, they are still widely

being used due to their simplicity, despite their major drawbacks, which include their poor perfor-

mance under fluctuating workload conditions, poor performance under non-exponential service time

distributions and inability to support task migration between hosts. Let us now discuss these policies.

• Random: Under Random [Silberschatz et al., 1998], each task arriving at the central dispatcher

is assigned to a back-end with an equal probability. Back-end hosts process tasks according

to a particular scheduling policy until completion. Waiting time analysis for Random is rather

straightforward. Note that the Random scheduling policy (discussed in Section 2.2) is different

from the Random task assignment policy.

Let us now consider a particular example, where the back-end hosts of Random policy process

tasks according to FCFS policy until completion. Let E[Wi] and pi be the expected waiting

time of a task at Host i and the probability that a task is dispatched to Host i respectively. Then,

the expected waiting time of a task in the system, E[W ] is given by

E[W ] = p1E[W1]+ p2E[W2]+ ...+ piE[Wi]+ ...+ pnE[Wn], (2.11)

where n denotes the number of hosts in the farm.
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Figure 2.4: Random task assignment policy

Since, Random dispatches task with an equal probability

p1 = p2 = ... = pn =
1
n

. (2.12)

E[Wi] is obtained using the Pollaczek-Khinchin formula [Kleinrock, 1975]

E[Wi] =
λiE[X2]

2(1−λiE[X ])
, (2.13)

where E[X ] and E[X2] represent 1st and 2nd moments of the service time distribution respec-

tively and λi denotes the average arrival rate into Host i.4 The quantity λiE[X ] is typically

referred to as the system load and it is denoted by ρi.

Since, Random dispatches tasks with an equal probability

λ1 = λ2 = ... = λn =
λ
n

, (2.14)

where λ represents the average arrival rate of tasks at the dispatcher. Hence, we get

E[W ] = E[W1] = E[W2] = ... = E[Wn]. (2.15)

4Note that under Random, each host in the system sees the same processing time distribution.
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Figure 2.5 shows the expected waiting for Random under 3 different system loads. These

results have been obtained for a Bounded Pareto service time distribution under the conditions

discussed in Section 2.1.2. We note that the expected waiting time for Random (when tasks are
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Figure 2.5: Expected waiting time for Random

processed in FCFS manner with no preemption) depends on two factors, namely, the system

load and α , where α represents variability of task sizes. When α is fixed, the expected waiting

time increases with the system load. For example, under a system load of 0.3, when α equals

1.5, the expected waiting time for Random is equal to 21537, while under a system load of 0.7,

when α equals 1.5, the expected waiting is equal to 117257.

As the variability of traffic increases (i.e. as α decreases), the expected waiting time for Ran-

dom increases rapidly. We note that under very high task size variabilities (e.g. α = 0.5), the

performance of Random is extremely poor. For example, under a system load of 0.7, when

α = 0.5, the expected waiting time for Random is computed as 505477, while under the same

system load, when α = 2.5, the expected waiting time is computed as 1142. As we note from

Equation 6.17, the expected waiting time is proportional to the second moment of the service

time distribution, which is very high when α is low.

• Round-Robin: Under Round-Robin [Silberschatz et al., 1998], tasks are assigned to back-end

hosts in a cyclical fashion and are processed at hosts using a particular scheduling policy (e.g.

FCFS) until completion. Both Random and Round-Robin attempt to equalise the expected

number of tasks at servers. The performance of Round-Robin is very similar to Random and

this has been discussed in [Harchol-Balter, 2002]. There exist two variants of Random and

Round-Robin, called Weighted-Random and Weighted-Round-Robin respectively, which have
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been designed for heterogeneous server farms, where the servers have varying degrees of pro-

cessing power. These policies assign higher number of tasks to hosts with higher processing

capacities. Note that the Round-Robin scheduling policy (discussed in Section 2.2) is different

from the Round-Robin task assignment policy.

• Central-Queue (CQ): The dispatcher of the Central-Queue policy [Weber, 1978] holds newly

arriving tasks in a FCFS queue until a host (in the farm) is idle. Once a host becomes idle,

the task at the head of the queue is assigned to that host. The task is processed in a FCFS

manner until completion at that host. Central-Queue performs better compared to Random and

Round-Robin under exponential service time distributions [Weber, 1978]. However, it does not

perform well under other service time distributions (e.g. Pareto).

• Join the Shortest Queue (JSQ): Under JSQ [Winston, 1977], the central dispatcher assigns

incoming tasks to the back-end host that has the least number of tasks in its queue and the

tasks are (generally) processed in a FCFS manner at hosts until completion. Under exponential

service time distributions, JSQ has shown better performance compared to other traditional

task assignment policies [Winston, 1977].

2.4 Advanced task assignment policies

As pointed out traditional task assignment policies possess numerous drawbacks. Therefore, to ad-

dress these problems numerous advanced task assignment policies have been proposed in recent

years. This section provides the details of some major contributions made in recent years. These

policies have been proposed for different types of environments and therefore, they are based on

different types of assumptions. Some desirable properties of a good task assignment policy are

• Ability to efficiently assign tasks in time sharing systems - Time Sharing Systems.

• Ability efficiently assign tasks in batch computing systems - Batch Computing Systems.

• Ability to efficiently assign tasks with unknowns sizes - Unknown Task Sizes.

• Ability to efficiently assign tasks under heavy-tailed service time distributions - Heavy-tailed

Service Time Distributions.

• Ability to efficiently assign tasks with unknown (arbitrary) service time distributions - Arbitrary

Service Time Distributions.
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• Ability to efficiently assign tasks under changing workload conditions - Dynamic Task Assign-

ment.

• Ability to efficiently assign tasks in multiple server farm environments - Multiple Server Farms.

• Ability to migrate tasks between hosts without restarting the tasks at destination hosts - Pre-

emptive Migration.

In practice it is not possible to design a task assignment policy to have all of the above features.

However, when we design a new task assignment policy, it is important to take into account the above

factors together with specific system properties and traffic properties. The following (advanced) task

assignment policies are discussed in this chapter.

• Task Assignment based on Guessing Size (TAGS) [Harchol-Balter, 2002]

• Task Assignment based on Guessing Size with Preemptive Migration (TAGS-PM). This task

assignment policy is also called Task Assignment based on Guessing Size with Work-conserving

Migration (TAGS-WC) [Harchol-Balter, 2002; Broberg et al., 2006]

• Task Assignment based on Prioritising the Traffic Follow (TAPTF) [Broberg et al., 2004]

• Task Assignment with Work-conserving Migration (TAPTF-WC) [Broberg et al., 2006]

• Size Interval Task Assignment with Equal Load (SITA-E) [Harchol-Balter et al., 1999]

• Size Interval Task Assignment with Variable Load (SITA-V) [Crovella et al., 1998a]

• Least-loaded Server First (LLF) [Tari et al., 2005]

• A Least Flow-Time First Load Sharing (LFF-SIZE) [Tari et al., 2005]

• ADAPTLOAD [Zhang and Sun, 2005]

• EQUILOAD [Ciardo et al., 2001]

The reason for concentrating on the above policies is because they perform well under certain empir-

ical workload conditions (e.g. heavy-tailed) and to improve the performance under such conditions,

they use special techniques (such as unbalancing the load among hosts, reducing the task size vari-

ability in hosts queues, multi-section queues, task migration, etc.). Performance analysis of these

policies indicates that they perform significantly better than traditional policies. For example, TAGS

outperforms Random by a factor of 100 under highly variable traffic conditions. Although these
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policies perform well in certain environments, they possess several major limitations. For example,

SITA-V, SITA-E, LFF-SIZE, ADAPTLOAD and EQUILOAD assume that the service times of tasks

are known in advance. Therefore, these policies cannot be used for assigning dynamic content and

scientific workloads, whose service times cannot be estimated prior to execution. Moreover, none of

the above policies can effectively assign tasks in multiple server farms, nor can they efficiently assign

tasks when the service time distribution of tasks is unknown. Furthermore, most of these policies

have been designed for assigning tasks in batch computing server farms. As such, they are not suit-

able for assigning tasks in time sharing farms. The following table illustrates the properties of each

of the above task assignment policies.

Table 2.1: A list of desirable properties for task assignment policies

Property TAGS TAGS-
PM

TAPTF TAPTF-
WC

SITA-
E

LFF-
SIZE

ADAPT
LOAD

EQUI
LOAD

Time Sharing
Systems

- - - - - -
√

-

Batch Computing
Systems

√ √ √ √ √ √
-

√

Unknown Task
Sizes

√ √ √ √
- - - -

Heavy-tailed Ser-
vice Time Distri-
butions

√ √ √ √ √ √ √
-

Arbitrary Service
Time Distribu-
tions

- - - - - - - -

Dynamic Task
Assignment

- - - - -
√ √

-

Multiple Server
Farms

- - - - - - - -

Preemptive
Migration

√
-

√
- - - -

2.4.1 Task Assignment based on Guessing Size (TAGS)

TAGS [Harchol-Balter, 2002; 2000] is a well known policy, which has been proposed for assigning

tasks in batch computing server farms. TAGS policy is illustrated in Figure 2.6. Throughout this the-

sis we use TAGS as a baseline for our performance evaluations. TAGS assumes a homogeneous web

server farm that consists of n number back-end hosts and a central dispatcher. The main functionality

of TAGS is as follows. The central dispatcher assigns each new task to Host 1, which processes tasks
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Figure 2.6: TAGS task assignment policy

in a FCFS manner up to a predefined processing time limit (assigned to Host 1). If the service time

of the task is less or equal to the processing time limit assigned to Host 1, the task departs the system

(after receiving its full amount of service) and the results are sent back to the client. Otherwise, the

task is migrated to the next host. The next host processes the task from scratch up to its predefined

time limit and so on. This process continues until the task is fully processed at which point the task

departs the system. The performance under TAGS depends on the variability of traffic, average ar-

rival rate and task size ranges (i.e. cut-offs). Let si denotes the upper limit of the task size range

associated with Host i. Let k and p represent the smallest and the largest task sizes in the service time

distribution. The size ranges for hosts are computed to optimise a certain performance metric under

a given α and system load such that

k < s1 < s2... < si−1 < si < ... < sn = p (2.16)

TAGS has been especially designed to assign tasks that exhibit high variance in their task sizes and

therefore, it has shown significant performance improvements over policies such as Random, Round-

Robin and Central-Queue under a wide range of such workload conditions. However, TAGS performs

poorly under specific workload conditions. Let us now investigate the performance of TAGS in detail.
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(a) Expected waiting time for TAGS: 2 Host case
Here we investigate the expected waiting time for TAGS in a 2 Host system. Figure 2.7 illustrates

the expected waiting time for TAGS under 3 different system loads.5 We note that TAGS performs
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Figure 2.7: Expected waiting time for TAGS in a 2 Host system

exceptionally well compared to Random under a range of scenarios. Under low and moderate system

loads, the expected waiting time for both Random and TAGS improves with increasing α . This is

because both policies process tasks in a FCFS manner at each host. As was pointed out, the expected

waiting time of a task in a FCFS queue is directly proportional to variance of tasks sizes. As α
increases, the variance of task sizes in each host queue decreases leading to an improvement in the

overall performance.

Under a system load of 0.7, the expected waiting time for TAGS decreases up to a certain value

and then it begins to increase. This behaviour of TAGS has not been discussed in [Harchol-Balter,

2002; 2000]. The reason for this behaviour is as follows. Low α parameter indicates that there are a

very small number of tasks with very long processing requirements that constitutes to a large fraction

of the total workload. Under low α values, this small fraction of very large tasks are processed until

completion at Host 2. As α increases, the fraction of tasks with very long processing requirements

(that make up a large fraction of the workload) decreases. As a result, more tasks are migrated to

Host 2 in order to ensure that Host 1 does not get overloaded. This leads to an increase in the excess

load, particularly under high system loads (e.g. 0.7), which leads to poor performance.

(b) Expected waiting time for TAGS: 3 Host case

5Note that in Figure 2.7 we have used log scale for y axis.
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Figure 2.8 plots the expected waiting time for TAGS and Random in a 3 Host system. We note that
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Figure 2.8: Expected waiting for TAGS in a 3 Host system

TAGS outperforms Random significantly if α is low. For example, under a system load of 0.5, when

α equals 0.5, TAGS outperforms Random by a factor of 63. However, TAGS has very poor perfor-

mance under very low task size variabilities and very high system loads. For example, under a system

load of 0.5, when α = 2.5, Random outperforms TAGS by a factor of 38. The reason for this poor

performance (of TAGS) is the very high excess load generated under these conditions.

(c) Load on hosts
We noted that TAGS can result in significant performance improvements under a wide range of work-

load conditions. Here we investigate the behaviour of load on individual hosts. We note that TAGS

improves the performance by unbalancing the load among hosts. Figure 2.9 plots the load on indi-

vidual hosts in a 2 Host systems. We note that when α is low, the load on Host 2 is significantly

higher than the load on Host 1. For example, under a system load of 0.5, when α equals 0.5, the load

on Host 1 and Host 2 are equal to 0.25 and 0.87 respectively.6 As α increases, the load on Host 1

increases, whereas the load on Host 2 decreases. It is interesting to note that when α is near 1, the

load on hosts are more or less the same under all three system loads considered.

2.4.2 Task Assignment based on Guessing Size with Preemptive Migration (TAGS-PM)

The original version of TAGS discussed in the previous section restarts certain tasks from scratch.

This results in an additional load on the system, which we called the excess load. The total excess

6Note that the average of the sum these two loads is greater than the system load because system load does not take
into account the excess load.
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Figure 2.9: Load on individual hosts under TAGS in a 2 Host system

load is dependent on a number of factors, which include the variability of traffic, arrival rate and

number of hosts in the system. TAGS-PM is based on preemptive (work-conserving) task migration

and this means that it does not restart tasks from scratch, rather it resumes the execution of tasks

at destination hosts. The core functionality of TAGS-PM is similar to TAGS except that TAGS-PM

resumes the execution of tasks rather than restarting them from scratch. Figures 2.10 and 2.11 plot

the expected waiting time vs α for TAGS-PM and TAGS in 2 and 3 Host systems respectively.

Let us first consider the expected waiting time for the two policies in a 2 Host system. We note

that there is a significant difference between the behaviour of expected waiting time under TAGS

and TAGS-PM, particularly under a system load of 0.7. Under a system load of 0.7, the expected

waiting time for TAGS-PM decreases with α up to certain value and then it increases slightly and

then it deceases again. This is different from TAGS, where the expected waiting time deceases up to a

certain limit and it then continuously increases with α . We note that when α is in the proximity of 2.5,

TAGS has very poor performance compared to Random. TAGS-PM, on the other hand, outperforms
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Figure 2.10: Expected waiting time for TAGS and TAGS-PM in a 2 Host system

Random under both low and high α values. For example, under a system load of 0.7, when α is equal

to 0.5, it outperforms Random by a factor of 30. Under the same system load, when α equals 1.9,

TAGS-PM outperforms Random by a factor 1.1. Performance under TAGS-PM does not deteriorate

with increasing α , since it does not restart tasks from scratch and as such it does not generate any

excess load in the system.

We note that the behaviour of expected waiting time for TAGS-PM in a 3 Host system is similar

to that of a 2 Host system. Unlike TAGS, the expected waiting time does not degrade under high

system loads, when α is in the proximity of 2.5. Moreover, we note that TAGS-PM having better

performance in a 2 host system compared to that of 3 host system under all the scenarios considered.

Therefore, TAGS-PM scales well. TAGS, on the other hand, does not scale well, particularly under

high system loads. TAGS-PM, however, has one major problem that is it does no take into account

the migration cost, which can be significantly high for particular types of tasks and systems.

We noted that for TAGS the load on hosts vary depending on the α value and system load. Similar

observations are made with regard to the load on TAGS-PM. Figure 2.12 shows the behaviour of load

for TAGS-PM in a 2 Host systems. Clearly, TAGS-PM improves performance by unbalancing the

load among hosts.

2.4.3 Task Assignment based on Prioritising the Traffic Follow (TAPTF) and Task Assignment
with Work-conserving Migration (TAPTF-WC)

This section presents the details of two other recent advanced task assignment policies, namely,

TAPTF [Broberg et al., 2004] and TAPTF-WC [Broberg et al., 2006]. Both of these policies have
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Figure 2.11: Expected waiting time for TAGS and TAGS-PM in a 3 Host system
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Figure 2.12: Load on individual hosts under TAGS-PM in a 2 Host system
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been proposed for assigning tasks in batch computing environments. Let us first consider TAPTF

policy. TAPTF has been proposed to address a major issue associated with TAGS, which is the high

excess load (generated under certain workload conditions), which results in significant performance

degradations. TAPTF attempts to minimise the excess load (due to restarting tasks from scratch) via

its novel queueing architecture, which utilises two queues for each host. TATPF policy is depicted in

Figure 2.13. We see Figure from 2.13 that each host in TAPTF (except Host 1) has two queues. These

Figure 2.13: TAPTF task assignment policy

queues are called the ordinary queue (O queue) and the restart queue (R queue) respectively. The task

in the O queue has the priority of service over tasks in R queue. Similar to TAGS and TAGS-PM,

TAPTF has task size ranges associated with the hosts. Host i’s O queue deals with tasks whose sizes

are in the range [k,si], while Host i’s R queue deals with tasks whose sizes are in the range [si−1,si].

The basic functionality of TATPF is follows. New tasks arrive at the central dispatcher following

a Poisson process. The central dispatcher assigns these tasks to one of the back-end hosts with

probability qi, where qi is the probability of a task being assigned to Host i. These tasks are placed in

the ordinary queue (O queue) and processed up to si in a FCFS manner, where si is the upper limit of

the task size range assigned to Host i. If the size of a task is less than or equal to si, the task departs

the system. Otherwise, the task is placed in the R queue of the next host, where the task is restarted
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from scratch. This process continuous until the task is fully serviced at which point the task departs

the system. Performance analysis of TAPTF shows that TAPTF outperforms TAGS under certain α
values. However, as α decreases (i.e. the variance of task sizes increases), TAGS starts to outperform

TAPTF. Therefore, which policy performs better is determined by the variance of the service time

distribution. Another issue with TAPTF is that it has a rather complex queueing model, which may

be difficult to implement in real computing systems.

There is only one difference between TAPTF-WC and TAPTF, i.e. TAPTF-WC supports work-

conversing migration. Similar to TAGS-PM, TAPTF-WC is based on the assumption that migrating

tasks between hosts incurs no additional load on destination hosts or source hosts. As such, it gener-

ates no excess load on the system. Analytical performance comparison of TAPTF-WC with TAGS-

PM shows that TAPTF-WC outperforms TAGS-PM under moderate α values, whereas TAGS-PM

outperforms TAPTF-WC under low α values.

2.4.4 Size Interval Task Assignment with Equal Load (SITA-E) and Size Interval Task As-
signment with Variable Load (SITA-V)

This section presents the details of two well known task assignment policies called SITA-E and

SITA-V. These policies have been designed for server farms that serve static web content whose

service times can be estimated prior to execution. These polices have their own way of addressing

the problem of how to improve the performance under various workload scenarios, which is a much

simpler problem when the service times of tasks are known in advance. When the service times of

tasks are known a priori,

• it is possible to compute the load on servers simply by considering sizes of tasks in server

queues. Such computations will allow tasks to be placed at the server with the least load,

• the dispatcher can assign each incoming tasks to the server with the correct size range, where

each task is processed until completion,

• it is not required to design complex queueing models in order to optimise the performance,

• there is no need to solve complex optimisation problems to find the task size ranges for servers,

• there is no need to migrate tasks between hosts because tasks are always dispatched to the

correct host, which processes tasks until completion,

• it is relatively easy to design adaptive task assignment policies, which can assign tasks under

changing operating conditions.
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Both SITA-E and SITA-V are size-based task assignment policies, which compute the task size ranges

for hosts based on the service time distribution of tasks. SITA-E computes the size ranges for hosts

such that the expected load at each host is the same, whereas SITA-V computes these size ranges (in

an increasing order) so as to optimise a specific performance metric (e.g. expected waiting time). The

central dispatchers of SITA-E and SITA-V assign incoming tasks to hosts based on their size, where

tasks are processed in a FCFS manner until completion. The main purpose of having different size

ranges for hosts is to speed up the flow of small tasks. This ensures that the small tasks do not get

behind large tasks. This results in an improvement in the overall performance of the system under

highly variable workloads.

Experimental and analytical performance analysis of SITA-E shows that it significantly outper-

forms traditional policies such as Random and Round-Robin. Moreover, it outperforms LLF (refer

to Section 2.4.5) under specific workload scenarios (e.g. high workload variabilities). SITA-V, on

the other hand, outperforms SITA-E under a wide range of workload scenarios including both high

and low task size variabilities. The reason why SITA-V performs significantly better than SITA-E is

because SITA-V unbalances the load among its hosts as opposed to balancing the load. In sections

2.4.1 and 2.4.2 we noted that both TAGS and TAGS-PM also use the same technique for improving

the performance.

2.4.5 Least-loaded Server First (LLF) and Least Flow-time First Load Sharing (LFF-SIZE)

LLF (sometimes called Dynamic) dynamically assigns tasks to the server with the least load. The

least loaded server is the server with the least amount of remaining work. The least loaded server is

determined by considering the sizes of tasks (already) in host queues and the remaining processing

time of the task currently being processed. One of the main limitations of LLF is the high computa-

tional overhead associated with computing the least loaded server. The performance comparisons of

LLF with traditional policies indicate that LLF performs significantly better than traditional policies

under a range of workload conditions. SITA-E, however, outperforms LLF under a wide range of

scenarios, particularly under high task size variabilities.

LFF-SIZE is an improved version of LLF. LFF-SIZE utilises multi-section queues at its hosts to

reduce the size variance of tasks. These multi-section queues accommodate tasks with different sizes.

When the tasks are processed at hosts, small tasks are processed prior to large tasks with no preemp-

tion. When assigning tasks to hosts, tasks are assigned to the fittest server, which is determined

based on the remaining work of individual hosts and processing capacities of servers. Performance

analysis of LFF-SIZE shows that it outperforms LLF under a wide range of scenarios. Moreover,
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it outperforms SITA-E under moderate task size variabilities. The performance of LFF-SIZE is not

clear under high task size variabilities as the performance of LFF-SIZE has not been evaluated under

these conditions. It is also not clear how well LFF-SIZE performs compared to SITA-V because the

performance of LFF-SIZE has not been compared with SITA-V.

2.4.6 EQUILOAD and ADAPTLOAD

Similar to SITA-E, the hosts of EQUILOAD [Ciardo et al., 2001] have specific size ranges associated

with them. The main difference between the two policies is that EQUILOAD uses a novel probabilis-

tic method to compute boundaries of these ranges using the empirical data sets. This method involves

estimating the probability density and cumulative distribution functions of the service times by fitting

the empirical data into phase-type distributions (off-line). The performance analysis of EQUILOAD

shows that it outperforms SRPT and JSQ under high task size variabilities or high system loads. The

performance of EQUILOAD is similar to SITA-E apart from the fact that to compute size ranges

(boundaries) EQUILOAD uses empirical data sets, while SITA-E uses synthetic workload distribu-

tions. Finally, it is important to note that EQUILOAD cannot adjust its boundaries online. The

authors are considering this in their future work.

ADAPTLOAD [Zhang and Sun, 2005] is also a size-based task assignment policy, which has

task size ranges associated with its hosts. It can dynamically compute the size ranges for hosts ac-

cording to the changes that occur in the incoming traffic. These size ranges are computed using the

discrete histogram of service times, which is estimated on-line. Performance analysis of ADAPT-

LOAD shows that it outperforms JSQ under changing arrival rates and non-stationary service time

distributions.

2.5 Conclusion

The detailed discussion of existing task assignment policies provided in this chapter further elucidates

the major limitations of existing task assignment policies, which we have already discussed in Chapter

1. In a nutshell traditional task assignment policies are not well suited for assigning tasks in server

farms because their performance is extremely poor under realistic workload scenarios. On the other

hand, advanced tasks policies possess some major drawbacks. For example, many advanced policies

such as SITA-E, SITA-V, LFF-SIZE, EQUILOAD and ADAPTLOAD are based on the assumption

that the service times of tasks are known a priori. Those that do not make any assumptions regarding

the actual service times of tasks (e.g. TAGS, TAGS-PM, TAPTF, TAPTF-WC) have been mainly

targeted for batch computing systems and therefore, not suitable for assigning tasks in time sharing
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systems. Moreover, many existing policies (e.g. TAGS, TAGS-PM, TAPTF, TAPTF-WC, SITA-

E, SITA-V, EQUILOAD) have not been designed to operate under changing traffic conditions and

therefore, their performance degrade significantly under such conditions. We also note that many

advanced task assignment policies are based on the assumption that the service time distribution of

traffic closely follows heavy-tailed service time distributions. Although this is true for majority of

cases, under specific cases when this cannot be justified, the performance of these advanced task

assignment policies can be extremely poor.7 Finally, existing task assignment policies have been

designed to optimise the performance in individual server farms. As such, their performance is

poor under multiple server farm environments as these policies do not exploit the properties of such

environments. Based on these observations, we present and address four research questions in this

thesis. Details of these research questions were presented in Chapter 1.

7We prove this in Chapter 6.
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Chapter 3

Performance Modelling and
Optimisation of a Time-sharing Server

This chapter investigates the way to optimise the performance in a time-sharing server by efficiently

scheduling tasks.1 We devote our attention to a particular time scheduling policy called the multi-

level time sharing policy (MLTP). The rationale for concentrating on MLTP is because 1) MLTP

requires no prior knowledge about actual task sizes and therefore, it can be used for scheduling a

wide range of task types including dynamic web content and scientific workloads and 2) MLTP has

shown significant performance improvements under distributions with the property of decreasing

failure rate [Aalto et al., 2004; 2007], a key property of modern traffic represented by heavy-tailed

distributions.2 Due to these reasons, MLTP is used to schedule tasks in various systems such as

routers and operating systems [Avrachenkov et al., 2004; Feng and Misra, 2003; Rai et al., 2005;

2004a; 2003; 2004b; Silberschatz et al., 1998].

Unfortunately, existing analytical models relating to MLTP have major limitations. For example,

most of these studies present the analytical results under the assumption that the number of levels

are infinite and the quanta are infinitely small [Aalto et al., 2007; 2005; 2004] because under these

conditions it is relatively easy to model the behaviour of tasks under MLTP. However, neither infinite

levels nor infinitely small quanta are practical or ever feasible to implement on real computer sys-

tems. A handful of studies that investigate the performance of MLTP under positive quanta are based

on the assumption that both the inter-arrival times and service times follow exponential distributions

[Coffman and Kleinrock, 1968]. Though the exponential inter-arrival times can be justified for a

1Note that the scheduling policies utilised in time-sharing computing systems are preemptive scheduling policies. We
discussed preemptive scheduling policies at some length in Chapter 2.

2The decreasing failure rate simply means that the longer a task has run the longer it is expected to run.
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range of scenarios [Cao et al., 2001; Williamson, 2001], extensive research carried out over the years,

clearly indicates that the service times of computer workloads no longer follow exponential distribu-

tions but follow heavy-tailed distributions (for majority of cases) [Theophilus et al., 2010; Downey,

2005; 2001; Mitzenmacher, 2004; Cáceres et al., 1991; Arlitt and Williamson, 1996; Barford et al.,

1999; Barford and Crovella, 1998; Leland and Ott, 1986; Arlitt and Williamson, 1997; Crovella and

Bestavros, 1997; Harchol-Balter and Downey, 1997; Willinger et al., 1995]. In this chapter we inves-

tigate the performance of MLTP under heavy-tailed distributions under finite levels when the quanta

are not infinitely small.

This chapter focuses on two types (variants) of MLTP, namely, multi-level optimal quantum time-

sharing policy with N levels (N-MLTP-O) and multi-level equal quantum time-sharing policy with

N levels (N-MLTP-E). The quanta for N-MLTP-O are computed to optimise a certain performance

metric under a given set of conditions and the quanta for N-MLTP-E are equal in each level. As

pointed out in Chapter 1, to evaluate the performance, we use two important performance metrics,

namely, the expected waiting time and the expected slowdown.

The key contributions of this chapter are as follows.

• We derive the performance metrics (i.e. expected waiting time and expected slowdown) for

MLTP and show that N-MLTP-O can result in significant performance improvements over N-

MLTP-E and FCFS, particularly when both the system load and the task size variability are

high.

• We investigate the impact of number of levels on the performance of both N-MLTP-O and

N-MLTP-E. We show that as the number of levels increases, the performance of both policies

increases, and the rate at which the performance increases depends on the factors such as the

variability of service times and the system load.

• We investigate the behaviour of quanta for the case of two levels under different scenarios. We

note that the (optimal) set of quanta that will result in optimal performance are unique for most

of the scenarios. We also note that there is a sudden drop in quantum 1 that occurs between the

system loads of 0.5 and 0.7 when the performance is evaluated using the expected time.

• We briefly discuss the impact of overestimating and underestimating the optimal quanta on the

performance and discuss the measures that can be taken to minimise the degradation in the

performance due to overestimating or underestimating optimal quanta.

• We investigate the performance of N-MLTP-E under a large number of queues. We use statisti-

cal regression modelling techniques to approximate the relationship between the performance
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and the number of levels. For both performance metrics, we show that the relationship be-

tween the performance and the number of levels has a form of a power curve, where the two

coefficients of the power curve are functions of both the variability of tasks and the system

load.

• We compare the performance of N-MLTP-E with the performance of FB (refer to Section 2.2.2)

and show that under highly variable traffic conditions, N-MLTP-E requires a large number of

queues if it is to achieve the same performance levels as FB.

The rest of this chapter is organised as follows. Section 3.1 provides the details of M/G/1 MLTP.

In Section 3.2 we discuss the way to compute the performance of MLTP under a Bounded Pareto

service time distribution. Sections 3.3 and 3.4 present the analytical performance analysis of MLTP.

The effect of quanta on performance is investigated in Section 3.5. In Sections 3.6 and 3.7 we

investigate the fractions of tasks completed in levels and performance degradation in one performance

metric as a result of optimising the performance using a different performance metric respectively.

Section 3.8 investigates the performance of MLTP under a large number of queues. Section 3.9

compares the performance of MLTP with FB. The chapter is concluded in Section 3.10.

3.1 Multi-level Time Sharing Policy (MLTP)

MLTP has shown significant performance improvements over policies such as FCFS under realistic

workload conditions. However, existing analytical analysis of MLTP has been carried out under

very unrealistic conditions such as infinitely small quanta, infinite number of levels and exponential

service time distributions. As discussed, this chapter investigates the performance of MLTP under

heavy-tailed workloads (service time distributions) under finite number of levels when the quanta

are not infinitely small. Such a policy is more consistent with those implemented on real computer

systems and the findings will enable system designers to better understand how the factors such as the

quanta, the system load, the number of levels and the task size variability will affect the performance

of MLTP. Section 3.1.1 presents an overview of the MLTP model followed by the performance model

for MLTP presented in Section 3.1.2.

3.1.1 Overview of Multi-level Time Sharing Policy (MLTP)

This section introduces the MLTP model. Figures 3.1 and 3.2 illustrate MLTP model. Note that

these two representations are identical to each other. The notation provided in Table 3.1 is used to
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Figure 3.1: Multi-level Time Sharing Policy (MLTP): representation 1

Figure 3.2: Multi-level Time Sharing Policy (MLTP): representation 2

describe MLTP. We note from Figures 3.1 and 3.2 that MLTP consists of N queues (levels). The basic

functionality of MLTP is as follows.

• Each new task that arrives at the system is placed at the lowest level (queue), where the task

is served in a FCFS manner until it receives maximum of q1 amount of service (note: q1

represents a time duration).

• If the service time of the task is less than or equal to q1, the task departs system. Otherwise,

the task is placed at Queue 2, where the task is processed in a FCFS manner until it receives at

most q2 amount of service and so on.
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λ Average arrival rate into Queue 1
Ti ith simple processing time (i.e. the length of processing

time a task on Queue i)
E[Ti] Expected value of Ti

E[T 2
i ] Second moment of Ti

F(t) Cumulative distribution function (CDF) of service time
distribution

Ui Qi if the task returns to the system at least i− 1 times
T1 +T2 + ...+Tk if the task returns the system only k−1
times where k < i

E[Ui] Expected value of Ui

E[U2
i ] Second moment of Ui

N Number of queues (levels)
Λk λ (1− ∫ Qi

0 dF(t))
Wi Waiting time in the system up to level i. This time does

not include i simple processing times (i.e. T1,T2, ...,Ti)
qi Quantum (maximum processing time) i
Qk q1 +q2 + ......+qk

Table 3.1: Notation: MLTP

• The task propagates through the system of queues until the total processing time, the task has

so far received is equal to its service time at which point it leaves the system.

• A task waiting to be served in Queue i has the priority of service over tasks that are waiting

to be served in Queue i + 1, i + 2, ...,N, where N denotes number of levels. However, a task

currently being processed is not preempted upon the arrival of a new task to the system.

3.1.2 Performance model for MLTP

Here we present the details of the performance model for MLTP. The aim is to derive expressions for

the expected waiting time and the expected slowdown. L. E. Schrage is one of the few researchers

who attempted to model the behaviour of tasks in a MLTP system under an arbitrary service time

distribution. In Schrage [1967], Schrage has derived an expression for the conditional expected flow-

time of a task for MLTP under an arbitrary service distribution. More specifically, the expected

flow-time of a task under MLTP given that the task’s processing time is greater than Qi−1 and less

than Qi is given by

E[FTi] =
λE[U2

i ]+∑N
k=i+1 ΛkE[T 2

k ]
2(1−λE[Ui−1])(1−λE[Ui])

+
Qi−1

(1−λE[Ui−1])
+E[Ti], (3.1)
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where E[Ui], E[Ui−1], E[U2
i ], E[T 2

k ], E[Tk], E[T 2
k ],E[T−1

k ] and Λk are given by (refer to [Schrage,

1967] for further information),

E[Ui] =
∫ Qi

0
xdF(x)+Qi(1−F(Qi)), (3.2)

E[Ui−1] =
∫ Q(i−1)

0
xdF(x)+Qi−1(1−F(Qi−1)), (3.3)

E[U2
i ] =

∫ Qi

0
x2dF(x)+Q2

i (1−F(Qi)), (3.4)

E[Tk] =
1

(1−F(Qk−1))
(
∫ Qk

Qk−1
(x−Qk−1)dF(x)+qk(1−F(Qk))), (3.5)

E[T 2
k ] =

1
(1−F(Qk−1))

(
∫ Qk

Qk−1
(x−Qk−1)2dF(x)+q2

k(1−F(Qk))), (3.6)

E[
1
Tk

] =
1

(1−F(Qk−1))
(
∫ Qk

Qk−1
(x−Qk−1)−1dF(x)+q−1

k (1−F(Qk))), (3.7)

Λk = λ (1−
∫ Qi

0
dF(t)). (3.8)

We obtain the expected waiting time of a task under MLTP given that its processing time is

greater than Qi−1 and less than Qi by subtracting the expected total processing time up to Queue i

from E[FTi]. The expected total processing time up to i−1 queue is equal to Qi−1 and the expected

processing time in Queue i is simply E[Ti]. Therefore, the expected waiting time of a task given that

its service time is greater than Qi−1 and less than Qi, E[Wi], is given by

E[Wi] =
λE[U2

i ]+∑N
k=i+1 ΛkE[T 2

k ]
2(1−λE[Ui−1])(1−λE[Ui])

+
Qi−1

(1−λE[Ui−1])
−Qi−1. (3.9)

E[Wi] defined above is strictly the waiting time of tasks in queues and it does not include the i−1

processing times (quanta).

Finally, we derive the expected slowdown of a task for MLTP given that its processing time is

greater than Qi−1 and less than Qi by multiplying E[Wi] obtained above by E[ 1
Qi−1+Ti

].

E[SDi] =
( λE[U2

i ]+∑N
k=i+1 ΛkE[T 2

k ]
2(1−λE[Ui−1])(1−λE[Ui])

+
Qi−1

(1−λE[Ui−1])
−Qi−1

)
E[(Qi−1 +Ti)−1]. (3.10)

Now that we have derived E[Wi] (i.e. Equation 3.9) and E[SDi] (i.e. Equation 3.10), we can define
the overall expected waiting time of a task for MLTP and the overall expected slowdown of a task for
MLTP. For the sake of brevity, we simply refer to these as the expected waiting time and the expected
slowdown. The expected time waiting can be obtained by multiplying E[Wi] by the probability that a
task’s service time is greater than Qi−1 and less than Qi and then taking the sum of all these terms as
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follows:
E[W ] = E[W1]

∫ Q1

0
f (x)dx+E[W2]

∫ Q2

Q1

f (x)dx+ ....+E[WN ]
∫ QN

QN−1

f (x)dx. (3.11)

Similarly, we obtain the expected slowdown as follows:

E[SD] = E[SD1]
∫ Q1

0
f (x)dx+E[SD2]

∫ Q2

Q1

f (x)dx+ ....+E[SDN ]
∫ QN

QN−1

f (x)dx. (3.12)

The expected waiting time/slowdown for N-MLTP-O is computed by minimising the expected wait-

ing time/slowdown given by above equations under a given α (i.e. task size variability), system load

and N.3 The expected time for N-MLTP-E is computed by substituting q1 = q2 = ... = qN = 107

N under

a given α value, system load and N into above equation. The expected waiting time under FCFS is

obtained using the Pollaczek-Khinchin formula [Kleinrock, 1975].

3.2 The use of MLTP to schedule tasks with Bounded Pareto service time distributions

Bounded Pareto distribution is one of the most commonly used [Harchol-Balter, 2002; Broberg et al.,

2004; 2006; Harchol-Balter et al., 1999; Tari et al., 2005; Fu and Tari, 2003; Crovella et al., 1998a]

heavy-tailed distributions, which is used for developing analytically tractable performance models.

Here we discuss the way to model the performance of MLTP under a Bounded Pareto distribution.

In the case of Bounded Pareto distributions, we let

QN = q1 +q2 + ..+qN = p, (3.13)

where p represents the upper bound of the service time distribution. QN and N represent the sum

of quanta up to level N and the (total) number of levels respectively. Both performance metrics (i.e.

E[W ] and E[SD]) are dependent on qi (0 < i ≤ N), k, p, α , λ and N. In the next section we will

evaluate the expected waiting time and expected slowdown for multi-level time sharing policy under

a range of workloads and task size variabilities.

3.3 Analysis of expected waiting time

The expected waiting time is the most widely used performance metric for evaluating the performance

of scheduling policies. This section investigates the expected waiting time for 2-MLTP-O, 2-MLTP-

E, 3-MLTP-O and 3-MLTP-E under a range of scenarios. Figure 3.3 plots the expected waiting time

for policies and Figure 3.4 plots the factor of improvement in MLTP over FCFS.

3These optimisation problems are solved using Mathamatica [Wolfram Research, 2003].
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Figure 3.3: Expected waiting time for MLTP with two and three queues

Let us first discuss the performance of 2-MLTP-O, 2-MLTP-E and FCFS. We note from Figure

3.3 that 2-MLTP-O outperforms both 2-MLTP-E and FCFS under all the scenarios considered. For

example, under a system load of 0.7, when α = 0.4, 2-MLTP-O outperforms FCFS and 2-MLTP-E

by factors of 3 and 2 respectively. Under the same system load, when α is equal to 1.1, 2-MLTP-O

outperforms FCFS and 2-MLTP-E by factors of 2 and 1.5 respectively. We note that the factor of

improvement is highly significant when both the system load and the task size variability are high

(i.e. low α). On the other hand, if both the system load and task size variability are low (i.e. high α),

then the factor of improvement is not highly significant.

Let us now consider the expected waiting time for 3-MLTP-O, 3-MLTP-E and FCFS. We note that

3-MLTP-O outperforms both 3-MLTP-E and FCFS. As was noted for 2-MLTP-O and 2-MLTP-E, the

factor of improvement is inversely proportional to α and directly proportional to the system load. The

factor of improvement is highly significant under high system loads and high task size variabilities.
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Figure 3.4: Factor of improvement in expected waiting time for MLTP with two and three queues

For example, under a system load of 0.7, when α is equal to 0.4, 3-MLTP-O performs 5 times better

than FCFS and 2 times better than 3-MLTP-E. We note that FCFS has the worst performance for all

the cases since FCFS does nothing to reduce the variance of task sizes in host queues, nor does it

gives preferential treatment to small tasks.

Let us now look at the effect of number of levels on the expected waiting time. We note from

Figures 3.3 and 3.4 that 3-MLTP-O outperforms 2-MLTP-O under all scenarios (i.e. system loads

and task size variabilities). Furthermore, we note that 3-MLTP-E outperforms 2-MLTP-E under all

scenarios. As α increases, the factor of improvement in 3-MLTP-O over 2-MLTP-O decreases. For

example, under a system load of 0.7, when α is equal to 0.4, 3-MLTP-O performs 1.6 times better

than 2-MLTP-O. Under the same system load, when α = 1.1, 3-MLTP-O outperforms 2-MLTP-O by

a factor of 1.4. We note that if the variability of task sizes is high, we can improve the performance

of MLTP by increasing the number of levels. However, when the variability of tasks is very low, an
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increase in the number of levels does not result in significant performance improvements.

Let us now discuss why there is an improvement in the expected waiting time with the number

of levels. Recall that under MLTP, when a task on a particular level is being serviced, a new task that

arrives at the system (into Queue 1) cannot interrupt the (currently processing) task. Therefore, as far

as individual levels are concerned, tasks are serviced in a FCFS manner until the quantum expires.

In this type of a system expected waiting time in a particular queue is proportional to the variance of

task sizes waiting in the queue. As the number of levels increases, variance of task sizes in queues

decreases resulting in an improvement in the overall expected waiting time.

Finally, we note that 3-MLTP-E performs slightly better than 2-MLTP-O under low system loads.

However, as the system load increases 2-MLTP-O begins to outperform 3-MLTP-E. Under a system

load of 0.7, when α is low, we note that 2-MLTP-O performs significantly better than 3-MLTP-E. We

also note that when the system load is high and α is low, the expected waiting time for 5-MLTP-E is

equivalent to the expected waiting time for 2-MLTP-O.

3.3.1 Load in queues

By analysing the load in queues under N-MLTP-O and N-MLTP-E we can justify the performance

improvements in N-MLTP-O over N-MLTP-E. Here we investigate the load in queues (levels) under

a range of scenarios. We compute the load in level i by multiplying the average arrival rate into level

i (given by Equation 3.8) by E[Ti], where E[Ti] is the expected value of ith processing time (given by

Equation 3.5). Let loadi be the load in level i. Then,

loadi = Λi ∗E[Ti]. (3.14)

Note that the sum of loads in levels is equal to the system load,

load = load1 + load2 + ....+ loadN . (3.15)

Let loadi% be the load in level i as a percentage of the system load, i.e. (loadi/system load)*100%.

Figure 3.5 illustrates the behaviour of loadi% with α for 2-MLTP-O and 2-MLTP-E.

The main observations for the case of two levels are as follows.

• Under low and moderate system loads, the shapes of load curve are similar for both N-MLTP-O

and N-MLTP-E. However, the difference between load1% and load2% is higher for 2-MLTP-E

compared to that of 2-MLTP-O for all α values considered.
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Figure 3.5: Load in queues for 2-MLTP-O and 2-MLTP-E with optimal expected waiting time

• There is a significant change in the shape of load queues for 2-MLTP-O as the system load

changes from moderate to high, which is not the case for 2-MLTP-E.

• 2-MLTP-O improves the performance by unbalancing the load among the two levels. For
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example, under a system load of 0.3, when α is equal to 0.4, the ratio between load1% and

load2% is equal to 2, while under the same system load, when α equal to 1.1, the ratio between

load1% and load2% is 16.

• Although 2-MLTP-E does unbalance the load among its levels, 2-MLTP-E does not perform

well because it does not unbalance the load in an optimal manner. For example, under a system

load of 0.3, when α is equal to 0.4, the ratio between load1% and load2% equals 9, while

under the same system load, when α is equal to 1.1, the ratio between load1% and load2% is

84.

Let us now briefly investigate the behaviour of loads under 3-MLTP-O and 3-MLTP-E. Figure 3.6,

illustrates loadi% under 3-MLTP-O and 3-MLTP-E under three different system loads. Clearly, there

are similarities between the behaviour of load between two and three levels. The main observations

for the case of three levels are listed below.

• load1% continuously increases with α for both 3-MLTP-O and 3-MLTP-E.

• load1% and load2% continuously decrease with α for both 3-MLTP-O and 3-MLTP-E.

• For 3-MLTP-E load1% > load2% > load3% under all system loads.

• For 3-MLTP-O load1% > load2% > load3% under low and moderate system loads.

3.4 Analysis of expected slowdown

The slowdown measures the fairness of a scheduling policy under a given scheduling policy. Here

we investigate the expected slowdown for MLTP under a range of workload scenarios. Most of our

observations in this section are similar to what we already saw in the previous section for the expected

waiting time. However, there are a few important differences. The main focus of this section is to

point out these differences. Figure 3.7 plots the expected slowdown for MLTP and the factor of

improvement in expected slowdown over FCFS.

We note that the factor of improvement in the expected slowdown under 2-MLTP-O is higher

than the factor of improvement in expected waiting time under 2-MLTP-O. For example, under a

system load of 0.7, when α = 0.4, the factor of improvement in the expected slowdown is equal to

4.5. Under the same conditions, the factor of improvement in expected waiting time is equal to 3. We

also note from Figure 3.7 that 2-MLTP-O outperforms 3-MLTP-E for all the scenarios considered.
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Figure 3.6: Load in queues for 3-MLTP-O and 3-MLTP-E with optimal expected waiting time

This is different from what we noted in the previous section for expected waiting time, where we saw

3-MLTP-E outperforming 2-MLTP-O under certain cases.

Let us now briefly investigate the load in queues when the quanta are computed to optimise the

expected slowdown. Figure 3.8 shows the behaviour of load. As far as 2-MLTP-O is concerned,
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Figure 3.7: Expected slowdown and factor of improvement in expected slowdown for MLTP with two
and three queues

we see that load1% is very low, when α is low and as α increases, load1% increases, but load2%

decreases. In the case of 3-MLTP-O both load1% and load2% are very small, but increase with
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Figure 3.8: Load in queues for 2-MLTP-O and 3-MLTP-O with optimal expected slowdown

increasing α . In the previous section we saw (for the case of expected waiting time) that when the

system load changes from moderate to high, the behaviour of loads in levels changes significantly. For

the expected slowdown such changes are not observed. We can clearly see that N-MLTP-O improves
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expected slowdown by unbalancing the load. In previous studies [Crovella et al., 1998a] it has been

shown that the unbalancing the loads among the servers often improves the expected slowdown.

3.5 Behaviour of cut-offs under MLTP-O

This section looks at the behaviour of quanta for N-MLTP-O under different workload scenarios. The

aim is to get an idea of which quanta (sizes) are more suitable for which type of workloads.

Note that the quanta for 2-MLTP-O are computed to optimise either the expected waiting time

or the expected slowdown. In this section we show that when the number of levels is equal to 2, the

optimal set of quanta are unique for most of the scenarios (i.e. task size variabilities and system loads)

for both performance metrics. For some system loads, there exist two sets of quanta that may result

in near optimal performance. In such cases a system designer may use either set of quanta. However,

if the system designer is not certain about the exact values of quanta to be used, we recommend that

he/she uses the set of quanta that is least sensitive to the performance. We will discuss this in detail

later in this section.

To simplify the problem, we transform the quantum based multi-level time sharing system into a

cut-off based multi-level time sharing system by partitioning the domain [0, p] of the Bounded Pareto

distribution into a series of cut-off points p1, p2, ..., pN . The relationship between quanta and cut-offs

are such that

p1 = q1,

pi = q1 +q2 + ..+qi,

PN = p,

(3.16)

where N and p denote the number of levels and the upper bound of the service time distribution

respectively.

3.5.1 Effect of cut-offs on the performance of MLTP: N = 2

Here we investigate the effect of cut-offs on the performance when the number of levels is equal to

2. Figures 3.9, 3.10 and 3.11 illustrate the effect of p1 on the expected waiting for the case of two

levels.

Let pi_w_opt be the cut-off i that results in the minimum expected waiting time. The key findings

are as follows.

• Under a fixed system load, an increase in α results in pi_w_opt to decrease. For example, under
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Figure 3.9: Impact of p1 on the expected waiting time of MLTP: system load = 0.3

a system load of 0.3, as α increases from 0.4 to 1.8, pi_w_opt decreases approximately from 2.0

x 106 to 3 x 105.

• Under low and moderate system loads, pi_w_opt is significantly higher than that of high system.

loads.

• The curves have 2 minima for most of the system loads and α values considered. Moreover,

for some system loads and task size variabilities (e.g. system load = 0.5 and α = 0.5), these

two minima are very close to each other. In this case one can use either p1 as each p1 results

in similar performance. However, if the exact value of p1 is not known it is better to use

p1 with the higher value as it is relatively less sensitive to the expected waiting time. This

ensures that there are no significant performance degradations by slightly overestimating or

underestimating the optimal p1.

• Figure 3.12 illustrates the behaviour of p1_w_opt with the system load. We note that there is a

sudden drop in p1_w_opt , which occurs between the system loads of 0.6 and 0.7. This drop in

p1_w_opt justifies our previous observations in Figures 3.9, 3.10 and 3.11.
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Figure 3.10: Impact of p1 on the expected waiting of MLTP: system load = 0.5

Let us now briefly look at the impact of the p1 on the expected slowdown of MLTP. Figures 3.13,

3.14 and 3.15 plot p1 vs expected slowdown.

Let pi_sd_opt be cut-off i corresponding to the minimum expected slowdown. As we noted be-

fore, for the case of expected waiting time, we see that these plots consist of two minima. However,

contrary to our previous observations in relation to the expected waiting time, the optimal p1 corre-

sponding to the least expected slowdown (i.e. pi_sd_opt) always correspond to the minima on the left.

We also note that pi_sd_opt is very small compared to the largest task, p of the service time distribution

for all the scenarios considered.

3.5.2 Effect of cut-offs on the performance of MLTP: N > 2

This section briefly discusses the behaviour of cut-offs when the number of levels is equal to 3.

Figures 3.16 and 3.17 illustrate the effect of p1 and p2 on the expected waiting time and the expected

slowdown under two specific scenarios.

We note that in each plot there is a (global) minimum, which corresponds to the optimal expected

waiting time and the optimal expected slowdown. In fact, there are multiple sets of p1 and p2 that
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Figure 3.11: Impact of p1 on the expected waiting time of MLTP: system load = 0.7

result in near optimal performance. In such cases, Mathematica [Wolfram Research, 2003] does

not always return the global minimum. However, it is possible to obtain the global minimum by

specifying local boundaries of the global solution as a constraint in the Mathematica optimisation

function. These boundaries can be obtained using plots such as 3.16 and 3.17.

3.6 Fraction of tasks completed on levels in 2-MLTP-O

This section looks at the fraction of tasks completed in levels under 2-MLTP-O. The aim is to identify

the unique behaviours in the fraction of task completed in levels under different workload conditions.

Such information is useful when making scheduling decisions for N-MLTP-O.

The fractions of tasks completed in levels are computed using the cumulative distribution function

of the Bounded Pareto distribution denoted by F(x). Let us investigate the fractions of tasks com-

pleted in levels under 2-MLTP-O when p1 is computed to optimise the expected waiting time. Let

f rac_l1_ew and f rac_l2_ew be the fractions of tasks completed in level 1 and level 2 respectively.
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Figure 3.12: Behaviour of optimal p1 for 2-MLTP-O
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Figure 3.13: Impact of p1 on the expected slowdown of MLTP: system load = 0.3

Then,

f rac_l1_ew = F(p1_w_opt),

f rac_l2_ew = 1−F(p1_w_opt),
(3.17)

63 (May 27, 2012)



CHAPTER 3. PERFORMANCE MODELLING AND OPTIMISATION OF A TIME-SHARING SERVER

10 100 1000 104 105 106 107

20 000

40 000

60 000

80 000

100 000

p1

E
@S

D
D

Load = 0.5 , alpha = 0.6

1000 104 105 106 107
500

1000

1500

2000

2500

p1

E
@S

D
D

Load = 0.5, alpha = 0.9

1000 104 105 106 107

50

100

150

200

250

300

p1

E
@S

D
D

Load = 0.5, alpha = 1.2

104 105 106 107
10

20

30

40

50

p1

E
@S

D
D

Load = 0.5, alpha = 1.6

Figure 3.14: Impact of p1 on the expected slowdown of MLTP: system load = 0.5

where p1_w_opt denotes the value of p1 when p1 is computed to optimise the expected waiting time.

Figure 3.18 shows the fractions of tasks completed in level 1 under four different system loads. We

note that more than 95% of tasks are completed in level 1 for all the scenarios considered. Under low

and moderate system loads, the fraction of tasks completed in level 1 is as high as 99.99%. As the

system load increases, the fraction of tasks completed in level 1 decreases by a very small amount

(5%).

Let us now consider the fractions of tasks completed in levels under MLTP when p1 is com-

puted to optimise the expected slowdown. Let f rac_l1_sd and f rac_l2_sd be the fractions of tasks

completed in level 1 and level 2 respectively. Then,

f rac_l1_sd = F(p1_sd_opt),

f rac_l2_sd = 1−F(p1_sd_opt),
(3.18)

where p1_sd_opt denotes the value of p1 when p1 is computed to optimise the expected slowdown.

Figure 3.19 illustrates the fractions of tasks completed in level 1 under four different system loads.

We note that f rac_l1_sd is not as high as f rac_l1_ew. The highest value of f rac_l1_sd is about
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Figure 3.15: Impact of p1 on the expected slowdown of MLTP: system load = 0.7

Load = 0.5, Alpha = 0.9
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Figure 3.16: Effect of p1 and p2 on the expected waiting time of MLTP: system load = 0.5 and α =
0.9
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Figure 3.18: Behaviour of f rac_l1_ew for 2-MLTP-O

80%. In the case of low and moderate system loads, the value of f rac_l1_sd is less than 70%. As

the system load increases, f rac_l1_sd tends to increase. We also note that under a constant system

load, the fractions of task completed in levels do not vary at large, if α lies in the range 0.8 and

1.6. This means in this α range, once p1_sd_opt is computed for a given α value, p1_opt_sd for other α
values can be computed simply by substituting p1_sd_opt , α , p and k values into the inverse cumulative

distribution function of the Bounded Pareto distribution. When designing systems that utilise adaptive
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Figure 3.19: Behaviour of f rac_l1_sd for 2-MLTP-O

(optimal cut-offs are computed online) multi-level time sharing policies, such a method can be very

useful as it allows optimal cut-offs to be computed without having to solve complex optimisation

problems multiple times.

3.7 Degradation in performance

The performance evaluations of scheduling and task assignment policies typically involve deriving a

performance metric (as a function of various scheduling parameters) by applying queueing theoretic

fundamentals and then computing the best parameters by optimising this performance metric. In

general, it is not possible to optimise two different performance metrics at the same time and it is

often the case that optimising one performance metric can lead to degradation in another performance

metric. Unfortunately, existing work does not investigate this problem in detail. In this section we

investigate the degradation in the expected waiting time when cut-offs for 2-MLTP-O are computed

to optimise the expected slowdown and vice versa. Let E[W ]Deg% be the degradation in the expected

waiting time when the cut-offs for 2-MLTP-O are computed to optimise the expected slowdown.

Then,

E[W ]Deg% =
E[W ]p1_sd_opt −E[W ]p1_w_opt

E[W ]p1_w_opt

, (3.19)
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where E[W ]pi_sd_opt denotes the expected waiting time for 2-MLTP-O when the cut-offs are computed

to optimise the expected slowdown. E[W ]pi_w_opt denotes the optimal expected waiting time for 2-

MLTP-O.

Similarly, we define the percentage performance degradation in the expected slowdown, E[SD]Deg%

as follows:

E[SD]Deg% =
E[SD]p1_w_opt −E[SD]p1_sd_opt

E[SD]p1_sd_opt

, (3.20)

where E[SD]p1_w_opt represents the expected slowdown under 2-MLTP-O when the cut-offs are com-

puted to optimise the expected waiting time. E[SD]p1_sd_opt denotes the optimal expected slowdown

for 2-MLTP-O.

Table 3.2 illustrates the degradation in E[W ] and E[SD] under four different system loads. We

Table 3.2: Degradation in E[SD] and E[W] for MLTP with two queues

α system load E[SD]Deg% E[W ]Deg%
0.4 0.3 20% 50%
0.8 0.3 15% 35%
1.2 0.3 18% 30%
1.6 0.3 20% 25%
2.0 0.3 30% 30%
0.4 0.5 38% 50%
0.8 0.5 40% 25%
1.2 0.5 38% 20%
1.6 0.5 40% 10%
2.0 0.5 42% 10%
0.4 0.7 35% 80%
0.8 0.7 30% 50%
1.2 0.7 38% 30%
1.6 0.7 30% 25%
2.0 0.7 40% 20%
0.4 0.9 41% 250%
0.8 0.9 40% 100%
1.2 0.9 50% 60%
1.6 0.9 60% 45%
2.0 0.9 61% 40%

note that under high system loads and high task size variabilities (i.e. low α values), E[W ]Deg% is

very high. For example, under a system load of 0.9, when α equals 0.4, E[W ]Deg% is equal to 250%.

E[W ]Deg% decreases consistently with increasing α .

We note that E[SD]Deg% lies in the range of 10%- 60% for all system loads and task size variabil-
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ities considered. In general, relatively small p1 improves both the expected slowdown and expected

waiting time. However, the use of very small p1 to optimise the expected slowdown can result in

expected waiting time to deteriorate significantly (250%).

3.8 Performance of N-MLTP-E under a large N

Previous sections investigated various properties of MLTP when the number of levels are equal to 2

and 3. We noted that that there is an improvement in both the expected waiting time and expected

slowdown with the (increasing) number of levels. Here we investigate the expected waiting time

and expected slowdown under N-MLTP-E up to one hundred levels. The aim is to study the effect

of number of levels on the performance. Here we show that under a given system load and a task

size variability, the relationship between the performance and the number levels can be accurately

modelled using a power curve. We investigate the behaviour of the two constants of the power curve

under different N for each performance metric and show that these two coefficients are functions of

both α and the system load.

Here we do not consider N-MLTP-O, rather we focus only on N-MLTP-E due to two reasons.

First as the number of levels increases, computing the performance of N-MLTP-O becomes very

difficult, because in order to compute the optimal performance we need to solve highly complex

optimisation problems, which cannot be solved using Mathematica. Second as N increases, the factor

of improvement in N-MLTP-O over N-MLTP-E decreases. This means that if N is large then the

performance of two N-MLTP-O and N-MLTP-E is not significantly different. The cut-offs for N-

MLTP-E are computed as

pi = i∗ (107/N), (3.21)

where pi denotes the ith cut-off and N denotes the number of levels.

3.8.1 Expected waiting time for MLTP-E under a large N

Let us investigate the expected waiting time for N-MLTP-E, where (0 < N ≤ 100]. We compute

the expected waiting time for N-MLTP-E under 32 different α (0.4 ≤ α ≤ 1.95) values and four

different system loads. In doing so, we get 128 different data sets each of which we fit a power curve

regression model and then investigate coefficient of determination. We note that the coefficient of

determination (r2) of (all of) these power curves are very close to 1 (greater than 0.99). This means

that the relationship between the expected waiting time and the number of levels can be described in
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the following manner:

E[W ](α,load) = AwNBw , (3.22)

where N represents the number of levels. Both Aw and Bw are functions of the system load and α .

We note that the above equation can be expressed in y = mx+ c form as follows:

E[W ] = AwNBw ,

log(E[W ]) = log(N)Bw + logAw,

y = mx+ c.

(3.23)

Figure 3.20 plots the expected waiting vs number of levels for some selected α values and system

loads. Note that in these plots x and y axes are in log (base10) scale. The linear relationship between
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Figure 3.20: Effect of number of levels on the expected waiting time of MLTP-E

logN and logE[W ] proves that Equation 3.23 (i.e. power law) is an accurate representation between

70 (May 27, 2012)



CHAPTER 3. PERFORMANCE MODELLING AND OPTIMISATION OF A TIME-SHARING SERVER

the number of levels and the expected waiting time.

Let us now consider a specific example. Let us assume that α is equal to 0.4 and the system load

is equal to 0.3. In this particular case we get

E[W ](0.4,0.3) = 107N−0.883, (3.24)

where N represents the number of levels. We note from Equation 3.24 that as N approaches infinity

E[W ] approaches zero. However, according to the asymptotic result (refer to [Schrage, 1967]), as N

approaches infinity, E[W ] should essentially approach a constant value. If we let this constant value

be k, we find that k is very small when N lies in the range (0,100] and therefore, can be discarded.4

3.8.2 Expected slowdown for MLTP-E under a large N

Similar to the way it was done for the expected waiting time, we compute the expected slowdown for

N-MLTP-E (0 < N ≤ 100) under various scenarios (i.e. α and system loads) for different N. Then

we fit a power curve to each data set and investigate the coefficient of determination. We note that

the coefficient of determination (r2) of these curves are very close to 1. Therefore, the relationship

between the expected slowdown and N can be accurately represented using a power law relationship.

We obtain

E[SD] = AsdNBsd ,

log(E[W ]) = log(N)Bsd + logAsd,

y = mx+ c.

(3.25)

In the equations above, Asd and Bsd are functions of α and the system load. Figure 3.21 plots the

expected slowdown vs N for some selected scenarios. Note that both x and y axes in these plots are in

log scale. The linear relationship between log(E[SD]) and log(N) proves the power law relationship

between E[SD] and N.

3.9 Performance comparison between N-MLTP-E and FB

Foreground-background (FB) policy can be considered as a coarse-grained approximation for N-

MLTP-E when quanta approaches zero and N approaches infinity (refer to Section 2.2.2). Here

4Note that k here is the limiting value of E[W] as N approaches infinity and all quanta approach zero and it is different
from the lower bound, k, of the Bounded Pareto distribution.
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Figure 3.21: Effect of number of levels on the expected slowdown of MLTP-E

we compare the expected waiting time for N-MLTP-E system with the expected waiting for FB

scheduling policy. The aim is to investigate differences in the performance of the two policies.

Let us consider a specific example. Let us for an instance compute the expected waiting time for

FB when α = 0.4 and the system load is equals to 0.3. The expected waiting time for FB is computed

using Equation 2.7 as follows.

E(W ) =
∫ ∞

0
E[W (x)] f (x)dx,

= 4115.54.
(3.26)

Note that expected waiting time for FB does not depend on N (number of levels). Figure 3.22 plots

the ratio between expected waiting time for N-MLTP-E (up to one hundred levels) and the expected
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waiting time for FB. We note that as N increases the ratio approaches 1. We also note that under
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Figure 3.22: Ratio between the expected waiting time of N-MLTP-E and the expected waiting time of
FB

highly variable traffic conditions, the ratio is significantly high, which indicates that the expected

waiting time for FB is significantly less than that of N-MLTP-E (0 < N ≤ 100). Therefore, under

highly variable traffic conditions, N-MLTP-E requires a large number of levels if it is achieve the

same performance levels as FB.

Let us now compare the expected slowdown for N-MLTP-E with the expected slowdown for FB.

Figure 3.23 plots the ratio between the expected slowdown for N-MLTP-E and FB. Note that under

low α values, the ratio is extremely high even if N is large. This indicates that under highly variable

task size distributions, N-MLTP-E requires a large number of queues (>> 100) if it is to have the

same expected slowdown as FB.
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Figure 3.23: The ratio between the expected slowdown of N-MLTP-E and the expected slowdown of
FB

3.10 Conclusion

In this chapter we investigated the performance of MLTP under heavy-tailed workloads using two

performance metrics. While many existing performance evaluations are based on unrealistic assump-

tions, we investigated performance of MLTP under finite levels when the quanta are not infinitely

small. Such a policy is more practical to implement on real computing systems. We showed that N-

MLTP-O can result in significant performance improvements over N-MLTP-E and FCFS, especially

when both the system load and the task size variabilities are high. We also investigated the load in

levels under a range of system loads and task size variabilities and showed that N-MLTP-O uses the

technique of unbalancing load to improve the performance. In addition, we investigated the impact

of number of levels on the performance and showed that as the number of levels increases the per-
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formance improves. We discussed the reasons for such improvements in the performance. We then

investigated the impact of quanta on the performance using a 2 level MLTP system and showed that

optimal set of quanta are unique for both performance metrics for most of the scenarios. For some

workloads, we showed that there exist another set of quanta that would result in near optimal perfor-

mance. Finally, we investigated the performance of N-MLTP-E under a large number of queues. For

both performance metrics, we showed that the relationship between the performance and the number

of levels has a power law relationship and the coefficients of the power curve are functions of both

the variability of tasks and the system load. We compared the performance of N-MLTP-E with the

performance FB and showed that under highly variable traffic conditions, N-MLTP-E requires a large

number of queues (>> 100) if N-MLTP-E is to have the same performance levels as FB.
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Chapter 4

Performance Modelling and
Optimisation in Server Farms

The previous chapter dealt with the ways to optimise the performance in a time sharing server under

heavy-tailed service time distributions. The aim of this chapter is to investigate the ways to design

efficient task assignment policies for assigning tasks in time sharing server farms under heavy-tailed

service time distributions. As discussed in Sections 2.3 and 2.4, size-based task assignment policies

[Tari et al., 2005; Harchol-Balter et al., 1999; Harchol-Balter, 2002; Broberg et al., 2004; 2006; Zhang

and Sun, 2005; Ciardo et al., 2001] perform well under heavy-tailed workload conditions. The basic

idea behind the size-based approach is that each host in the system processes tasks with similar sizes

and these size ranges are computed to optimise a given performance criteria (e.g. expected waiting

time).

The main limitation of existing size-based policies [Broberg et al., 2004; 2006; Harchol-Balter,

2002; Harchol-Balter et al., 1999] is that these have been designed for batch computing farms and

as such, they process tasks using the FCFS scheduling policy. The expected waiting time in a FCFS

queue is proportional to the second moment of the service time distribution.1 Second moment of the

heavy-tailed distributions is extremely high.

Although existing size-based policies [Harchol-Balter, 2002; Harchol-Balter et al., 1999; Broberg

et al., 2004; 2006] attempt to reduce the variance of task sizes in queues by processing the tasks

with similar sizes at the same host, the tasks in server queues can still exhibit high variance in their

processing times, especially when the number of hosts in the system is relatively small. As the

number of hosts increases, the performance of these size-based policies tends to improve (under

1Note that the second moment is closely related to variance.
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certain conditions) because a higher number of hosts can achieve higher reduction in the task size

variance.

The task assignment policies we propose in this chapter are based on multi-level time sharing

policy (MLTP), which we discussed in the previous chapter. The main motivation for using MLTP is

its ability to perform well under distributions with the property of decreasing failure rate [Aalto et al.,

2004; 2007], a key property of modern heavy-tailed service time distributions.2 Moreover, MLTP’s

ability to schedule tasks with unknown service requirements makes it a more attractive policy over

policies such as traditional priority queuing models, which assume known processing requirements.

Finally, many modern computer systems such as web server systems are inherently time sharing

systems making MLTP a more suitable policy for scheduling tasks.

This chapter investigates the performance of three novel task assignment policies, namely, Multi-

level Multi-server Task Assignment Policy (MLMS), Multi-level Multi-server Task Assignment Pol-

icy based on Task Migration (MLMS-M) and Multi-level Multi-server Task Assignment Policy based

on Preemptive Task Migration (MLMS-PM). These policies attempt to improve the performance first

by giving preferential treatment to small jobs and second by reducing the variability of task sizes in

host queues. MLMS reduces the variability of tasks locally, while MLMS-M and MLMS-PM utilise

both local and global variance reduction mechanisms. Both MLMS-M and MLMS-PM facilitate

task migration. The key difference between MLMS-PM and MLMS-M is that MLMS-PM facilitates

preemptive task migration, whereas MLMS-M does not.

This chapter evaluates the performance of task assignment policies using the most commonly

used performance metric, the expected waiting time. Throughout this chapter, it is assumed that the

context switch time is negligible and could be equated to zero. In the cases where there are significant

context switch overheads, the analytical model presented can be modified to cater for such variations.

The analytical performance analysis of MLMS indicates that MLMS outperforms existing size-

based policies under certain conditions. For example, under high system loads and high task size

variabilities MLMS with twenty levels outperforms TAGS by a factor of 5. The analytical per-

formance analysis of MLMS-M and MLMS-PM indicates that these policies perform significantly

better than existing size-based policies. For example, MLMS-M with five levels outperforms TAGS

[Harchol-Balter, 2002] by a factor of 6.75 under highly variable heavy-tailed workloads and high

system loads. Under the same conditions, MLMS-PM with five levels outperforms TAGS-PM by a

factor of 4. The improvement in the performance depends on the variability of traffic, system load,

number of levels and number of hosts. The most significant improvement (in the performance) is

2The decreasing failure rate simply means that the longer a task has been processed the less chance it will fail in future.
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noticed under very high task size variabilities and high system loads. The performance of MLMS-M

improves with the number hosts for certain task size variabilities, while the performance MLMS-PM

improves with the number of hosts for all the cases considered.

The rest of this chapter is organised as follows. Sections 4.1, 4.2 and 4.3 present the details of

MLMS, MLMS-M and MLMS-PM respectively. The chapter is concluded in Section 4.4.

4.1 Multi-level Multi-server Task Assignment Policy (MLMS)

This section presents the details of MLMS, which is based on MLTP that we discussed in the previous

chapter. MLMS is designed for a time sharing server farm that has no task migration facilities. MLMS

attempts to improve the performance by reducing the variability of tasks within hosts (i.e. locally) and

by giving preferential treatment to small tasks. Figure 4.1 depicts the host architecture for MLMS

system. As we note from Figure 4.1, MLMS consists of a central dispatcher (this can be a switch or a

router) and n number of back-end hosts that offer mirrored services. The central dispatcher receives

new tasks and distributes them among back-end hosts with an equal probability. The back-end hosts

process tasks using MLTP, which we discussed in the previous chapter.3

4.1.1 Performance model for MLMS

Here we consider the performance analysis of MLMS. The aim is to derive an expression for the

expected waiting time of a task under MLMS. For MLMS, the expected waiting time of a task at

back-end hosts will be equal because the dispatcher assigns tasks to hosts with an equal probability.

Therefore, the (overall) expected waiting time is simply equal to expected waiting time for MLTP in

a single host. This follows from the assumption that each host has the same number of levels. The

notation given in Table 4.1 is used to describe the MLMS system. Let λd and λ be the average arrival

rate of tasks at the dispatcher and the average arrival rates of tasks into back-end host respectively.

Since the tasks are assigned to hosts with an equal probability, we get

λ =
λd

n
. (4.1)

Let Λi be the arrival rate into the ith queue of any given host. Then

Λi = (1−
∫ Qi−1

0
f (x)dx), (4.2)

3Note that each host under MLMS processes tasks from the full Bounded Pareto distribution (i.e. B(k, p,α)), which is
not the case for other two policies (MLMS-M and MLMS-PM) that we will discuss next in this chapter
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Figure 4.1: MLMS architecture

where f (x) denotes the probability density function of the task size distribution.
The expected waiting time of a task whose size is higher than Qi−1 and less than Qi is given by

E[Wi] =
λE[U2

i ]+∑N
k=i+1 ΛkE[T 2

k ]
2(1−λE[Ui−1])(1−λE[Ui])

+
Qi−1

(1−λE[Ui−1])
−Qi−1, (4.3)

where E[T m
i ] and E[Um

i ] are given by

E[T m
i ] =

1
(1−F(Qi−1))

(
∫ Qi

Qi−1

(x−Qi−1)m f (x)dx+(Qi−Qi−1)m(1−F(Qi))), (4.4)

E[Um
i ] =

∫ Qi

0
xm f (x)dx+Qm

i (1−F(Qi)). (4.5)
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N Number of levels
B(k, p,α) Bounded Pareto (service time) distribution
λd Average outside task arrival rate into system
λ Average arrival rate into a back-end host
Qi ith cut-off point
Ti The length of processing time that a task in ith queue receives
E[Ti] First moment of the distribution of Ti

E[T 2
i ] Second moment of the distribution of Ti

Ui T1 + T2 + ...+ Ti if the job returns to the system at least i− 1 times
T1 +T2 + ...+Tk if the job returns to the system k−1 times, k < i

Gi Probability distribution function of Ui

E[Uk
i ] kth moment of Gi

E[Wi] Expected waiting time of a task in ith queue
E[W ]MLMS Expected waiting time in the system

Table 4.1: Notation for MLMS

The expected waiting time in the system is obtained by multiplying E[Wi] by the probability that

service requirement is within the interval [Qi−1,Qi], i = 1,2, ..,N(Q0 = 0) and then taking the sum of

each product term. Let E[W ]MLMS the expected waiting time for MLMS. We get

E[W ]MLMS =
N

∑
k=1

E[Wk]
∫ Qk

Qk−1

f (x)dx. (4.6)

When the variability of traffic (α), the system load (λE[X ]) and number of levels (N) are fixed,

E[W ]MLMS is a function of Q1,Q2, ...,QN , where k < Q1 < Q2 < ... < QN = p. We compute Qi to

optimise the expected waiting time defined by Equation 4.6.

4.1.2 Performance evaluation of MLMS

This section investigates the performance of MLMS by comparing the expected waiting time for

MLMS with the expected waiting time for the well known TAGS [Harchol-Balter, 2002]. As dis-

cussed in Section 2.4.1, TAGS attempts to improve the performance by minimising the variability of

tasks in host queues globally (i.e. at the host level). On the other hand, MLMS attempts to improve

the performance by minimising the variability of tasks locally (i.e. within hosts). Both policies give

preferential treatment to small tasks. Figure 4.2 illustrates the expected waiting time for MLMS and

TAGS in 2 and 3 Host systems respectively.

Let us first consider the expected waiting time for two policies (i.e. TAGS and MLMS) in a 2

Host system. We note that under a system load of 0.3, TAGS outperforms MLMS with twenty levels
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Figure 4.2: Expected waiting time for MLMS and TAGS in 2 and 3 Host systems
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if α > 1.7. Similarly, under moderate system loads, TAGS outperforms MLMS with twenty levels

if α > 1.5. Under low and moderate system loads, we note that MLMS requires a relatively large

number of levels if it is to outperform TAGS. For example, under a system load of 0.5, when α is

equal to 1.5, MLMS requires twenty levels if it is to have the same expected waiting time as TAGS.

It is worth noting that under a system load of 0.7, MLMS outperforms TAGS in two different α
ranges. For example, for a MLMS system with twenty levels, these two ranges are 0.4 - 0.7 and 1.3 -

2.0. We note that under a system load of 0.7, when α = 0.5, MLMS with twenty levels outperforms

TAGS by a factor of 5, while under the same system load, when α = 1.9, MLMS outperforms TAGS

by a factor of 7.

As far as MLMS is concerned, the number of hosts has no impact on the expected waiting time

under a given set of conditions because an increase/decrease in the number of hosts does not affect

the service time distribution of tasks seen by hosts or the average arrival rates into hosts. On the

other hand, the expected waiting time for TAGS varies with the number of hosts under a fixed system

load and α , because as the number of hosts increase the average arrival rates and the service time

distribution seen by hosts vary.

We note from Figure 4.2 that when α is low, the performance of TAGS is better in a 3 Host system

compared to that of a 2 Host system. On the other hand, when α is high, TAGS performs better in a 2

Host system compared to that of a 3 Host system. This means that under low α values, the factor of

improvement of TAGS over MLMS is higher in a 3 Host system compared to that of 2 Host system.

On the other hand, under (certain) high α values, the factor of improvements of MLMS over TAGS

is higher in a 2 Host system compared to that of 3 Host system.

Finally, we note that an increase in the number levels results in an improvement in the perfor-

mance of MLMS. This is because an increase in the number of levels results in a reduction in the

variance of task sizes at individual queues leading to the expected waiting time of small tasks to de-

crease. This in turn results in an improvement in the overall expected waiting time. Recall that in

heavy-tailed distributions, the probability of a small task occurring is very high, while the probability

of a very large task occurring is very low.

The advantage of MLMS is that hosts do not need to have task migration facilities. Moreover,

MLMS does not kill tasks and restart those from scratch. As such, it does not generate any excess

load on the system and therefore, it scales well.
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4.2 Multi-level Multi-server Task Assignment Policy based on Task Migration (MLMS-M)

This section provides the details of MLMS-M. MLMS-M is designed for a time sharing server farm

that supports non-preemptive migration. MLMS-M improves the performance by minimising the

variability of tasks both locally and globally. In addition, it gives preferential treatment to tasks with

small processing times. Figure 4.3 depicts MLMS-M. The notation given in Table 4.2 is used to

describe MLMS-M.

Figure 4.3: Host architecture for MLMS-M and MLMS-PM

The functionality of MLMS-M is described as follows.

• Each task that arrives at the dispatcher is immediately dispatched to Host 1.
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n Number of hosts in the system
Ni Number of levels at ith Host
f (x) Service time distribution of tasks (i.e. B(k, p,α))
k Lower bound of the task size distribution
p Upper bound of the task size distribution
pi Fraction of tasks whose final destination is Host i
p(i, j) Fraction of tasks whose final destination is Host i’s jth queue
λ Outside task arrival rate into system
ρ System load
α Heavy-tailed parameter
Q(i, j) ith Host’s jth cut-off
T(i, j) ith Host’s jth simple processing time; the length of processing time that a task

in the ith Host’s jth queue receives
E[T(i, j)] First moment of the distribution of T(i, j)
E[T 2

(i, j)] Second moment of the distribution of T(i, j)

U(i, j) T(i,1) + T(i,2) + ... + T(i, j) if the job returns to the system at least j− 1 times
T(i,1) +T(i,2) + ...+T(i,k) if the job returns to the system k−1 times, k < j

G(i, j) Probability distribution function of U(i, j)
E[Uk

(i, j)] kth moment of G(i, j)

E[Wi] Expected waiting time of a task that spend time at Host i
E[W ] Expected waiting time in the system

Table 4.2: Notation for MLMS-M (and MLMS-PM)

• Each task is processed at Host 1 up to Q(1,N1) using MLTP.

• If the service requirement of a task exceeds Q(1,N1), the task is killed and migrated to Host 2.

Otherwise, the task departs the system.

• Host 2 processes the task in a similar manner from scratch and so on.

• This process continues until the task is fully serviced at which point the task departs the system.

4.2.1 Performance model for MLMS-M

Here we derive an expression for the expected waiting time of a task under MLMS-M. The analysis

provided in this section is based on the notation presented in Table 4.2. The objective is to derive an

expression for the expected waiting time of MLMS-M.
Let f (x) and F(x) be the probability density function of task sizes and cumulative distribution

function of f (x) respectively. Let p(i, j) be the probability that the service time of task is between
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Q(i, j−1) and Q(i, j).4 We obtain

p(i, j) =
∫ Q(i, j)

Q(i, j−1)

f (x)dx. (4.7)

Let pi be the fraction of tasks whose final destination is Host i

pi =
∫ Q(i,Ni)

Q(i−1,Ni−1)

f (x)dx. (4.8)

Let E[W(i, j)] be the expected waiting time of a task in ith Host’s jth queue. We obtain

E[W(i, j)] =
λ(i,1)E[U2

(i, j)]+∑Ni
k= j+1 Λ(i,k)E[T 2

(i,k)]

2(1−λ(i,1)E[U(i, j−1)])(1−λ(i,1)E[U(i, j)])
+

Q(i, j−1)

(1−λ(i,1)E[U(i, j−1)])
−Q(i, j−1). (4.9)

In Equation 4.9, E[T(i, j)] represents the expected length of processing time of a task in ith Host’s jth.
The terms λ(i,1) and Λ(i, j) in Equation 4.9 denote the arrival rate into the ith Host’s 1st queue and the
ith Host’s jth queue respectively. We obtain these as follows:

λ(i,1) = λ (1−
∫ Q(i−1,Ni−1)

k
f (x)dx), (4.10)

Λ(i, j) = λ (1−
∫ Q(i, j−1)

k
f (x)dx) j > 1. (4.11)

E[Um
(i, j)] and E[T m

(i, j)] are given by the following equations:

E[Um
(i, j)] =

1
(1−F(Q(i−1,Ni−1)))

(
∫ Q(i, j)

Q(i−1,Ni−1)

xm f (x)dx+Qm
(i, j)(1−F(Q(i, j)))), (4.12)

E[T m
(i, j)] =

1
(1−F(Q(i, j−1)))

(
∫ Q(i, j)

Q(i, j−1)

(x−Q(i, j−1))
m f (x)dx+(Q(i, j)−Q(i, j−1))

m(1−F(Q(i, j)))). (4.13)

When we compute E[Um
(i, j)], we have to condition on the tasks with sizes greater than Q(i−1,Ni−1).

Hence, the appearance of the term 1
(1−F(Q(i−1,Ni−1)))

.

In order to obtain the expected waiting time of a task in the system, we need to first consider the

expected waiting time of a task that spends time at Host i. Let E[Wi] be the waiting time of a task at

Host i. To obtain E[Wi], we multiply expected waiting time of a task in the ith Host’s jth queue (i.e.

E[W(i, j)]) by the probability that the service time of a task is between Q(i, j−1) and Q(i, j) and we then

take the sum of these terms. We have

E[Wi] =
Ni

∑
j=1

E[W(i, j)]
p(i, j)

pi
. (4.14)

We can now write an expression for the expected waiting time of a task in the system (i.e. overall
expected waiting time). Let n be the number of hosts in system and let E[W ]MLMS−M be the expected

4Note that the sizes of tasks processed in Queue i are in the range [Q(i, j−1), Q(i, j)].
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waiting time in the system. E[W ]MLMS−M is given by

E[W ]MLMS−M = E[W1]p1 +(E[W1]+E[W2])p2 + ...+(E[W1]+ ...+E[Wn])pn. (4.15)

When the variability of traffic, system load and number of levels are fixed, E[W ]MLMS−M is a

function of Q(1,1),Q(1,2), ...,Q(n,Nn), where k < Q(1,1) < Q(1,2) < ... < Q(n,Nn) = p. We compute these

cut-offs to optimise the expected waiting time.
Recall that MLMS-M restarts certain tasks from scratch and as a result, it generates some excess

load in the system. Let Li be the load on Host i. Then,

Li = λ(i,1)E[Ui], (4.16)

where E[Ui] is given by

E[Ui] =

∫ Q(i,Ni)

Q(i−1,Ni−1)
x f (x)dx

(1−F(Q(i−1,Ni−1)))
+

(Q(i,Ni))(1−F(Q(i,Ni)))
(1−F(Q(i−1,Ni−1)))

E[Ui], (4.17)

and λ(i,1) denotes the average arrival rate of tasks into the Host i’s Queue 1 (refer to Equation 4.10).
Let Lsum be the sum of individual host loads. Then,

Lsum = λ(1,1)E[U1]+λ(2,1)E[U2]+ ..+λ(n,1)E[Un]. (4.18)

Let Lexcess be the excess load on the system. Then,

Lexcess = Lsum−λE[X ], (4.19)

where λ and E[X ] denote the average arrival rate into the system and the mean of the service time

distribution respectively. λE[X ] can be referred as the desired sum of loads in the system and λE[X ]
n

is called the system load.

4.2.2 Performance analysis of MLMS-M

This section provides the performance analysis of MLMS-M. In section 4.2.2.1 we investigate the

expected waiting time for MLMS-M under low, moderate and high system loads. Sections 4.2.2.2

and 4.2.2.3 investigate the effect of queue arrangement on the expected waiting time and the impact

of hosts on the expected waiting time respectively.

4.2.2.1 Performance evaluation of MLMS-M for the case of 2 hosts

Here we investigate the expected waiting time for MLMS-M in a 2 Host system using Equation

4.15, which we derived in Section 4.2.1. Figure 4.4 shows the expected waiting time for MLMS-
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M. We note that MLMS-M outperforms TAGS for almost all the cases considered. The highest

improvement in the performance is seen under high system loads and very high task sizes variabilities

(i.e. low α values). For example, under a system load of 0.7, when α = 0.5, MLMS-M with two

levels outperforms TAGS by a factor of 2.7. Under the same conditions, MLMS-M with five levels

outperforms TAGS by a factor 6.75.

Figure 4.5 shows the effect of number of levels on the expected waiting time for MLMS-M. We

note that there is an improvement in the expected waiting time with the number of levels. We also

note that the rate at which the performance improves, decreases with the number of levels. Note that

as the number of levels increases, the rate at which the performance improves decreases. For example,

under a system load of 0.7, when α = 0.5, MLMS-M with three levels outperforms MLMS-M with

two levels by a factor of 1.5, while under the same conditions MLMS-M with four levels outperforms

MLMS-M with three levels only by a factor of 1.3.

We note from Figure 4.4 that under a fixed system load the expected waiting time for MLMS-M

does not continuously decrease with increasing α . This is particularly the case under moderate and

high system loads when the number of levels is high. As α increases, the expected waiting time

decreases up to a minimum value and then it begins to increase. Recall that MLMS-M restarts certain

tasks from scratch at (destination) hosts, which results in an additional load (excess load) on the

system. The behaviour of excess load with α is illustrated in Figure 4.6. We note that excess load

decreases up to a minimum value and then it begins to increase. The excess load under MLMS-M

is high under high α , because under high α values, MLMS-M migrates a large number of tasks to

Host 2, to ensure that the load on both hosts are less than 1. This means that large number of tasks

are killed and restarted from scratch under high α values resulting in large amounts of excess. We

find that for a given number of levels and a system load there may exist unique α that produces the

best waiting time. For example, under a system load of 0.7, when the number of levels is equal to 5,

this optimal value of α lies in the range 1 and 1.2. We also see from Figure 4.6 that the number of

levels has no effect on the excess load if the system load is a constant. If we can configure MLMS-M

to support preemptive migration (this type of policies do not restart jobs from scratch rather resume

their execution) the performance will continuously improve with increasing α , provided that the cost

of migration is negligible. This we will consider later in chapter.

4.2.2.2 Effect of queue arrangement for the case of 2 hosts

By analysing the effect of queue arrangement on the expected waiting time, we can determine the

optimal configuration (i.e. optimal number of queues) for (individual) hosts under specific workload
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Figure 4.4: Expected waiting time for MLMS-M and TAGS in a 2 Host system
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Figure 4.5: Effect of levels on the expected waiting time of MLMS-M in a 2 Host system

scenarios. In previous sections we assumed that all hosts in the server farm have equal number of

queues. Here we investigate the effect of number of queues on the expected waiting time when the

total number of queues in the system is equal to four. We note that there are three distinct ways to

have four queues in a 2 Host system:

• A-1: Host 1 has two queues and Host 2 has two queues.

• A-2: Host 1 has one queue and Host 2 has three queues.

• A-3: Host 1 has three queues and Host 2 has one queue.

The expected waiting time for above systems are computed by optimising the corresponding expected

waiting time expressions. Figure 4.7 shows the expected waiting time for A-1, A-2 and A-3. Under

low (0.3) and moderate (0.5) system loads, A-2 outperforms both A-1 and A-3. This means that under

these system loads, reducing the variance of task sizes in host queues at Host 2 is more important than
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Figure 4.6: Excess load under MLMS-M in a 2 Host system

that of Host 1. Note that under high system loads A-2 outperforms other policies only if α is high. If

α is low (and the system load is high), A-3 has the best expected waiting time. Let E[W ]A−1, E[W ]A−2

and E[W ]A−3 be the expected waiting time under A-1, A-2 and A-3 respectively. The following table

provides the summary of results.

ρ = 0.3 E[W ]A−3 > E[W ]A−1 > E[W ]A−2

ρ = 0.5 E[W ]A−3 > E[W ]A−1 > E[W ]A−2

ρ = 0.7, α > 0.9 E[W ]A−3 > E[W ]A−1 > E[W ]A−2

ρ = 0.7, α < 0.9 E[W ]A−2 > E[W ]A−1 > E[W ]A−3

4.2.2.3 Effect of number of hosts

This section investigates the effect of number of hosts on the expected waiting time for MLMS-

M. This analysis is important as it allows us to get an idea of the effect of number of hosts on the

performance of MLMS-M. Here we compare the expected waiting time for MLMS-M in a 2 Host

system with that of a 3 Host system. Figure 4.8 shows these results. We note that as the number

of hosts increases, the expected waiting time for MLMS-M increases under certain α values. For

example, under a system load of 0.5, when α = 0.9, MLMS-M with three levels performs 1.5 times

better in a 3 Host system compared to that of a 2 Host system. If α is greater than a certain value,

an increase in the number of hosts no longer results in an improvement in the expected waiting time.
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Figure 4.7: Effect of queue arrangement on the expected waiting time of MLMS-M in a 2 Host system

For example, under a system load of 0.5, when α > 1.3, MLMS-M with three levels performs better

in a 2 Host system compared to that of a 3 Host system.5 Although a 3 Host system offers higher

reduction in the variance of task sizes, MLMS-M generates higher amounts of excess load under high

α values. This makes the performance of MLMS-M in a 3 Host system to deteriorate if α is greater

than a specific threshold value. There are two ways to address this issue.

• Preemptive migration: Under preemptive migration tasks are not restarted from scratch at their

destination hosts, rather their execution is resumed. This we consider in the next section.

• Devise a new model that minimises the excess load for high α values. This we will consider in

the next chapter.

5We noted in Section 2.4, the performance of advanced task assignment policies (e.g. TAGS) do not improve with the
number of hosts under all conditions.
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Figure 4.8: Impact of hosts on the expected waiting time for MLMS-M

4.3 Multi-level Multi-server Task Assignment Policy based on Preemptive Migration (MLMS-
PM)

MLMS-PM is the last model we consider in this chapter and it is designed for a server farms that sup-

ports preemptive migration. MLMS-PM aims to address the following three main issues associated

with MLMS-M.

• MLMS-M restarts tasks from scratch, which results in a significant amount of wasted process-

ing.

• MLMS-M does not scale well under certain workload scenarios (e.g. high system loads and

high α). This is because wasted processing generated under MLMS-M due to restarting tasks
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from scratch results in the expected waiting time to increase.

• The expected waiting time for MLMS-M deteriorates significantly if the processing time vari-

ability decreases beyond certain a threshold.

MLMS-PM addresses these issues by facilitating preemptive migration (work-conserving migra-

tion) of tasks between hosts. The key features of MLMS-PM are as follows.

• It gives preferential treatment to task with short processing requirements.6

• It utilises a 2-level variance reduction mechanism.7

• It allows preemptive migration (work-conserving migration) of tasks between hosts.8

The host architecture for MLMS-PM is similar to the host architecture of MLMS-M. Note that each

host in MLMS-M has a designated time limit associated with it, where the designated time limit of

Host i is given by Q(i,Ni). The functionality of MLMS-PM can be explained in the following manner.

• Whenever a new task arrives at the dispatcher, it is immediately dispatched to Host 1.

• Host 1 processes the task according to the multi-level time sharing policy (MLTP) described in

Chapter 3.

• If the service requirement of the task exceeds the designated time limit assigned to Host 1, i.e.

Q(1,N1), the task is migrated to the next host. Otherwise, the task departs the system from Host

1.

• Host 2 resumes the execution of the task and processes it in a similar manner using the MLTP

and so on.

• This process continues until the task is fully serviced, at which point the task departs the sys-

tem.

In this chapter we focus on negligible cost preemptive migration, where the tasks possess minimal

state information. It is possible for certain types of tasks to incur significant amounts of migration

cost on the system. Two types of cost-based migration scenarios can be defined: fixed cost migration

and proportional cost migration. Under fix cost migration, a fix migration cost incurs when a task is

6This is property of both MLMS and MLMS-M.
7This is property of MLMS-M.
8MLMS and MLMS-M do not have this property.
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migrated from one host to another, whereas under the proportional cost migration, the migration cost

is proportional to the processing requirement of the task being migrated. We will consider these two

migration criteria in the next chapter.

As was assumed for MLMS and MLMS-M, we assume that the arrival process into the system is

Poisson. This is a reasonable assumption for many types of computer workloads [Cao et al., 2001].

Moreover, for modelling purposes, we assume that the arrival process from Host i to Host i+1 is also

Poisson. Note that much previous work is based on this assumption [Harchol-Balter, 2002; Broberg

et al., 2004; 2006].

4.3.1 Performance model for MLMS-PM

This section provides the performance model for MLMS-PM. This model is somewhat similar to the

performance model for MLMS-M. However, there are some important differences due to the fact that

MLMS-PM is based on preemptive migration. We use the notation given in Table 4.2 to describe

MLMS-PM. Our aim is to derive an expression for the expected waiting time in the system. In order

to derive an expression for the expected waiting time we need to first derive an expression for E[Wi],

the expected time of a task that spends time at Host i. E[Wi] is computed by multiplying the expected

waiting time of a task in ith Host’s jth queue (i.e. E[W(i, j)]) by the probability that the service time of

a task is between Q(i, j−1) and Q(i, j). (i.e. the fraction of tasks whose final destination is Host i’s jth

queue.)
Let p(i, j) be the fraction of tasks whose final destination is Host i’s jth queue. We obtain

p(i, j) =
∫ Q(i, j)

Q(i, j−1)

f (x)dx. (4.20)

Let pi be the fraction of tasks whose final destination is Host i. We obtain

pi =
∫ Q(i,Ni)

Q(i−1,Ni−1)

f (x)dx. (4.21)

Let E[W(i, j)] be the expected waiting time of a task in ith Host’s jth queue. We obtain

E[W(i, j)] =
λ(i,1)E[U2

(i, j)]+∑Ni
k= j+1 Λ(i,k)E[T 2

(i,k)]

2(1−λ(i,1)E[U(i, j−1)])(1−λ(i,1)E[U(i, j)])
+

Q(i, j−1)

(1−λ(i,1)E[U(i, j−1)])
−Qi, j−1. (4.22)

Let us now discuss how to compute each term in Equation 4.22. Note that Q(i, j−1) and E[T(i, j)] denote

the total processing time up to ith host’s j−1 level and the expected processing time of a task at ith

host’s jth level.

E[T m
(i, j)] given by
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E[T m
(i, j)] =

1
(1−F(Q(i, j−1)))

(
∫ Q(i, j)

Q(i, j−1)

(x−Q(i, j−1))
m f (x)dx+(Q(i, j)−Q(i, j−1))

m(1−F(Q(i, j)))). (4.23)

E[Um
i ] is given by

E[Um
(i, j)] =

1
(1−F(Q(i−1,Ni−1)))

(
∫ Q(i, j)

Q(i−1,Ni−1)

(x−Q(i−1,Ni−1))
m f (x)dx+(Q(i, j)−Q(i−1,Ni−1))

m(1−F(Q(i, j)))). (4.24)

E[Um
i ] conditions on the distribution of task’s remaining size by considering the work already

done, i.e. Q(i−1,Ni−1).
λ(i,1) and Λ(i, j) (in Equation 4.22) denote the arrival rate into ith Host’s 1st queue and ith Host’s

jth queue respectively. We obtain these as follows:

λ(i,1) = λ (1−
∫ Q(i−1,Ni−1)

k
f (x)dx), (4.25)

Λ(i, j) = λ (1−
∫ Q(i, j−1)

k
f (x)dx), j > 1. (4.26)

Let E[Wi] be the waiting time of a task at Host i. We have

E[Wi] =
Ni

∑
j=1

E[W(i, j)]
p(i, j)

pi
. (4.27)

We can now write an expression for the expected waiting time of a task in the system (i.e. the

overall expected waiting time). Let n be the number of hosts in system and let E[W ] be the expected

waiting time. E[W ] is given by

E[W ] = E[W1]p1 +(E[W1]+E[W2])p2 + ...+(E[W1]+ ...+E[Wn])pn. (4.28)

In the above equation, we have conditioned on the final destination of tasks. When the variability

of processing requirements, the system load and the number of levels are fixed, E[W ] (Equation 4.28)

is a function of Q(1,1),Q(1,2), ...,Q(n,Nn), where k < Q(1,1) < Q(1,2) < ... < Q(n,Nn) = p. We compute

these cut-offs so as to optimise the expected waiting time.

4.3.2 Performance evaluation of MLMS-PM

This section provides a detailed performance analysis of MLMS-PM under a range of task size vari-

abilities and system loads. Section 4.3.2.1 provides the analytical performance analysis of MLMS-

PM for the case of two hosts. In Section 4.3.2.2 we investigate the effect of levels on the performance

of MLMS-PM. Section 4.3.2.3 compares the performance of MLMS with MLMS-PM. Performance

of MLMS-PM for the case of more than 3 hosts is investigated in Section 4.3.2.4. Finally, in Section
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4.3.2.5 we investigate the effect of queue arrangement on the performance.

4.3.2.1 Performance evaluation of MLMS-PM for the case of 2 hosts

This section evaluates the performance of the proposed policy against the performance of four other

core task assignment policies, namely, TAGS, TAGS-PM, PS and MLMS. More details about TAGS,

TAGS-PM and PS can be found in Chapter 2. It is worth noting that we do not compare the per-

formance of MLMS-PM with the performance of Foreground-Background policy (FB) [Nuyens and

Wierman, 2008].9 Figure 4.9 depicts the results under the system loads of 0.3 (low), 0.5 (moderate)

and 0.7 (high). In Figure 4.9 we have excluded MLMS policy and we will consider this later in this

chapter. It is worth noting that all the expected waiting time plots are presented on a log scale for the

y-axis. As expected, the expected waiting time of all policies degrade as the system load increases.

We note that under a fixed system load, the expected waiting time for policies tend to improve with

increasing α . However, there is one exception to this, i.e. TAGS. The behaviour of TAGS is previ-

ously discussed in Section 2.4.1. We note that the expected waiting time for PS does not depend on

α and it is only a function of the average arrival rate and system load. We also note that under low

system loads (0.3), TAGS outperforms PS under a range of α values. However, under moderate and

high system loads, TAGS does not outperform the PS. TAGS-PM, on the other hand, outperforms

PS under a range of α values. We note that the expected waiting time curve for PS intersects the

expected waiting time curve for TAGS-PM when α is in the range 1 and 1.5. As the system load

increases, there is a slight movement of this intersection point to the right direction.

Let us now consider the expected waiting time of a task under MLMS-PM. First note that it does

not suffer from the problem that TAGS suffered, i.e. its performance does not degrade after certain α .

Second we note that MLMS-PM outperforms PS under a wide range α values. For example, under a

system load of 0.5, when α equals 1.1, MLMS-PM with five levels outperforms PS by a factor of 2,

while under the same system load, when α equals 2.5, MLMS-PM with five levels outperforms PS by

a factor of 12. On the other hand, PS outperforms MLMS-PM if α is very small. Third we note that

MLMS-PM outperforms TAGS-PM for all the scenarios considered. The highest improvement in the

performance is obtained under high system loads and low α values. For example, under a system

9As was pointed out in Section 2.2.2, FB gives priority to the task that has so far received the least amount of service.
If there are n such tasks, then they are serviced simultaneously. Under a FB system, whenever a new task arrives at the
system, the task currently being serviced is preempted from service and the new task is processed as much as the service
of the task/tasks that was/were preempted. FB has two issues. First it is inefficient because each time a new task arrives,
the task currently being processed has to be preempted. Under high arrival rates this process can be very inefficient and
costly. Second FB is rather difficult implement in a typical time sharing system. Time sharing systems are quantum-based
systems that process tasks up to a fixed amount of time (called the quantum).
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Figure 4.9: Expected waiting time for MLMS-PM and TAGS in a 2 Host system
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load of 0.7, when α equals 0.5, MLMS-PM with five levels outperforms TAGS-PM by a factor of 4.

Under low α values, MLMS-PM performs significantly better than TAGS-PM even under low system

loads. For example, under a system load of 0.3, when α equals 0.5, MLMS-PM outperforms TAGS-

PM by a factor of 2.3. The factor of improvement in the expected waiting time for the MLMS-PM

over TAGS-PM is minimal if α is close to 2.5.

4.3.2.2 Effect of the number of levels on the performance of MLMS-PM

In the case of MLMS and MLMS-M an increase in the number of levels results in the expected

waiting time to decrease. This section investigates the effect of the number of levels on the expected

waiting time for MLMS-PM. The aim is to investigate under which workload conditions we can

get significant performance improvements by increasing the number of levels. Figure 4.10 depicts

the effect of the number of levels on the expected waiting time. We note that the performance of

MLMS-PM improves with the number of levels. For example, under a system load of 0.5, when α
is equal to 0.5, MLMS-PM with five levels outperforms MLMS-PM with two levels by a factor of

1.5. As we increase the number of levels, the task size variability decreases in host queues. This

results in an improvement in the expected waiting time for tasks with relatively small processing

requirements leading to the improvement in the overall performance. However, the improvement in

the performance is only significant between lower number of levels.

4.3.2.3 Performance comparison of MLMS with MLMS-PM

This section compares the expected waiting time for MLMS with that of MLMS-PM. Recall that both

MLMS and MLMS-PM process tasks according to MLTP at individual hosts. However, MLMS-PM

supports preemptive task migration between hosts, whereas MLMS does not. Figure 4.11 illustrates

the expected waiting time for MLMS (up to ten levels) and MLMS-PM (up to five levels).

We note that MLMS-PM performs significantly better than MLMS under all the system loads

considered. Even with a large number of levels, MLMS does not outperform MLMS-PM. For exam-

ple, under a system load of 0.5, when α = 0.5, MLMS-PM with two levels outperforms MLMS with

ten levels by a factor of 24. Under the same conditions, MLMS-PM with four levels outperforms

MLMS with ten levels by a factor of 42. Clearly, the 2-level variance reduction (global and local)

model has resulted in significant performance improvements.
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Figure 4.10: Effect of number of levels on the expected waiting time for MLMS-PM in a 2 Host system

4.3.2.4 Expected waiting time for MLMS-PM for the case of more than 2 hosts

This section investigates the expected waiting time for MLMS-PM when the number of servers in

the server farm is greater than 2. The objective is to investigate under which workload conditions

MLMS-PM are more suitable for assigning tasks in large-sized server farms.

Let us first compare the expected waiting time for MLMS-PM in a 2 Host system with that of

a 3 Host system. Figure 4.12 plots the expected waiting time for MLMS-PM with five levels in 2

and 3 Host systems. We note that under a fixed system load, MLMS-PM performs better in a 3 Host

system compared to that of a 2 Host system under all the scenarios considered. The reason for this is

as follows. As the number of hosts increases from 2 to 3, both E[W1] (expected waiting time of a task

that spends time at Host 1) and E[W2] (expected waiting time of a task that spends time at Host 2) tend

to decrease because the variability of processing times decreases at Host 1 and Host 2. This means

that tasks with relatively short processing times are processed faster in a 3 Host system compared to
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Figure 4.11: Expected waiting time for MLMS and MLMS-PM in a 2 Host system

100 (May 27, 2012)



CHAPTER 4. PERFORMANCE MODELLING AND OPTIMISATION IN SERVER FARMS

 1000

 10000

 100000

 0.3  0.5  0.7  0.9  1.1  1.3  1.5  1.7  1.9

E
[W

]

Alpha

TAGS-PM, No hosts = 2
TAGS-PM, No hosts = 3

PS, No hosts = 2/3
MLMS-PM, No hosts = 2
MLMS-PM, No hosts = 3

(a) System load = 0.3

 1000

 10000

 100000

 1e+006

 0.3  0.5  0.7  0.9  1.1  1.3  1.5  1.7  1.9

E
[W

]

Alpha

TAGS-PM, No hosts = 2
TAGS-PM, No hosts = 3

PS, No hosts = 2/3
MLMS-PM, No hosts = 2
MLMS-PM, No hosts = 3

(b) System load = 0.5

 1000

 10000

 100000

 1e+006

 1e+007

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

E
[W

]

Alpha

TAGS-PM, No hosts = 2
TAGS-PM, No hosts = 3

PS, No hosts = 2/3
MLMS-PM, No hosts = 2
MLMS-PM, No hosts = 3

(c) System load = 0.7

Figure 4.12: Expected waiting time for MLMS-PM (with five levels), TAGS-PM and PS in 2 and 3
Host systems

that of a 2 Host system. Therefore, in a 3 Host system there is an improvement in the waiting time

of short tasks (compared to that of a 2 Host system), which in turn results in an improvement in the

overall expected waiting time. The highest improvement in the expected waiting time is seen under

low α values and high system loads. For example, under a system load of 0.7, when α equals 0.5,

MLMS-PM performs 2.5 times better in a 3 Host system compared to that of a 2 Host system. Under

low and moderate system loads, there is still a significant improvement in the performance if α is not

very high.

In section 4.3.2.1 we noted that in a 2 Host system, PS outperforms MLMS-PM under a system

loads of 0.5 and 0.7, when α is very low. In the case of a 3 Host system, MLMS-PM outperforms

PS even under very low α values. For example, under a system load of 0.5, when α equals 0.5,

MLMS-PM with five levels outperforms PS by a factor of 1.3. The magnitude of this performance
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improvement grows as α approaches 2.5.

Let us now briefly investigate the performance of MLMS-PM when the number of hosts in the

system is greater than 3. Figure 4.13 illustrates the performance of MLMS-PM under a system load of

0.5 in 2, 3 and 4 Host systems. Clearly, an increase in the number of hosts results in an improvement
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Figure 4.13: Effect of number of hosts on the expected waiting time for MLMS-PM: system load =
0.5

in the expected waiting time. The highest improvement in the performance is seen under low α
values. We note that as α increases, the improvement in the expected waiting time decreases. We

also note that the rate at which expected waiting time improves, decreases with the number of hosts.

For example, under a system load of 0.5, when α equals 0.5, MLMS-PM with five levels performs

2.5 times better in a 3 Host system compared to that of a 2 Host system. Under the same conditions,

MLMS-PM with five levels performs only 1.5 times better in a 4 Host system compared to that of a

3 Host system.

4.3.2.5 Effect of queue arrangement

Similar to the analysis provided in Section 4.2.2.2 for MLMS-M, this section investigates the effect

of queue arrangement on the expected waiting time for MLMS-PM. The objective is to determine the

optimal number of queues for individual hosts under different workload scenarios.

Let us assume that the number of queues is equal to 4. As pointed out, there are three distinct

ways to place four queues in a 2 Host system. Let these be A-1, A-2 and A-3, where A-1 consists of

two queues on each host, A-2 consists of one queue on Host 1 and three queues on Host 2 and A-3

has three queues on Host 1 and one queue on Host 2. The expected waiting time for each of these
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models are computed by optimising the corresponding performance metrics. Figure 4.14 illustrates

the expected waiting time for three models. We see that A-2 outperforms the other two models under
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Figure 4.14: Effect of queue arrangement on the expected waiting time for MLMS-PM in a 2 Host
system

high task size variabilities (α < 1.1). For example, under a system load of 0.7, when α is low, A-2

outperforms A-1 and A-3 by 28% and 250% respectively. Under low task size variabilities (α < 1.1),

A-1 and A-3 tend to perform (slightly) better than A-2.

4.4 Conclusion

This chapter proposed three novel task assignment policies all of which are based on MLTP. MLTP

was used as the underlying scheduling policy due to two reasons. First it has the ability improve the

performance under distributions with the property of decreasing failure rate. Second it can schedule

tasks with unknown processing requirements. The analysis provided in this chapter was based on
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heavy-tailed service time distributions because heavy-tailed distributions have been proven to repre-

sent many realistic computer workloads. We investigated three models, namely, MLMS, MLMS-M

and MLMS-PM. MLMS is the simplest model, which assigns tasks to hosts with an equal probabil-

ity. While MLMS does not facilitate task migration, both MLMS-M and MLMS-PM supports task

migration between hosts. The key difference between MLMS-M and MLMS-PM is that MLMS-PM

supports preemptive migration, whereas MLMS-M only supports non-preemptive migration.

The analytical performance analysis of policies indicates that MLMS outperforms TAGS under

certain scenarios, while MLMS-M outperforms TAGS for all the scenarios considered. Similarly,

MLMS-PM outperforms TAGS-PM for all the scenarios considered. The most significant perfor-

mance improvement is seen under high task size variabilities and high system loads. The factor of

improvement is dependent on the variability of traffic, system load, number of levels and the num-

ber of hosts. When all other factors are constant, an increase in the number of levels results in an

improvement in the performance (for all policies considered). However, the rate of improvement de-

creases with the number of levels. In the case of MLMS-M, an increase in the number of hosts does

not always improve the performance. However, for MLMS-PM the performance always improves

with the number of hosts.
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Chapter 5

Task Assignment in Multiple Server
Farms using Preemptive Migration and
Flow Control

The task assignment policies proposed in the previous chapter were designed for stand-alone server

farms. This chapter investigates the way to design efficient task assignment policies to assign tasks in

multiple server farms. Existing task assignment policies [Harchol-Balter, 2002; Broberg et al., 2004;

2006; Ciardo et al., 2001; Harchol-Balter et al., 1999; Tari et al., 2005; Fu and Tari, 2003] are not very

efficient in assigning tasks in multiple server farms because they have not been designed to exploit

the properties of such environments. With the availability of high speed networks (e.g. a fibre optics

network can provide maximum data transfer rates of more than 100 Gbps) and operating systems

that have features such as preemptive migration, there exists a window of opportunity to design more

efficient task assignment policies for assigning tasks in multiple server farms. Such policies can better

utilise the resources in multiple server farm environments and therefore, can perform better compared

to those that optimise the performance in stand-alone server farms. The previous chapter dealt with

task assignment in time sharing server farms. This chapter concentrates on batch computing server

farms. The main reason for considering batch server farms is that advanced task assignment policies,

which exploit the properties of multiple server farm environments can be more beneficial for batch

server farms compared to that of time sharing server farms. This chapter has made two contributions.

1. We propose an efficient task assignment policy for a stand-alone batch server farm. This policy

is called Multi-tier Task Assignment with Minimum Excess Load (MTTMEL) and it addresses

the core limitations of existing traditional task assignment policies (e.g. poor performance
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under high task size variabilities) and the main limitations of well known TAGS (e.g. poor

performance under low and moderate task size variabilities, poor performance under high sys-

tem loads and poor performance in large-sized server farms). MTTMEL is based on a flexible

multi-tier host architecture, where the hosts in tiers only process tasks whose sizes are within

a certain size range. By grouping and processing tasks in such a manner, MTTMEL reduces

the variance of tasks in hosts queues, which leads to significant performance improvements.1

This multi-tier host architecture of MTTMEL offers a high degree of flexibility in terms of how

many tiers and hosts to be used in server farms. These parameters can be computed to optimise

the performance under a given scenario. Furthermore, this multi-tier host architecture speeds

up the flow of small tasks by processing these small tasks in a relatively large set of hosts. This

minimises the expected waiting time of small tasks, which leads to an overall improvement in

the performance.2

2. The main (second) contribution of this chapter is a novel task assignment policy for assigning

tasks in multiple server farms. We propose Multi-cluster Task Assignment based on Preemp-

tive Migration (MCTPM). MCTPM is based on the same multi-tier host architecture, which

we discussed earlier in (1). MCTPM controls the traffic flow into server farms via a global

dispatching device so as to optimise the performance. MCTPM supports preemptive task mi-

gration between servers in the same farm and between servers in different farms. We provide

an analytical model for the proposed policy taking into account the cost of migration. We then

carry out an extensive analytical and experimental performance analysis of the proposed policy

under a wide range of workload conditions. Detailed description of how the policy works can

be found in Section 5.2. The core features of MCTPM are as follows.

• Multi-tier host architecture: This host architecture is identical to the host architecture of

MTTMEL.

• Flow control: MCTPM controls the traffic flow into server farms using a global dispatch-

ing device, where the incoming tasks first arrive. The aim of this flow control model is

twofold: 1) it ensures that no server farm gets overloaded under very high arrival rates

and 2) it ensures that the correct fractions of tasks are assigned to server farms so as to

optimise the performance. These fractions are computed based on the properties of in-

coming traffic (i.e. average arrival rate and service time distribution) and the properties

1The expected waiting time/expected slowdown of a task in a first-come-first-served (FCFS) queue is proportional to
the variance of the service time distribution [Kleinrock, 1975].

2The probability of small task occurring is very high under heavy-tailed distributions.
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of server farms (i.e. number of tiers and number hosts in tiers). By having such control

over the traffic flow, MCTPM manages to achieve significant performance improvements

over existing policies under a wide range of workload scenarios. To support flow control,

MCTPM is featured with several task dispatching devices. These dispatching devices

control the traffic flow into server farms and tiers.

• Preemptive migration: Preemptive migration ensures that MCTPM can resume the exe-

cution of a task that was previously suspended at a different host. Although preemptive

migration can be expensive, we show that the proposed policy performs well even under

very high migration costs. It is worth pointing out that in the previous chapter, we have

already considered preemptive migration. The main difference between the work pre-

sented in this chapter and the previous chapter is that in the previous chapter we assumed

that migration cost is negligible, whereas in this chapter we assume that migration cost is

not zero (this is typically the case for tasks processed in batch computing environments).

Both MTTMEL and MCTPM are especially designed for tasks that exhibit high variability in

their service times because there is extensive evidence indicating that service time distributions of

tasks in computing environments are best represented by heavy-tailed distributions (refer to Section

2.1.2 for more information about workload properties).

Performance analysis of MTTMEL shows that it outperforms existing policies under a wide range

of workload conditions. For example, it outperforms Random by a factor of 23 and TAGS by a factor

of 2.6 under certain scenarios. Performance analysis of MCTPM shows that it outperforms both

traditional and recent models significantly under a wide range of workload conditions. For example,

it outperforms existing models such as MC-Random, MC-TAGSPM and MC-MTTPM by factors of

190, 5 and 10.5 respectively under specific conditions. These scenarios will be discussed later in this

thesis.

The rest of this chapter is structured as follows. Section 5.1 presents MTTMEL and its perfor-

mance analysis. Section 5.2 presents the main contribution of this chapter, i.e. MCTPM and its

performance analysis. The chapter is concluded in Section 5.3.

5.1 Multi-tier Task Assignment with Minimum Excess Load (MTTMEL)

This section presents a novel task assignment policy called MTTMEL, for a (batch) server farm that

consists of a central dispatcher and a set of homogeneous back-end hosts that offer mirrored services.

MCTPM, which is presented in Section 5.2, is based on this task assignment policy. MTTMEL has
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been designed to address the following two main issues associated with the well known TAGS.

• TAGS performance degrades significantly under low and moderate task size variabilities be-

cause it generates large amounts of excess load under these conditions.

• TAGS does not scale well, particularly under high system loads because it generates large

amounts of excess load under high system loads.

To address the above two problems, MTTMEL is featured with a multi-tier host architecture.

This novel host architecture minimises excess load on the system by minimising the number times

tasks that are killed and restarted from scratch. As such, MTTMEL performs significantly better than

TAGS, particularly under low and moderate task size variabilities. In addition, it scales well under

all system loads (i.e. low, moderate and high system loads).

5.1.1 Overview of MTTMEL

This section provides an overview of MTTMEL. The host architectures for MTTMEL for the case

of three and five hosts are illustrated in Figures 5.1 and 5.2 respectively. We note that MTTMEL

Figure 5.1: MTTMEL system with three hosts

consists of multiple host tiers, where each tier has a task size range associated with it. In each tier,
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Figure 5.2: MTTMEL system with five hosts

tasks are processed up to the upper limit of the task size range. Let [si−1,si] be the task size range

assigned to Tier i. Then, hosts in Tier i process tasks only up to si.

The basic functionality of MTTMEL is as follows. Each task arriving at the central dispatcher

is assigned to a host in Tier 1 with an equal probability. The task is processed up to the upper limit

of Tier 1’s task size range (i.e. s1) in a FCFS manner. If the service time of the task is greater than

the upper limit of Tier 1, the task is killed and redirected to a host in Tier 2 via an intermediate

dispatching device with an equal probability.3 Otherwise the task departs system. If the task arrives

at Tier 2, it is restarted from scratch at a Tier 2 host and processed in a similar manner and so on.4

This process continues until the task is fully serviced at which point the task departs the system. The

time limits for tiers are computed to optimise the expected waiting time. The number of hosts in

Tier 1 is greater than the number of hosts in Tier 2 and the number of hosts in Tier 2 is greater than

the number of hosts in Tier 3 and so on. The aim is to process tasks with relatively short processing

requirements faster by assigning these tasks to many hosts. Another possible host arrangement for a

5 Host system is four hosts in Tier 1 and one host in Tier 2. The number of tiers that would result in

the best performance will depend on the factors such as variability of traffic and arrival rate into the

system.

3Note that the average arrival rates into hosts in a particular tier are the same as the tasks are dispatched to tiers with
an equal probability.

4Note that similar to TAGS, MTTMEL is based on non-preemptive migration.
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5.1.2 Performance model for MTTMEL

The performance model for MTTMEL is presented in this section. The main objective is to derive

an expression for the expected waiting time. This will be used later to evaluate the performance of

MTTMEL.

Let [si−1,si] be the task size range assigned to Tier i and pi be the probability that the service time

of a task is between si−1 and si. pi is given by

pi =
∫ si

si−1

f (x)dx, (5.1)

where f (x) is the service time distribution of tasks.

Let E[Wi f ] be the expected waiting time of a task whose final destination is a host in Tier i. E[Wi f ]

is given by

E[Wi f ] =
i

∑
j=1

E[Wjv], (5.2)

where E[Wjv] denotes the expected waiting time of a task that visits a host in Tier j. E[Wjv] is obtained

using the Pollaczek-Khinchin formula [Kleinrock, 1975]

E[Wjv] =
λ jE[X2

jv]
2(1−λ jE[X jv])

, (5.3)

where E[X jv] and E[X2
jv] denote the 1st and 2nd moments of the processing time distribution of tasks

that visit a host in Tier j. λ j denotes the arrival rate into a Tier j host and T denotes the number of

tiers in the system. Later in this chapter, we will discuss how to compute λ j for distributed systems

with different number of hosts. E[X l
jv] can be obtained using the following formula.

E[X l
jv] =

p j

∑T
k= j pk

E[X l
j ]+

∑T
k= j+1 pk

∑T
k= j pk

sl
j, (5.4)

where E[X l
j ] denotes the lth moment of the distribution of tasks whose final destination is a host in

Tier j. E[X l
j ] is given by

E[X l
j ] =

∫ s j

s j−1

1
p j

xl f (x)dx. (5.5)

Finally, the expected waiting time in the system is computed as
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E[W ] =
T

∑
i=1

E[Wi f ]pi. (5.6)

Note that the expected waiting time of a task is the same for all hosts in a given tier since all hosts

in the tier receive tasks from the same distribution and with the same arrival rate. E[W ] is a function

of α , s1,s2, ..,sn−1 and λi. For a given set of α and λi, we compute s1,s2, ..,sn−1 so as to optimise the

expected waiting time.

Note that for a MTTMEL system consisting of n number of hosts, the arrival rate at the dispatcher

is given by

λ =
ρ ∗n
E[X ]

, (5.7)

where ρ is the system load and E[X ] is the expected task size.

5.1.3 Performance evaluation of MTTMEL

The analytical performance analysis of MTTMEL in 3 and 6 Host systems is presented in this section.

The expected waiting time for MTTMEL is compared against the expected waiting time of two well

known policies namely, Random [Silberschatz et al., 1998] and TAGS [Harchol-Balter, 2002].

Let us first consider expected waiting time for MTTMEL in a 3 Host system with two tiers. For a

3 Host system (illustrated in Figure 5.1), λ1 (the average arrival rate into Tier 1) and λ2 (the average

arrival rate into Tier 2) are computed as follows:

λ1 =
λ
2

,

λ2 = λ p2,
(5.8)

where λ denotes the average arrival rate into the system (given by Equation 5.7) and pi is given by

Equation 5.1. Figure 5.3 illustrates the expected waiting time for MTTMEL in a 3 Host system.

We note that MTTMEL outperforms Random under a wide range of α values and the factor of

improvement is highly significant when α lies in the range 0.7-1.5. For example, under a system

load of 0.5, when α equals 1.1, MTTMEL outperforms Random by a factor of 23. In addition, we

note that MTTMEL outperforms TAGS under a range of α . For example, under a system load of 0.7,

when α equals 1.3, MTTMEL outperforms TAGS by a factor of 2.6. Note that under high system

loads (i.e. 0.7), TAGS fails to operate in steady state, if α is greater than 1.3. This means that we

cannot find cut-offs for hosts (task size ranges) such that load on each host is less than 1. MTTMEL,

however, does not suffer from this problem and it can function in steady state throughout the entire
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Figure 5.3: Expected waiting time for MTTMEL in a 3 Host system

range of α values considered. We also note that under a system load of 0.5, TAGS’s performance

deteriorates considerably if α exceeds a certain value. This means that in a 3 Host system, TAGS can

only perform well if α is low. Finally, note that as α approaches 0.5, TAGS begins to outperform

MTTMEL. However, the factor of improvement is not highly significant.

Let us now consider the performance of MTTMEL in a 6 Host system with three tiers, where Tier

1 has three hosts, Tier 2 has two hosts and Tier 3 has one host. The average arrival rates into Tiers,

λ1, λ2 and λ3 are given by

λ1 =
λ
3

,

λ2 =
λ
2

(p2 + p3),

λ3 = λ p3,

(5.9)
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where λ denotes the average arrival rate into the system (given by Equation 5.7) and pi is given by

Equation 5.1. Figure 5.4 illustrates the performance of the policies considered in a 6 Host system.

First we note that MTTMEL performs consistently well in steady state in both 3 and 6 Host systems
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Figure 5.4: Expected waiting time for MTTMEL in a 6 Host system

for almost all the scenarios considered. Second we note that the factor of improvement in TAGS over

MTTMEL is not significant under low α values. Third we note that under moderate (0.5) system

loads, TAGS can operate in steady state only if α is low. When the system load is high (0.7), TAGS

cannot operate in steady state at all. This means that for a wide range of α values we cannot find

cut-offs so that load on each host is less than one.

5.1.4 Analysis of excess load under MTTMEL

One of the important characteristics of MTTMEL is that its performance does not degrade under low

and moderate task size variabilities, and high system loads, because MTTMEL does not generate
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large amounts of excess load. This section investigates the excess load generated under the TAGS

and MTTMEL. Let us first derive an expression for the excess load for MTTMEL.

Let Zi be the true load on a host in Tier i

Zi = λiE[Xiv]. (5.10)

Let Lsum be the true sum of loads in the system

Lsum =
T

∑
i=1

ZiTi, (5.11)

where Ti denotes the number of hosts in Tier i. The excess load in the system is the difference between

the true sum of loads and expected sum of loads, i.e.

Excess = Lsum−λE[X ]. (5.12)

Figures 5.5 and 5.6 plot the excess load of TAGS and MTTMEL in 3 and 6 Host systems. We note
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Figure 5.5: Excess load under MTTMEL in a 3 Host system

that the excess load under MTTMEL is significantly less than that of TAGS. For example, in a 3 Host

system when α = 0.5 and system load = 0.5, the ratio between TAGS excess and MTTMEL excess

is equal to 1.3. Under the same conditions, when α equals 2.1, this ratio is equal to 4.6.

Under TAGS, large tasks are killed and restarted from scratch many times, whereas in a MTTMEL

large tasks are killed and restarted from scratch only a few times. For example, a six hosts TAGS

system may kill and restart large tasks up to 5 times, while six hosts MTTMEL system may kill
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Figure 5.6: Excess load under MTTMEL in a 6 Host system

and restart large tasks only up to maximum of 2 times. MTTMEL, therefore, generates less excess

load compared to that of TAGS. Under certain conditions (e.g. large-size server farms, high system

loads, etc.), it is possible for MTTMEL to perform poorly. In this case, it is possible to improve the

performance by changing the number of tiers and number of servers in tiers (based on the properties

of the traffic).

5.2 Multi-cluster Task Assignment based on Preemptive Migration (MCTPM)

This section presents the details of Multi-cluster Task Assignment based on Preemptive Migration

(MCTPM) policy, an efficient task assignment policy for assigning tasks in multiple server farms. In

the previous section we noted that MTTMEL has certain desirable properties over TAGS in stand-

alone server farms. However, MTTMEL restarted tasks from scratch resulting in some excess load

on the system. In this section we extend MTTMEL proposed for stand-alone server farms in the

previous section and propose a new task assignment policy for assigning tasks in a multiple server

farms.

5.2.1 Overview of MCTPM

MCTPM is designed for assigning tasks in multiple server farm environments (i.e. a set of server

farms). Figure 5.7 illustrates the proposed policy for the simple case of two server farms, where each

farm consists of five hosts and two tiers.5 The notation presented in Table 5.1 is used to describe

5Note that the performance model we present in Section 5.2.2 is a general model, which is valid for an arbitrary number
of server farms with an arbitrary number of tiers.
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MCTPM.

Figure 5.7: MCTPM architecture

As can be seen from Figure 5.7, MCTPM consists of a global task dispatcher, where the incoming

tasks first arrive. The global dispatcher assigns these tasks among a set of server farms with probabil-

ity qi, where qi is the fraction of tasks assigned to Farm i. We note that MCTPM consists of multiple

tiers of hosts in farms. The hosts in a particular tier process tasks only up to a predefined time limit

assigned to the tier. The relationship among these time limits is given by

s(1,1) < s(1,2) < ... < s(1,N1−1) < s(1,N1) < s(2,1) < s(2,2)

... < s(2,N2−1) < s(2,N2) < ... < s(N,Nn−1) < s(N,Nn) = p.
(5.13)

The core functionality of MCTPM policy can be summarised as follows.

• Each new task arrives at the global dispatcher.
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Ni Number of tiers in Farm i
n Number of farms
s(i, j) Designated time limit assigned Farm i’s Tier j
s(i, j−1)− s(i, j) Task size range for Farm i’s Tier j
f (x) Service time distribution of tasks (i.e. B(k, p,α))
k Lower bound of the task size distribution
p Upper bound of the task size distribution
λ Average arrival rate of tasks at the global dispatcher
α Heavy-tail parameter
E[X l

DF : i, j] lth moment of the remaining processing time distribution of a task dispatched
to Farm i from the global dispatcher (D) whose final (F) destination is a host in
Farm i’s Tier j

E[X l
PF : i, j] lth moment of the remaining processing time distribution of a task that arrives

at Farm i from the predecessor (P) farm whose final (F) destination is a host in
Farm i’s Tier j

E[X l
S: i, j] lth moment of the remaining processing time distribution of a task that spends

time (S) at a host in Farm i’s Tier j
E[XDF̄ : i, j] Expected size of a task that arrives directly from the global dispatcher (D) that

does not run to completion (F̄ for ’not final’) at a host in Farm i’s Tier j
E[XPF̄ : i, j] Expected size of a task that arrives from a host in the predecessor (P) farm that

does not run to completion (F̄ for ’not final’) at a host in Farm i’s Tier j
N(i, j) denotes the number of hosts in Farm i’s Tier j
E[W(i, j)] Expected waiting time of a task that spends time at a host in Farm i’s Tier j
E[W ] Expected waiting time in the system (i.e. overall expected waiting time)
γd Fixed migration cost (resumption cost) incurs on a destination host when mi-

grating a task between two consecutive tiers
γs Fixed migration cost (transfer cost) incurs on a source host when migrating a

task between two consecutive tiers
βd Proportional migration cost (resumption cost) incurs on a destination host when

migrating a task between two consecutive tiers
βs Proportional migration cost (transfer cost) incurs on a source host when mi-

grating a task between two consecutive tiers

Table 5.1: Notation: MCTPM

• The global dispatcher assigns tasks to Farm 1 with probability q1, Farm 2 with probability q2

and so on.

– Farm 1’s Dispatcher 1 assigns each task to Farm 1’s Tier 1 with an equal probability. Each

task is serviced in a FCFS manner up to a predefined time limit assigned to Farm 1’s Tier

1.

– If the service time of a task is less than or equal to the predefined time limit assigned to

Farm 1’s Tier 1, the task departs the system and the results are sent back to the client.
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– If the service time of the task is greater than the predefined time limit assigned to Farm

1’s Tier 1, the task is sent to Farm 1’s Dispatcher 2, which assigns the task to a host in

Farm 1’s Tier 2 with an equal probability.

– The task is serviced in a FCFS manner up to the predefined time limit of Farm 1’s Tier

2. When the task receives more service in Farm 1’s Tier 2, its execution is resumed (i.e.

preemptive migration) and so on.

– If the size of a task is less than or equal to the predefined time limit assigned to Farm 1’s

final tier (i.e. s(1,N1)), the task departs the system from Farm 1’s final tier and the results

are sent back to the client.

– If the service time of the task is greater than the predefined time limit assigned to Farm

1’s final tier, the task is migrated to Farm 2.

– The task arrives at Farm 2’s Dispatcher 1 and processed in a similar manner. When the

task receives more service at Farm 2, its execution is resumed (i.e. preemptive migration).

• The tasks that are directly assigned to Farm 2 by the global dispatcher are also processed in a

similar manner and so on.

• As indicated in Figure 5.7, except for Farm 1, each farm receives tasks from its predecessor

farm and from the global dispatcher. The tasks that arrive from predecessor farms have already

received some service, whereas the task that arrive from directly from the global dispatcher are

new tasks, which have so far received no service.

• The size ranges for tiers and the fractions of tasks dispatched to farms are computed to optimise

a certain performance criteria such as the expected waiting time and expected slowdown. In

this chapter as pointed out earlier, we use the expected waiting time as the key performance

metric.6

An important property of MCTPM is that it supports preemptive task migration between hosts

in consecutive tiers. In the previous chapter we considered preemptive migration in time sharing

server farms. The main difference between the preemptive migration presented in this chapter and

the previous chapter is that in the previous chapter we assumed that migration cost is negligible,

whereas in this chapter we assume that migration cost is not zero (which is typically the case for tasks

processed in batch computing environments). It is often the case that when a task is migrated from

one host to another, two types of costs incur on the system, namely, the fixed migration cost and the

6In the case of expected slowdown we expect to get similar or better results.
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proportional migration cost [Milojicic et al., 2000; Broberg et al., 2006]. The fixed cost is associated

with the transfer of state information, while the proportional migration cost is associated with the

transfer of memory [Milojicic et al., 2000]. The fixed cost is a fixed processing time computed based

upon the mean of the service time distribution. The proportional migration cost, on the other hand, is

a fraction, which is used to compute a processing time proportional to the task size. When a task is

migrated from a particular host in one server farm to a particular host in the consecutive server farm,

it is possible that there is some delay between the time that the time task arrives at the destination

host and the time that the task departs the source host. In this chapter we assume that this delay is at

its minimal levels and hence can be equated to zero.7

5.2.2 Performance model for MCTPM

This section presents an analytical performance model for the proposed policy by applying queueing

theory. This performance model is based on the notation given in Table 5.1. The final result of

this performance model is the derivation of E[W ], the overall expected waiting time of a task in the

system, which is a function of expected waiting time of a task that spends time at a host in Farm i’s

Tier j (i.e. E[W(i, j)]).8 E[W(i, j)] is given by the Pollaczek-Khinchin formula (see Equation 5.38) and

it is a function of E[X l
S: i, j], lth moment of the remaining processing time distribution of a task that

spends time at a host in Farm i’s Tier j. E[X l
S: i, j] is based on E[X l

DF : i, j], E[X l
PF : i, j], E[XDF̄ : i, j] and

E[XPF̄: i, j] (refer to Table 5.1). The first step is to derive these four moments.
Let p(i, j) be the probability that the service time of a task is between s(i, j−1) and s(i, j), then

p(i, j) =





∫ s(i, j)
s(i, j−1) f (x)dx, j > 1,

∫ s(i, j)
s(i−1,Ni−1) f (x)dx, j = 1.

(5.14)

We define pi as follows:

pi =
Ni

∑
k=1

p(i,k). (5.15)

Let E[X l
DF :(i, j)] be the lth moment of the remaining processing time distribution of a task dis-

patched to Farm i from the global dispatcher (D) whose final (F) destination is a host in Farm i’s Tier
j, then,

E[X l
DF : i, j] =





∫ s(i, j)
k xl f (x)dx

(∑i−1
k=1 pk+p(i, j))

, i≥ 1, j = 1,
∫ s(i, j)

s(i, j−1) (x−s(i, j−1)+γd+βd x)l f (x)dx
p(i, j)

, i≥ 1, j > 1.
(5.16)

7In order for this condition to be true it may be necessary for the set of server farms to be located in the close prox-
imity to each other. In the case where there are significant delays, additional delay parameters can be included into the
performance equations to cater for such delays. In this chapter we do not consider this.

8Note that the system consists of n number of farms.
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Let E[X l
PF: i, j] be the lth moment of the remaining processing time distribution of a task that arrives at

Farm i from the predecessor (P) farm whose final (F) destination is a host in Farm i’s tier j. Note that
Farm 1 has no predecessor hosts. E[X l

PF : i, j] is given by

E[X l
PF : i, j] =





∫ s(i,1)
s(i−1,Ni−1) (x−s(i−1,Ni−1)+γd+βd x)l f (x)dx

p(i,1)
, i > 1, j = 1,

∫ s(i, j)
s(i, j−1) (x−s(i, j−1)+γd+βd x)l f (x)dx

p(i, j)
, i > 1, j > 1.

(5.17)

We note that for i > 1 and j > 1,
E[X l

DF : i, j] = E[X l
PF : i, j]. (5.18)

But for i > 1 and j = 1,
E[X l

DF : i, j] 6= E[X l
PF : i, j]. (5.19)

Let E[XDF̄: i, j] be the expected size of a task that arrives directly from the global dispatcher (D) that
does not run to completion at a host in Farm i’s Tier j and let E[XPF̄ : i, j] be the expected size of a task
that arrives from a host in the predecessor (P) farm that does not run to completion at a host in Farm
i’s Tier j. We obtain

E[XDF̄ : i, j] =





(1− (∑i−1
k=1 pk + p(i, j)))

∫ p
s(i, j)

x f (x)dx, i≥ 1, j = 1,
qi(∑n

k=i+1 pk+∑Ni
k= j p(i,k))−qi p(i, j)

qi(∑n
k=i+1 pk+∑Ni

k= j p(i,k))

∫ p
s(i, j)

x f (x)dx, i≥ 1, j > 1,
(5.20)

and

E[XPF̄ : i, j] =
(∑i−1

k=1 qk)(∑n
k=i+1 pn +∑Ni

k= j p(i, j))− (∑i−1
k=1 qk)p(i, j)

(∑i−1
k=1 qk)(∑n

k=i+1 pk +∑Ni
k= j p(i, j))

∫ p

s(i, j)

x f (x)dx, i≥ 1, j ≥ 1. (5.21)

We can now derive E[WS: i, j], lth moment of the processing time distribution of a task that spends

(S) time at a host in Farm i’s Tier j. E[WS: i, j] is based on the four probabilities shown in Table 5.2.

pDF : i, j The probability that the task arrives directly from the global dispatcher and the
final destination is a host in Farm i’s Tier j

pDF̄ : i, j The probability that the task arrives directly from the global dispatcher and the
final destination is not a host in Farm i’s Tier j

pPF : i, j The probability that the task arrives from a predecessor farm and the final des-
tination is a host in Farm i’s Tier j

pPF̄ : i, j The probability that the task arrives from a predecessor farm and the final des-
tination is not a host in Farm i’s Tier j

Table 5.2: Probabilities for MCTPM

When i = 1 (i.e. Farm 1) and j = 1 (i.e. Tier 1),

E[X l
S: i, j] = pDF : i, jE[X l

DF : i, j]+ pDF̄ : i, j(s(i, j)+βsE[XDF̄ : i, j ]+γs
)l , (5.22)

where
pDF : i, j = p(i, j), (5.23)
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pDF̄ : i, j = 1− p(i, j). (5.24)

When i > 1 and j = 1,

E[X l
S: i, j] =pDF : i, jE[X l

DF: i, j]+ pDF̄: i, j(βsE[XDF̄ : i, j]+ γs + s(i, j))
l+

pPF : i, jE[X l
PF : i, j]+ pPF̄ : i, j

(
s(i, j)− s(i−1,Ni−1) +(βd +βs)E[XPF̄ : i, j]+ γs + γd

)l
,

(5.25)

where

pDF: i, j =
qi(∑i−1

k=1 pk + p(i, j))

qi +(∑i−1
k=1 qk)(∑n

k=i pk)
, (5.26)

pDF̄ : i, j =
qi−qi(∑i−1

k=1 pk + p(i, j))

qi +(∑i−1
k=1 qk)(∑n

k=i pk)
. (5.27)

Note that all tasks that are processed in Farm i’s Tier 1, that arrive from the global dispatcher are

new tasks that have so far received no service. pPF: i, j and pPF̄ : i, j are given by

pPF : i, j =
(∑i−1

k=1 qk)p(i, j)

qi +(∑i−1
k=1 qk)(∑n

k=i pk)
, (5.28)

pPF̄ : i, j =
(∑i−1

k=1 qk)(∑n
k=i pk)− (∑i−1

k=1 qk)p(i, j)

qi +(∑i−1
k=1 qk)(∑n

k=i pk)
. (5.29)

The denominator of four equations above represents probability that a task is processed at Farm
i’s Tier 1.

When i > 1 and j > 1,

E[X l
S: i, j] =pDF : i, jE[X l

DF : i, j]+ pDF̄ : i, j

(
(βd +βs)E[XDF̄ : i, j]+ γs + γd + s(i, j)− s(i, j−1)

)l
+

pPF : i, jE[X l
PF : i, j]+ pPF̄ : i, j

(
(βd +βs)E[XPF̄ : i, j]+ γs + γd + s(i, j)− s(i, j−1)

)l
,

(5.30)

where
pDF : i, j =

qi p(i, j)

(qi +∑i−1
k=1 qk)(∑n

k=i+1 pk +∑Ni
k= j p(i,k))

, (5.31)

pDF̄ : i, j =
qi(∑n

k=i+1 pk +∑Ni
k= j p(i,k))−qi p(i, j)

(qi +∑i−1
k=1 qk)(∑n

k=i+1 pk +∑Ni
k= j p(i,k))

, (5.32)

pPF : i, j =
(∑i−1

k=1 qk)p(i, j)

(qi +∑i−1
k=1 qk)(∑n

k=i+1 pk +∑Ni
k= j p(i,k))

, (5.33)

pPF̄ : i, j =
(∑i−1

k=1 qk)(∑n
k=i+1 pk +∑Ni

k= j p(i,k))− (∑i−1
k=1 qk)p(i, j)

(qi +∑i−1
k=1 qk)(∑n

k=i+1 pk +∑Ni
k= j p(i,k))

. (5.34)

When i = 1 and j > 1,
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E[X l
S: i, j] = pDF : i, jE[X l

DF : i, j]+ pDF̄ : i, j

(
(βd +βs)E[XDF̄ : i, j]+ γs + γd + s(i, j)− s(i, j−1)

)l
, (5.35)

where

pDF : i, j =
qi p(i, j)

qi(∑n
k=i+1 pk +∑Ni

k= j p(i,k))
, (5.36)

pDF̄ : i, j =
qi(∑n

k=i+1 pk +∑Ni
k= j p(i,k))−qi p(i, j)

qi(∑n
k=i+1 pk +∑Ni

k= j p(i,k))
. (5.37)

Note that pDF : i, j + pDF̄: i, j + pPF: i, j + pPF̄: i, j = 1 for all i, j.

Let E[W(i, j)] be the expected waiting time of a task that spends time at a host in Farm i’s tier j.

E[W(i, j)] is obtained by applying the Pollaczek-Khinchin formula [Kleinrock, 1975],

E[W(i, j)] =
λi, jE[X2

S: i, j]

2(1−λi, jE[XS: i, j])
, (5.38)

where λi, j = λD:i, j +λP:i, j and λD:i, j denotes the average arrival rate of tasks into Farm i’s Tier j from
the global dispatcher, while λP:i, j denotes the average arrival rate of tasks into Farm i’s Tier j from
Farm i−1. We obtain

λD:i, j =





λqi
N(i, j)

, i≥ 1, j = 1,
λqi(1−∑i

k=1 pk+∑Ni
k= j p(i,k)))

N(i, j)
, i≥ 1, j > 1,

(5.39)

and

λP:i, j =
λ ∑i−1

k=1 qk(1−∑i
k=1 pk +∑Ni

k= j p(i,k))

N(i, j)
, i > 1, j ≥ 1. (5.40)

Let E[WD] be the overall expected waiting time of a task that arrives directly from the dispatcher.
E[WD] is given by

E[WD] =q1(
N1

∑
m=1

p(1,m)
m

∑
k=1

E[W(1,k)])

+q2((p1 + p(2,1))E[W(2,1)]+
N2

∑
m=2

p(2,m)

m

∑
k=1

E[W(2,k)])

+ ...

+qn((
N−1

∑
k=1

pk + p(N,1))E[W(N,1)]+
Nn

∑
m=2

p(N,m)

m

∑
k=1

E[W(N,k)]).

(5.41)

Let E[WD̄] be the overall expected waiting time of a task that does not arrive directly from the dis-
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patcher. E[WD̄] is given by

E[WD̄] =q1(
N2

∑
m=1

p(2,m)(
m

∑
k=1

E[W(2,k)]+
N1

∑
k=1

E[W(1,k)]))

+(q1 +q2)(
N3

∑
m=1

p(3,m)(
m

∑
k=1

E[W(3,k)]+
2

∑
T=1

NT

∑
k=1

E[W(T,k)]))

+ ...

+(
N−1

∑
d=1

qd)(
Nn

∑
m=1

p(N,m)(
m

∑
k=1

E[W(N,k)]+
N−1

∑
T=1

NT

∑
k=1

E[W(T,k)])).

(5.42)

Let E[W ] be the overall expected waiting time of a task in the system. We obtain

E[W ] = E[WD]+E[WD̄]. (5.43)

The cut-offs (i.e. s(i, j) values), and the fraction of tasks assigned to server farms (i.e. qi values)

are computed to optimise the E[W ] for a given system load and α . The system load, ρ , is given by

ρ =
λE[X ]

∑n
i=1 ∑Ni

j=1 N(i, j)
, ρ < 1, (5.44)

where λ , E[X ] and N(i, j) are the average arrival rate at the global dispatcher, mean of the service

time distribution and number of hosts in Farm i’s Tier j respectively. The performance evaluation is

carried out under three important system loads: low (0.3), moderate (0.5) and high (0.7).

5.2.3 Performance evaluation: MCTPM

This section evaluates the performance of the proposed policy by comparing its performance with

three important task assignment policies, namely, MC-Random, MC-TAGSPM (Multi-cluster Task

assignment by Guessing Size based on Preemptive Migration) and MC-MTTPM (Multi-cluster-

multi-tier Task assignment based on Preemptive Migration). These policies have different perfor-

mance characteristics under difference workload conditions. Figure 5.8 illustrates the host architec-

tures of these policies for a simple case, where the number of server farms = 2 and the number of

servers in a farm = 3. A brief description of each of these policies is as follows.

• MC-Random: MC-Random is based on the simplest Random task assignment policy, which

we discussed in Section 2.3. Under MC-Random, new tasks arrive at a global dispatcher. The

global dispatcher directs these tasks to the central dispatchers of stand-alone server farms with

an equal probability. The local dispatchers of server farms distribute these new tasks among

their hosts with an equal probability. These tasks are processed at back-end hosts in a FCFS
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MC-RANDOM MC-TAGS

MC-MTTPM MCTPM

Figure 5.8: Task assignment policies for multiple server farms

manner until completion. Since the average arrivals rates into hosts and the processing time

distributions of tasks seen by hosts are same for all hosts in all server farms, the expected

waiting time in the system is equal to the expected waiting time of a task at any given host.

This can be obtained using Pollaczek-Khinchin formula [Kleinrock, 1975] (see Equation 6.17).

• MC-TAGSPM: This is based on the popular TAGS-PM [Harchol-Balter, 2002], which we dis-

cussed in Section 2.4.2. In the case of MC-TAGSPM the global dispatcher assigns the incoming
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tasks to Host 1 of each server farm with an equal probability. Tasks are processed according

to TAGS-PM at farms. The cut-offs for MC-TAGSPM is computed to optimise the expected

waiting time.

• MC-MTTPM: To be compatible with MCTPM, we introduce this new task assignment policy,

which is also based on a multi-tier host architecture. There are three main differences between

MC-MTTPM and MCTPM: 1) MC-MTTPM does not support task migration between server

farms. However, it does support preemptive migration within the server farm (i.e. between

hosts in different tiers), 2) MC-MTTPM always assigns tasks into server farms with an equal

probability and it cannot control the traffic flow into server farms and 3) The processing time

limits for MC-MTTPM are computed by considering the individual host architectures of server

farms, whereas the processing time limits of MCTPM are computed by considering the host

architectures of all the server farms in the system. The time limits for tiers are computed to

optimise the expected waiting time.

• MCTPM: MCTPM is the proposed policy details of which can be found in Section 5.2.

The expected waiting time under above policies are evaluated under three distinct proportional

cost criteria: β = βs = βd = 0.25 (25% of task size), β = βs = βd = 0.50 (50% of task size) and

β = βs = βd = 0.75 (75% of task size) and three distinct fixed cost criteria: γ = γs = γd = 750 (25%

of mean), γ = γs = γd = 1250 (50% of mean) and γ = γs = γd = 2250 (75% of mean). Note that

the fixed cost represents a fixed processing time computed based upon the mean of the service time

distribution, while the proportional cost is a fraction, which is used to compute a processing time

proportional to the task size.

5.2.4 Expected waiting time in small-sized server farms

This section investigates the expected waiting time for policies in two server farms when the number

of hosts in each farm is equal to three. The primary objective is to compare the expected waiting time

for MCTPM with other policies in small sized-server farms under different workload scenarios.

It is important to point out that we exclude the results for MC-Random from all the plots for the

purpose of improving the clarity plots. MC-Random performs very poorly compared to other three

policies over a wide range of scenarios. The specific cases where MC-Random outperforms other

policies will be discussed.
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5.2.4.1 Low and moderate system loads

As shown in Figure 5.9, the behaviour of expected waiting time of policies under low and moder-

ate systems loads has similar characteristics. Let us first compare the expected waiting time under
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Figure 5.9: Expected waiting time for MCTPM in small-sized server farms: system load = 0.3 and
0.5

MCTPM and MC-MTTPM. We note that under low α values, MCTPM performs significantly better
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than MC-MTTPM. For example, under a system load of 0.3, when α = 0.5, β = 0.75 and γ = 750,

MCTPM outperforms MC-MTTPM by a factor of 10.5. We note that when α is in the range 1.5

- 2.5, the expected waiting time under two policies are very similar. In fact, as α approaches 2.5,

MC-MTTPM starts to outperform MCTPM. The factor of improvement, however, is not significant

and does not exceed 1.10 under any given migration scenario.

Let us now compare the performance of MC-TAGSPM and MCTPM. MCTPM performs excep-

tionally well compared to MC-TAGSPM under high α values (α > 1.5).9 For example, under a

system load of 0.5, when α = 2.5, β = 0.75 and γ = 750, MCTPM outperforms MC-TAGSPM by a

factor of 5. Under low α values (α < 1.5), the factor of improvement in MCTPM over MC-TAGSPM

is relatively small compared to that of high α values. For example, under a system load of 0.3, when

α = 0.5, β = 0.25 and γ = 750, MCTPM outperforms MC-TAGSPM by a factor of 1.3. Under

very specific scenarios (e.g. α = 0.5, β = 0.5), MC-TAGSPM performs slightly better compared to

MCTPM.

There are two main reasons why MCTPM performs so well compared to MC-MTTPM: 1) the

fact that it can control the traffic flow into farms in an optimal way based on the properties of the

service time distribution and the average arrival rate and 2) the fact that it supports preemptive task

migration between server farms ensures that MCTPM can reduce the variability of tasks sizes in host

queues significantly by migrating large tasks to other server farms. Note that the variability of task

sizes in host queues is related to the performance.

Let us now briefly compare the performance of MC-Random with other three policies. MC-

Random has the worst performance compared to other three policies except when α is near 2.5 and

the fixed migration cost is greater than 50%. For example, under a system load of 0.3, when α = 0.5,

β = 0.25 and γ = 750, MCTPM outperforms MC-Random by a factor of 190. When α is in the

proximity of 2.5, MC-Random outperforms MCTPM. The factor of improvement, however, does not

exceed 2 even if the migration cost is very high (i.e. β = 0.75, γ = 2250).

5.2.4.2 High system loads

Under high system loads, the expected waiting time is highly fluctuating with increasing α (see

Figure 5.10). We note that MCTPM outperforms MC-MTTPM if α lies in the range 0.5 - 1.5. As

α increases beyond 1.5, MCTPM performance tends to degrade compared to MC-MTTPM. If α is

near 2.5, MC-MTTPM outperforms MCTPM. In fact, if α is greater than 2.0, Random has the best

9It is important to point out that MC-TAGSPM is unstable under a wide range of scenarios due to very high migration
cost. Under these scenarios, we cannot obtain the expected waiting time for MC-TAGSPM because we cannot compute the
cut-offs for servers such that (true) system loads on all hosts are less than 1.
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Figure 5.10: Expected waiting time for MCTPM small-sized server farms: system load = 0.7

performance under high system loads under all migration criteria. Under high system loads, the factor

of improvement in MC-Random over other policies can be highly significant, if the migration cost is

also high.

We note that MC-TAGSPM can operate under steady state only if α lies in the range 0.5 - 0.9.

Finally, we note that when α is near 0.5, MC-TAGSPM has slightly better performance compared

to MCTPM under specific migration criteria. Under all other conditions, MCTPM outperforms MC-

TAGSPM.

5.2.5 Impact of migration cost on the performance of MCTPM

Preemptive task migration can result in significant performance degradations, particularly when both

the proportional and fixed migration cost are high. Here we investigate the effect of migration cost on

the performance of policies. Figures 5.11-a, 5.11-b and 5.11-c plot the expected waiting vs α under

the system load of 0.3, 0.5 and 0.7 respectively.
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Figure 5.11: Effect of migration cost on the performance of MCTPM in small-sized server farms

Let us first consider the impact of proportional migration cost on the expected waiting time. Let

r1 be the ratio between expected waiting time of a task, when β = 0.5 and β = 0.3, and let r2 be the

expected waiting time of a task when β = 0.7 and β=0.3. Table 5.3 illustrates the values obtained

for r1 and r2 under the system load of 0.5. We note that both r1 are r2 are high under low α values,

which indicates that the effect of the proportional cost on the expected waiting time is significant if

α is low. As α increases, both r1 and r2 decrease and as α approaches 2.5, the two ratios approach

toward 1.

Let R1 be the ratio between expected waiting time of a task, when γ = 1500 and when γ = 750,

and let R2 be the ratio between expected waiting time of a task when γ = 2250 and when γ = 750.

Table 5.4 illustrates the values of R1 and R2 under the system load of 0.5. We note that both R1 and R2

lie in range 1.0−1.4. This means that the fixed migration cost does not affect the expected waiting

time at large, particularly if α is low. Similar behaviours are observed under low and high system

loads.
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Table 5.3: Impact of proportional migration cost on the performance: system load = 0.5.

α r1 r1 r1 r2 r2 r2
γ=750 γ=1500 γ=2250 γ=750 γ = 1500 γ = 2250

0.5 3.68 3.67 3.66 16.94 16.81 16.7
0.7 2.25 2.23 2.22 5.89 5.84 5.77
0.9 1.67 1.64 1.62 3.02 2.83 2.75
1.1 1.45 1.4 1.35 2.12 2 1.88
1.3 1.42 1.39 1.26 2.04 2 1.87
1.5 1.3 1.19 1.12 1.51 1.25 1.27
1.7 1.11 1.01 0.99 1.19 1.17 1.14
1.9 1.22 1.25 1.05 1.22 1.21 1.09
2.1 1.1 1.09 1.07 1.27 1.35 1.11
2.3 1.09 1.04 1.05 1.17 1.08 1.1
2.5 1.08 1.02 1.04 1.09 1.08 1.01

Table 5.4: Impact of fixed migration cost on the performance: system load = 0.5.

α R1 R1 R1 R2 R2 R2
β=0.25 β=0.50 β=0.75 β=0.25 β=0.50 β=0.75

0.5 1.01 1.01 1.01 1.02 1.0 1.01
0.7 1.02 1.02 1.02 1.03 1.01 1.01
0.9 1.05 1.06 1.04 1.08 0.99 1.03
1.1 1.18 1.19 1.14 1.31 1.11 1.12
1.3 1.1 1.12 1.08 1.11 1.08 1.05
1.5 1.1 1.11 1.01 1.05 0.91 1.12
1.7 1.28 1.04 1.16 1.19 1.25 1.02
1.9 1.11 1.23 1.14 1.17 1.11 1.11
2.1 1.18 1.19 1.1 1.28 1.25 0.98
2.3 1.23 1.13 1.17 1.32 1.14 1.14
2.5 1.18 1.33 1.12 1.28 1.18 1.23

5.2.6 Simulation results

This section presents some simulation results for MCTPM. Our aim is to prove the accuracy of

the analytical model presented in Section 5.2.2 by comparing the analytical results with the simu-

lation results. We design a simulation model using C++ based OMNET++ discrete event simulator

[Varg, 2001]. We generate service times and inter-arrival times using the inverse transform method (a

common technique used for generate traffic from various distributions) and existing random number

generators available in OMNET++. We carry out our simulations using 600,000 tasks. The first

100,000 in the simulation is used as a warm-up phase. It is important to point out that in order to

obtain accurate results (under heavy-tailed service time distributions), we need to use a large number

of tasks and a lengthy warm-up phase in our simulations.
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Figure 5.12 shows the simulation results and corresponding analytical results under a range of

scenarios. We note that the simulation results match well with the analytical results for all the sce-
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Figure 5.12: Simulation results for MCTPM in small-sized server farms

narios considered. For example, under a system load of 0.5, when α = 0.7, β = 0.25 and γ = 750, the

simulated expected waiting time and the analytical expected waiting time are 11375.2 and 11871.61

respectively. We also note that for most of the cases, simulation results are slightly less than the
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analytical results. This has been previously observed with regard to similar other task assignment

policies [Harchol-Balter, 2002; Broberg et al., 2006].

5.2.7 Expected waiting time in large-sized server farms

The expected waiting for MCTPM in large-sized server farms is investigated in this section. This is

important as it allows us to determine under which conditions MCTPM is more suitable for assigning

tasks in large-sized server farms. First we investigate the performance of MCTPM in a 2 server farm

system, where each server farm consisting of six hosts. Then, we derive the expected waiting time for

MCTPM in a 2 server farm system that consists of 6i number of hosts, where i = 1,2,3,etc. When

the number of hosts is equal to 6, there exist three possible host architectures for both MCTPM and

MC-MTTPM:

• A-1: three hosts in Tier 1, two hosts in Tier 2, one host in Tier 1,

• A-2: four hosts in Tier 1, two hosts in Tier 2,

• A-3: five hosts in Tier 1, one host in Tier 1.

Note that the number of hosts in Tier 1 is greater than the number of hosts in Tier 2 and the number

of hosts in Tier 2 is greater than the number of hosts in Tier 3. The reason for imposing this rule was

previously discussed in Section 5.1. For the sake of brevity, we only consider two main migration

scenarios, namely, the moderate migration cost (β = 0.25, γ = 750) and very high migration cost (β
= 0.75, γ = 2250). Figures 5.13 and 5.14 illustrate the results obtained under the system loads of 0.3

and 0.5.
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Figure 5.13: Expected waiting time for MCTPM in large-sized farms: system load = 0.3
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Figure 5.14: Expected waiting time for MCTPM in large-sized farms: system load = 0.5

Notice from Figures 5.13 and 5.14 that the performance under MCTPM and MC-MTTPM highly

dependent on the architecture being used. Table 5.5 illustrates the best configuration under a given

set of conditions. We note that MCTPM outperforms other policies under a wide range of scenarios.

When compared to MC-MTTPM, MCTPM performs significantly better if α is in the range 0.5−1.1.

For example, under a system load of 0.5, when α = 0.5 and the migration cost is very high, MCTPM

outperforms MC-MTTPM by a factor of 6. If α is greater than 1.1, the factor of improvement in

MCTPM over MC-MTTPM is relatively small. Also note from Table 5.5 that when α approaches

2.5, MC-MTTPM outperforms MCTPM. The factor of improvement, however, does not exceed 1.2.

Table 5.5: Best task assignment policy

α ρ = 0.3, β = 0.25,
γ = 750 (moderate
migration cost)

ρ = 0.3, β = 0.75,
γ = 2250 (very high
migration cost)

ρ = 0.5, β = 0.25,
γ = 750 (moderate
migration cost)

ρ = 0.5, β = 0.25, γ
= 750 (very migra-
tion high cost)

0.5 MC-TAGSPM MCTPM A-1 MC-TAGSPM MCTPM A-2
0.7 MCTPM A-1 MCTPM A-1 MCTPM A-2 MCTPM A-2
0.9 MCTPM A-1 MCTPM A-1 MCTPM A-2 MCTPM A-2
1.1 MCTPM A-1 MCTPM A-2 MCTPM A-2 MCTPM A-2
1.3 MCTPM A-2 MCTPM A-2 MCTPM A-2 MCTPM A-2
1.5 MCTPM A-2 MCTPM A-2 MCTPM A-3 MCTPM A-3
1.7 MCTPM A-3 MCTPM A-3 MCTPM A-3 MCTPM A-3
1.9 MC-MTTPM A-3 MCTPM A-3 MC-MTTPM A-3 MCTPM A-3
2.1 MC-MTTPM A-3 MCTPM A-3 MC-MTTPM A-3 MC-MTTPM A-3
2.3 MC-MTTPM A-3 MCTPM A-3 MC-MTTPM A-3 MC-MTTPM A-3
2.5 MC-MTTPM A-3 Random Random MC-MTTPM A-3

We now consider the case where there are more than six hosts in one server farm. Let us consider

the following three host architectures:
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• A-1*: 3i hosts in Tier 1 2i hosts in Tier 2 and i hosts in Tier 3,

• A-2*: 4i hosts in Tier 1 and 2i hosts Tier 2,

• A-3*: 5i hosts in Tier 1 and i hosts in Tier 2,

where i = 2,3,4,etc. Note that the total number of hosts in a farm is equal to 6i (= 3i + 2i + i =

4i + 2i = 5i + i). It is important to point out that several other host architectures are also possible,

particularly for large i. However, we only consider these three because we can derive the expected

waiting time for these three architectures from the results, which we obtained for the case of six hosts.

From the performance model presented in Section 5.2.2, we notice that under a given scenario (i.e.

system load and α), the expected waiting time for MCTPM under A-1* is the same as the expected

waiting time for MCTPM under A-1 because both A-1 and A-1* possess the same parameters. Sim-

ilarly, the expected waiting time for MCTPM under A-2* is equal to the expected waiting time for

MCTPM under A-2 and so on. Therefore, we can claim that if the number of servers in a farm is

equal to 6i, where i = 2,3,4,etc., MCTPM can perform at least as good as a 6 Host system. When

i > 1, several other architectures are possible and it is likely that some of these architectures can

provide better performance compared to A-1*, A-2* and A-3*.

Let us now consider the case where there are more than two server farms. Unfortunately, we

are not able to present the analytical results for more than two farms because we cannot solve the

optimisation problems for more than two server farms using the resources available to us. However,

in this case it is possible to configure these farms to produce at least as good as the best performance

of two server farms. For example, in the case of four farms, we can have two MCTPM systems,

where each MCTPM consists of two farms and tasks can be dispatched to each MCTPM system with

an equal probability.

5.3 Conclusion

This chapter proposed an efficient task assigning policy (MTTMEL) for assigning tasks in stand-

alone batch server farms. We showed that MTTMEL outperforms existing policies under a range

of conditions. This chapter also proposed MCTPM for assigning tasks in multiple server farms.

MCTPM exploits the properties in multiple server farm environments and therefore, it performs better

compared to those that optimise the performance in stand-alone farms. MCTPM was based on a

multi-tier host architecture that supports preemptive task migration. The proposed model controls

the traffic flow into server farms so as to optimise the performance. The flexible multi-tier host

architecture of the proposed policy significantly reduces the variance of task sizes in host queues.
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We developed an analytical model for the proposed model in which we incorporated the migration

cost. In Section 5.2.3 we showed that the proposed policy outperforms existing policies under a wide

range of workload conditions. In the specific cases where MCTPM did not outperform other policies,

its performance does not degrade significantly except under the specific case, where the system load,

migration costs and α are high, and the number of servers in the farm is small. In large-sized server

farms, this specific case can be avoided by changing the number of tiers and the number of hosts

allocated to tiers.
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ADAPT-POLICY: Task Assignment in
Distributed Systems when the Service
Time Distribution of Tasks is not known
a Priori

The task assignment policies proposed in the previous chapters were related to assigning tasks in

server farms under heavy-tailed service time distributions. The particular focus on heavy-tailed ser-

vice time distributions is due to the fact that service times of majority of tasks that appear in comput-

ing environments closely follow heavy-tailed distributions. However, as pointed out in Section 2.1.2,

heavy-tailed service time distributions cannot be justified for certain tasks that appear in certain envi-

ronments [Zhang and Sun, 2005; Riska et al., 2002]. There are two main reasons for this: 1) service

times of certain tasks are not always recorded. As such, it is difficult to find a sufficient number of

data sets, which can be used to fit a probability distribution to the entire population of task sizes and

2) even if such data sets are available, they may come from heterogeneous family of distributions

and any attempt to fit a particular distribution to it would be impossible. Moreover, there is also a

possibility for the service time distribution of tasks to vary over time due to the non-stationary nature

of traffic [j. Lin et al., 2006; Bertsimas and Mourtzinou, 1997; Zhang et al., 2003].

This chapter investigates a way to design task assignment policies to efficiently assign tasks in

server farms under varying (i.e. non-stationary) traffic conditions when the service time distribution

of tasks is not known a priori. Much existing tasks assignment policies [Harchol-Balter et al., 1999;

Broberg et al., 2004; 2006; Harchol-Balter, 2002; Tari et al., 2005; Zhang and Fan, 2008], including
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those presented in the previous chapters, are static by nature because they are based on a particular

stationary service time distribution. In other words, these policies assume particular (parametric)

service time distribution (e.g. Pareto, Exponential, etc.) and a set of fixed (static) parameters for

that particular parametric distribution. Due to such assumptions, they can compute their optimal

scheduling parameters (server cut-offs, etc.) off-line so as to optimise a given performance criteria

such as the expected waiting time, expected slowdown and expected load. Since the scheduling

parameters for these policies are computed off-line to optimise the performance under a specific

scenario (e.g. Pareto distribution with α = 0.5), they [Harchol-Balter, 2002; Broberg et al., 2006;

2004; Harchol-Balter et al., 1999] cannot respond to variations that occur in the incoming service

time distribution. As such, the performance of these policies degrades under constantly evolving

operational conditions.

This chapter proposes an adaptive task assignment policy, called ADAPT-POLICY, which is

based on the concept of multiple task assignment policies. ADAPT-POLICY defines a set of static-

based task assignment policies for a given distributed system taking into account the specific prop-

erties of the system. These policies are selected in such a way that they have different performance

characteristics under different workload conditions (e.g. service time distributions, etc.). The ob-

jective is to use the policy with the best performance (i.e. the one with the least expected waiting

time) to assign tasks. Which policy performs the best depends on the traffic conditions that vary over

time. ADAPT-POLICY determines the best task assignment using the service time distribution of

tasks (and various other traffic properties), which is estimated on-line and then it adaptively changes

the task assignment policy to suit the most recent traffic conditions. Since ADAPT-POLICY has

the ability to change the task assignment policy, it performs well compared to the static-based task

assignment policies, which optimises the performance under a particular workload scenario.

There exist a handful of task assignment policies, which are of similar nature to ADAPT-POLICY.

Two such important policies are ADAPTLOAD [Zhang and Sun, 2005] and EQUILOAD [Ciardo

et al., 2001]. Unfortunately, these two policies have the following issues.

• Both EQUILOAD and ADAPTLOAD assume that the processing requirements of tasks can be

estimated prior to execution of tasks. As such, these policies cannot be used to assign dynamic

content and majority of scientific workloads. Recall that one of the main aims of this thesis

is to design policies that can assign dynamic content and scientific workloads whose service

times are not known a priori.

• ADAPTLOAD approximates the service time distribution of tasks using the discrete histogram

of service times. Using this discrete histogram, it obtains the probabilities needed for comput-

137 (May 27, 2012)



CHAPTER 6. ADAPT-POLICY: TASK ASSIGNMENT IN DISTRIBUTED SYSTEMS WHEN THE
SERVICE TIME DISTRIBUTION OF TASKS IS NOT KNOWN A PRIORI

ing scheduling parameters (e.g. server cut-offs, fractions of tasks assigned to hosts, etc.) for

the system. Unfortunately, these probabilities are not accurate because the discrete histogram

does not accurately capture the true characteristics of the actual service time distribution, par-

ticularly when the service time distribution has long-tails and rapid fluctuations [Ciardo et al.,

2001]. This often results in incorrect scheduling decisions, which results in significant perfor-

mance degradations.

• EQUILOAD estimates the service time distribution of tasks off-line by fitting the service times

of tasks into a hyper-exponential or a hypo-exponential distribution. Using this estimated dis-

tribution, EQUILOAD computes the scheduling parameters (e.g. server cut-offs, etc.) for the

system. The main issue with this approach is that it only produces accurate results if the actual

service times of tasks closely follow hyper-exponential or hypo-exponential distributions. For

other types of service time distributions, the performance of EQUILOAD can be very poor

because the estimated service time distribution significantly deviates from the true service time

distribution. The other main issue with EQUILOAD is that it cannot respond the variations that

occur in the incoming service time distribution as the distribution fitting is carried out off-line.

• Both ADAPTLOAD and EQUILOAD attempt to equalise the expected load at hosts and this

is relatively easy to achieve compared to that of optimising certain performance metric such

as the expected slowdown and expected waiting time. However, equalising the expected load

does not always improve the performance [Crovella et al., 1998a].

The core features of ADAPT-POLICY include:

• On-line data collection: Unlike EQUILOAD and ADAPTLOAD, ADAPT-POLICY does not

make any assumptions regarding the actual sizes of tasks and as such, it has no means of

knowing the service times prior to execution. For each task that completes its processing,

ADAPT-POLICY computes its service time by subtracting the arrival time from the departure

time. ADAPT-POLICY stores these processing times at individual hosts in their main memory

or in a form of file. After the system completes processing n number of requests the density

estimation is performed.

• On-line density estimation using non-parametric based techniques: Unlike EQUILOAD,

ADAPT-POLICY does not fit the service times of tasks into a parametric distribution (e.g.

hyper exponential), rather it estimates the service time distribution of tasks and various distri-

butional properties (e.g. variance) on-line using non-parametric distribution estimation tech-

niques [Wand and Jones, 1995]. Non-parametric techniques impose fewer restrictions on the
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underlying probability distributions. As such, they are considered to be more flexible methods

of estimation with a wider range of validity compared to parametric methods of estimation

(such as Method of Moments and Maximum Likelihood Estimation [Mood et al., 1974]).

• On-line selection of task assignment policies: Different systems support different policies and

for many such systems, it is possible to define a set task assignment policies that have different

performance characteristics under different traffic conditions. ADAPT-POLICY defines a set

of static-based policies for a given distributed system based on its properties, and later uses

the task assignment policy with the least expected waiting time for assigning the next batch of

tasks.1 The task assignment policy with the least expected waiting time is determined using the

service time distribution and various distributional properties of the service time distribution

that are estimated on-line.

The rest of this chapter is organised as follows. Section 6.1 presents the details of ADAPT-

POLICY. Section 6.2 evaluates the performance of the proposed non-parametric density estimator

followed by an experimental performance analysis of ADAPT-POLICY under various workload sce-

narios is presented in Section 6.3. The chapter is concluded in Section 6.4.

6.1 ADAPT-POLICY

ADAPT-POLICY consists of three main stages, namely, the data collection, density estimation and

selection of task assignment policies. In the data collection stage, each host records service times of

tasks. These service times are used in the density estimation stage to estimate the probability distri-

bution function, cumulative distribution of service times and various other distributional properties of

the service time distribution. In the policy selection stage, ADAPT-POLICY defines a set of static-

based task assignment policies for a given system and it utilises the policy with the least expected

waiting time for assigning the next batch of tasks.

6.1.1 On-line data collection

The aim of on-line data collection is to collect the service times of tasks, which are used in the density

estimation stage to estimate various distributional properties of the service time distribution. The data

collection stage is illustrated in Figure 6.1. For each new task arriving at the dispatcher, it assigns an

1In the very rare case of a given distributed system only supporting one particular task assignment policy, ADAPT-
POLICY can still be of benefit to that system as it can be used to adjust the scheduling parameter of that policy according
to changes that are occurring in the incoming traffic stream.
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Figure 6.1: ADAPT-POLICY: data collection stage

ID and records the task arrival time. These values are stored within the task. In the case of HTTP

requests, such values can be stored in the HTTP header itself. Each incoming task is then assigned to

a host using Policy PL, where PL denotes the task assignment policy with the least expected waiting

time. Further details about the way to select task assignment policies is discussed in Section 6.1.3.

For each task that completes processing at a given host, ADAPT-POLICY computes its service

time by subtracting the arrival time from the departure time. ADAPT-POLICY stores these service

times at individual hosts in their main memory or in the physical memory in a form of file. After the

system completes processing n tasks the density estimation is carried out using these service times

(this will be discussed in detail in Section 6.1.2). Note that the task IDs can be used to track the total

number of tasks processed in the system. The value of n needs to be relatively high in order to capture

the rapid changes and heavy-tails (e.g. Pareto distributions with low α values) [Harchol-Balter, 2002]

that are common in real traffic.

6.1.2 On-line density estimation using non-parametric based techniques

This section outlines the second stage of ADAPT-POLICY, where it estimates the probability den-

sity function, cumulative distribution function and moments of the probability distribution function.

Figure 6.2 illustrates the main steps involved in this stage. Recall that the key idea behind ADAPT-

POLICY is to use the policy with the least expected waiting time to assign the next batch of requests.

The policy with the least expected waiting time is computed using the probability density function,

cumulative density function, moments of the service time distribution and average arrival rate of

tasks that are estimated on-line. ADAPT-POLICY uses non-parametric kernel based density estima-

140 (May 27, 2012)



CHAPTER 6. ADAPT-POLICY: TASK ASSIGNMENT IN DISTRIBUTED SYSTEMS WHEN THE
SERVICE TIME DISTRIBUTION OF TASKS IS NOT KNOWN A PRIORI

Figure 6.2: ADAPT-POLICY: density estimation stage

tion techniques [Wand and Jones, 1995] to estimate these distributions and moments. Non-parametric

techniques have advantages by not imposing many restrictions on the underlying probability distri-

butions. Therefore, they are considered a more general approach to estimation with a wider range of

validity compared to parametric methods of estimation [Wand and Jones, 1995]. Let us now discuss

the main components of non-parametric density estimation related to ADAPT-POLICY.

(a) Estimation of probability density function (of service times)
Let us now present the model related to the estimation of the probability density function (PDF) of

service times. Let X be a univariate continuous random variable distributed according to probability

density f , where f is unknown. For any set B of real numbers, the probability that X belongs to this

set is given by

P(X ∈ B) =
∫

B
f (x)dx. (6.1)

For example, when B = [a,b], P(a≤ X ≤ b) =
∫ b

a f (x)dx. The aim is to estimate f (x) using sample
observations (X1,X2, ...Xn) of service times.2 The estimator of f (x) (probability density function) at
x = x0 is given by

f̂ (xo) =
1

nhn

n

∑
i=1

K
(

xo−Xi

hn

)
, (6.2)

where hn and K(.) are the bandwidth and kernel function respectively. The bandwidth plays a major

role in kernel density estimation and its main task is to control the amount of smoothing given to

2Note that the probability density function completely characterises the ’behaviour’ of a random variable.
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the density estimator. A small bandwidth will result in observations closest to the sampled point, x0,

receiving more weight, whereas a large bandwidth will over–smooth the density estimator resulting

in the fit assuming an undulatory appearance. Later in this section, we will provide the details of

various bandwidth selection methods and kernel functions.

(b) Transformation-based kernel estimator
Extensive numerical experiments using numerous probability density functions indicate that the ker-

nel density estimator defined by Equation 6.2 often performs poorly for highly skewed data sets that

exhibit very high variability (e.g. Pareto distributions with low α values). To address this problem,

we adapt the transformation-based kernel estimation, where we transform the data set (i.e. service

times) into a different scale prior to estimating the probability density function [Simonoff, 1996].

The transformed distribution is later transformed back to its original domain. Let f (x) denotes the

probability density function in the original domain and let y = T (x) be the transformation of x into

y. Assume that T (x) is monotonic, i.e. strictly increasing or decreasing and let T−1(x) be the unique

inverse of T (x). Then, the transformed probability density function fT (y) in the transformed domain

is related to f (x) by

fT (x) = f (T−1(x))
∣∣∣∣
dT−1

dx
(x)

∣∣∣∣. (6.3)

The transformation-based kernel estimator is given by

f̂T (x0) =
1
nh

∣∣∣∣
dT−1

dx
(x)

∣∣∣∣
n

∑
i=1

K
(

[T (xo)−T (xi)]
h

)
. (6.4)

The transformation we use is the exponential transformation, i.e. T (x) = ex. Since T−1(x) = ln(x)
and dT−1

dx (x) = 1
x , the transformed-based kernel estimator is given by

f̂T (x0) =
1

xnh

n

∑
i=1

K
(

[ln(x0)− ln(xi)]
h

)
. (6.5)

If the service time distribution of tasks is not highly skewed or highly variable, the use of

transformation-based kernel is not necessary. However, our experiments indicate that transformation-

based kernel estimator is able to accurately estimate both skewed and non-skewed distributions (e.g.

uniform) as long as the sample size is relatively large, which is the case for the data sets that we are

considering in this chapter. Therefore, we use the transformation-based kernel to estimate the prob-

ability density function of service times. It is important to point out that the transformation-based

estimator we employ in this chapter is one of the least complex methods proposed in the literature

to estimate skewed distributions. There are other advanced methods that may give somewhat more
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accurate results [Simonoff, 1996]. However, these methods are computationally very intensive, and

therefore they may not be suitable for online probability density estimation [Simonoff, 1996].

(c) Bandwidth
The bandwidth (of the kernel density estimator, i.e. hn) plays an important role in the density estima-

tion in determining the smoothness of the estimated probability density function. If the bandwidth is

too small, the estimated probability density function may become rough and reflect too closely the

features of real data rather than the true density function. Larger bandwidths, on the other hand, can

lead to over smoothing that can lead to the important features of the distribution function becoming

less distinct. Numerous methods such as Rules of Thumb, Least Squares Cross-Validation, Biased

Cross-Validation and Solve-the-Equation Plug-In Approach have been proposed as bandwidth esti-

mation methods [Jones et al., 1996]. Unfortunately, all of these methods are computationally very

intensive (e.g. O(n3)) as they are associated with complex optimisation problems. As such, we do

not employ them in this chapter. For more information about these methods, the reader may refer to

[Jones et al., 1996]. In this chapter we use the method proposed in [Isogai, 1987] due its simplicity

(not computationally intensive), its wide usage and its effectiveness. The bandwidth proposed by

[Isogai, 1987] has the following form:

hn = n−r , 0.2 < r < 1, (6.6)

where hn and n denote the bandwidth and size of the sample respectively. The effect of r on the

results are discussed in Section 6.2.

(d) Kernel function
The next important step in the density estimation is to select a kernel function denoted by K(.). The

kernel function is a symmetric probability density function satisfying the following conditions.
∫ ∞

−∞
K(t)dt = 1,

∫ ∞

−∞
tK(t)dt = 0,

∫ ∞

−∞
t2K(t)dt = k2 < ∞.

(6.7)

The first two conditions indicate that the kernel function is a symmetric probability density function,

while the last condition states that the second moment of the kernel function is always finite. Some

widely used kernel functions are Epanechnikov [Wand and Jones, 1995], Triangular [Wand and Jones,

1995], Normal kernels [Wand and Jones, 1995] and Biweight [Wand and Jones, 1995]. It is rather

difficult to favour one kernel function over the other as the efficiency of different kernels differ under
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different efficiency measures. Efficiency measures used to evaluate effectiveness of kernel functions

include the mean integrated squared error (MISE) and integrated standard error (ISE), MISE being

the most widely used method. The MISE is computed as

MISE(n) = E[
∫
| fn(x)− f (x)|2dx], (6.8)

where E denotes the expected value. f and fn denote the unknown probability density function and

the estimated probability density function respectively. They are based on a sample of n identically

and independently distributed (iid) random variables. Most of the popular kernels functions have

very small MISE values. In ADAPT-POLICY, we employ the Epanechnikov kernel [Silverman,

1986; Wand and Jones, 1995] whose kernel function is given by

K(t) =
3
4
(1− t2), |t| ≤ 1. (6.9)

Now that we have set on the kernel density estimator, the kernel function and the bandwidth

selection method, let us now discuss the way to estimate the probability density function of the

service times using the kernel estimator given by Equation 6.5. The main steps involved in the

density estimation are as follows.

• Apply the transformation-based general density estimator (given by Equation 6.5) to the service

times of tasks and estimate the f̂ (xi) (PDF) at different xi values.

• Store the estimated f̂ (xi) and (corresponding) xi values in an array of points, where each point

consists of two fields, namely, the value of the random variable (xi) and the estimated value

f̂ (xi). The data structure for the density array is illustrated in Figure 6.3.

Figure 6.3: ADAPT-POLICY: density array

The simplest way to populate this array is to compute f (xi) using equally and regularly spaced values

of xi. This results in more accurate results, but it requires a large number of computations to populate
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the data structure which is very large in size. Small array sizes with equally spaced xi values, on

the other hand, may not produce very accurate results because they may not accurately capture the

behaviour of the density functions with long-tails and rapid fluctuations due to under-sampling.3

However, even with a small number of xi values (i.e. small array sizes), it is possible to achieve high

accuracy if we position these xi values based on the characteristics of the distribution being estimated.

We propose a new method to populate the array, which is based on the histogram of service times.4

The criteria for populating the density array are as follows.

• Construct the histogram using the service times of tasks. This requires us to specify the number

of bins. Let Nbin be the number of bins and n be the number of tasks in the sample. The number

of bins for a histogram is computed using the following standard formula:

Nbin =
√

n. (6.10)

• Compute the distance between two consecutive xi values in the density array. Let δxi be the

distance between two consecutive xi values that belongs to bin i. Then,

δxi =





Task[H[i]−1]−Task[H[i−1]−1]
Lh[i]

n

, i > 1,

Task[H[i]−1]−Task[H[1]
Lh[i]

n

, i = 1,
(6.11)

where L, h[i] and H[i] are the length of density array (specified by the user), the frequency of

bin i (computed using the histogram) and the cumulative frequency of bin i (computed using

the histogram) respectively. Task[i] denotes the service time of ith task when the tasks are

arranged in an ascending order of their size. By computing δxi according to Equation 6.11,

we ensure that the sufficient number of xi values are used in the regions, where there is a high

concentration of data. This guarantees that we are accurately capturing the rapid fluctuations

that may exist in these regions.

(e) Cumulative distribution function (CDF) estimation
The previous section presented the equations and the data structures relating to estimation of the

probability density function of service times. This section provides the equations and data structures

associated with the estimation of the cumulative distribution function (CDF) of service times. As

discussed, the cumulative distribution function of service times is required to compute the expected

waiting time for tasks assignment policies in the task assignment policy list of ADAPT-POLICY.

3Note that the size of the density array is not same as the number of tasks in the sample.
4The histogram is the simplest form of probability density estimation, where each bar in the histogram represents the

number of occurrences (frequency) of the random variable within a disjoint range called the bin.

145 (May 27, 2012)



CHAPTER 6. ADAPT-POLICY: TASK ASSIGNMENT IN DISTRIBUTED SYSTEMS WHEN THE
SERVICE TIME DISTRIBUTION OF TASKS IS NOT KNOWN A PRIORI

Recall that ADAPT-POLICY aims at using the task assignment policy list with the least expected

waiting time for assigning the next batch of tasks.

The cumulative distribution function of a continuous probability density function can be obtained

by integrating the probability density function between the lower and upper limits as follows:

F(x) =
∫ ∞

0
f (t)dt , (6.12)

where F(x) is the cumulative distribution function of f (x). Since the probability density function

we estimated in the previous section is stored in an array in a form of discrete values, we cannot

use integration to obtain F(x). This means that we need to employ numerical integration techniques

such as Riemann sum [Epperson, 2001], Simpson’s rule or Trapezoid rule. This chapter utilises the

Riemann sum (See Figure 6.4) to approximate the cumulative distribution function. The Riemann

sum is mathematically less complex compared to Simpson’s rule, which requires fitting of quadratic

equations. Let us now provide the equations relating to the estimation of CDF. Let f be a real value

Figure 6.4: Numerical integration: Riemann Sum

function defined in the interval [a,b] and let xo,x1,x2, ...xn such that a = x0 < x1 < x2... < xn = b

creating a partition P = [x0,x1), [x1,x2), ...[xn−1,xn] of [a,b]. The Riemann sum of f over [a,b] with

the partition p is defined as

R =
n−1

∑
i=0

f (yi)(xi+1− xi), (6.13)

where xi 6= xi+1. yi can be chosen arbitrarily within the interval [xi,xi+1]. We choose yi such that

yi = xi, i.e the left end point of the interval. Let F̂(x) and f̂ (x) be the estimated CDF and PDF

respectively. Then,

F̂(xi) =
n−1

∑
i=0

f̂ (xi)(xi+1− xi). (6.14)
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F̂(x) is evaluated at different xi values (note: xi values are computed according to Equation 6.11) and

stored in the array data structure shown in Figure 6.3. Note that the size of this cumulative distribu-

tion array is equal to s−1, where s is the size of probability density function array.

(f) Estimating moments
The last step in the density estimation stage is to estimate the first and second moment of the ser-

vice time distribution. These moments are used later to compute the expected waiting time of task

assignment policies in the task assignment policy list of ADAPT-POLICY.

First and second moments are obtained as follows:

M̂1(xi) =
n−1

∑
i=0

xi f̂ (xi)(xi+1− xi), (6.15)

M̂2(xi) =
n−1

∑
i=0

x2
i f̂ (xi)(xi+1− xi). (6.16)

By following similar steps taken in the process of estimating CDF, M̂1(xi) and M̂2(xi) are evaluated at

different xi values (according to Equation 6.11) and stored in the array data structure shown in Figure

6.3.

6.1.3 On-line selection and deployment of task assignment policies

This section discusses the last step of ADAPT-POLICY, where a set of static-based policies are in-

troduced for a given distributed system taking into consideration the properties of the system. These

task assignment policies have been selected in such a way that they have different performance char-

acteristics under different workload conditions (i.e. service time distributions, etc.) and therefore,

they can perform well under a range of workload conditions. Let us now provide a few examples of

different types of systems and task assignment policies that can be utilised in these systems.

• Batch computing server farms with non-preemptive task migration facilities: Random, Round-

Robin, TAGS, TAPTF and MTTMEL.

• Batch computing server farms with no task migration facilities: Random, Round-Robin, TAGS-

PM, TAPTF-WC and MTTPM.

• Time sharing server farms with no task migration facilities: Random, Round-Robin and MLMS.

• Time sharing server farms with non-preemptive task migration facilities: Random, Round-

Robin, MLMS and MLMS-M.
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• Time sharing server farms with preemptive task migration facilities: Random, Round-Robin,

MLMS and MLMS-PM.

The policies listed for each of the above systems, are optimal under different workload conditions.

As such, these policies can efficiently handle a wide range of (varying) traffic conditions.

For each policy in the task assignment policy list, ADAPT-POLICY derives an (general) expres-

sion for the expected waiting time by applying queueing theory.5 For example, the expected waiting

time under Random task assignment policy, which distributes tasks among back-ends hosts with an

equal probability is given by

E[W ] =
λiE[X2]

2(1−λE[X ])
, (6.17)

where E[X2] and E[X ] represent 2nd and 1st moments of the service time distribution respectively and

λ denotes the average arrival rate into Host i.6 For advanced policies, such as TAGS and MLMS, the

expected waiting time will have more complex forms. The previous two chapters discussed the way

to derive the expected waiting for these advanced policies. We noted that the expected waiting time

for these policies are functions of several factors such as the arrival rate into the system, probability

distribution function of tasks, moments of service time distribution and scheduling parameters.7

Using these derived expected waiting time expressions, ADAPT-POLICY computes the expected

waiting time for each task assignment policy (on-line) using the average arrival rate, estimated service

time distribution and estimated distributional properties (refer to Section 6.1.2).8 Once the expected

waiting time for policies are computed, the task assignment policy with the least expected waiting

time is communicated to the dispatcher, which then starts assigning tasks using that policy.

6.1.3.1 On-line optimisation

Computing the expected waiting time for task assignment policies, such as Random and Round-

Robin, is straightforward because these policies do not have any scheduling parameters (e.g. server

cut-offs, etc.) that need to be optimised based on the traffic properties. However, for advanced poli-

cies [Harchol-Balter et al., 1999; Harchol-Balter, 2002; Zhang and Sun, 2005; Broberg et al., 2004;

2006], this is not the case and to compute the expected waiting time for these policies, complex

5It is important to point out that defining the task assigning policies and deriving the expected waiting time for task
assignment policies are carried out off-line.

6Note that under Random each host in the system sees the same processing time distribution.
7Scheduling parameters refers to parameters such as probability of tasks assigned to hosts and processing time ranges

used for hosts [Harchol-Balter et al., 1999; Harchol-Balter, 2002; Zhang and Sun, 2005; Broberg et al., 2004; 2006]. It is
important point out that not all tasks assignment policies have scheduling parameters, especially the traditional ones.

8The average arrival rate is computed on-line using number of task that arrive during the pervious time period.
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optimisation problems need to be solved. Let us now discuss the way these optimisation problems

are handled in ADAPT-POLICY. Almost all of these optimisation problems are non-linear optimisa-

tion problems. Therefore, linear optimisation techniques (such as linear programming and simplex

method) cannot be used for optimisation. Moreover, certain non-linear optimisation techniques (such

as quadratic programming) cannot be used as well because quadratic programming requires the ob-

jective function to be in a quadratic form which is not the case for many task assignment policies

[Harchol-Balter, 2002; Broberg et al., 2004; 2006].

Evolutionary algorithms have been successfully used to in the past to solve non-linear optimi-

sation problems [Menon, 2004; Srinivas and Patnaik, 1994]. The question relates to though the

selection of a suitable evolutionary algorithm that can be incorporated with ADAPT-POLICY. Cer-

tain evolutionary algorithms are based on fundamentals of genetic evaluations, whereas some others

are based on natural phenomenon (such as swarms and ants [Menon, 2004; Srinivas and Patnaik,

1994]). Genetic evolutionary algorithms suffer from the problem of slow convergence, meaning that

these algorithms could take a long time to reach a near optimal solution [Srinivas and Patnaik, 1994].

Non-genetic algorithms (such as particle swarm optimisation (PSO)), on the other hand, can reach a

solution much faster compared to that of genetic algorithms [Kennedy and Eberhart, 1995; Poli et al.,

2007]. Moreover, PSO has shown better performance over other non-genetic algorithms such as hill

climbing because PSO is based on both local and global searching techniques. In ADAPT-POLICY

we utilise the basic version of PSO. This iteratively improves (optimises) its solution with respect

to a given measure of quality. PSO places its particles in the search space of the objective function

and the objective function is evaluated at each iteration. The movement of the particles in the search

space is determined by a simple mathematical formula, which takes into account the position and the

velocity of particles. It is not our intention to discuss the PSO in detail here, since we simply use it as

a technique for solving the optimisation problems. More details about PSO can be found in [Kennedy

and Eberhart, 1995; Poli et al., 2007].

6.2 Evaluation of density estimation

This section evaluates the performance of kernel density estimators (i.e. Equations 6.5 and 6.14) pre-

sented in Section 6.1.2. The aim is to show that the kernel density estimators can be used to estimate

a range of service time distributions with different properties. We show that the density estimators

presented in Section 6.1.2 can accurately estimate both PDF and CDF of a range of service time dis-

tribution and therefore, these estimators can be successfully used when the service time distribution

of tasks is not known a priori.

149 (May 27, 2012)



CHAPTER 6. ADAPT-POLICY: TASK ASSIGNMENT IN DISTRIBUTED SYSTEMS WHEN THE
SERVICE TIME DISTRIBUTION OF TASKS IS NOT KNOWN A PRIORI

We apply the kernel density estimators to estimate three different types of distributions, namely,

the Bounded Pareto, Bounded exponential and Bounded Weibull. We have chosen these service time

distributions to cover a range of scenarios. It is important to note that the kernel density estimator does

not assume any knowledge of these service time distributions. Figures 6.5, 6.6, 6.7, 6.8, 6.9, 6.10,

6.11, 6.12 and 6.13 compare the estimated and actual distributions for Bounded Pareto, Bounded

exponential and Bounded Weibull under different r (refer to Equation 6.6) values. Note that TV and

EV indicate the true (actual) and estimated values respectively.

Let us first discuss how well the kernel density estimator performs when it comes to estimating

Bounded Pareto distributions. In Figures 6.5, 6.6 and 6.7 we have considered three different Bounded

Pareto distributions with three different α values, namely, 0.7, 1.4 and 2.1. These α values have been

chosen to cover a wide range traffic scenarios [Crovella and Bestavros, 1997; Crovella et al., 1998b].

As far as probability density estimation (PDF) for Bounded Pareto distribution is concerned, we note

that there is a good overall fit for almost all r values considered. For most of r values considered, we

cannot distinguish between the actual PDF and the estimated PDF due to the differences between the

estimated values and actual values being very small. We note that when r = 0.8, the estimated PDF

is not smooth, however, it still imitates the actual distribution.

When it comes to estimating the cumulative distribution function (CDF), we note there are minor

variations in the estimated CDF depending on r values used. For example, when r = 0.2, the estimated

CDF lies slightly below the actual CDF, while, when r = 0.8 the estimated CDF lies slightly above the

actual distribution.9 We also note that there are cases, where the estimated PDF is not a very smooth

function but corresponding CDF is a smooth function imitating the actual cumulative distribution

function. The reason for this is that when we estimate CDF (using the estimated PDF), the roughness

of the estimated PDF disappears because the estimation of CDF involves numerical integration.

Let us now investigate results obtained for Bounded exponential distribution. These results are

shown in Figures 6.8, 6.9 and 6.10. As far the estimation of PDF is concerned, the estimated PDF

imitates the actual PDF under a wide range of r values. For a few cases, however, the estimated PDF

significantly deviates from the actual PDF. For example, when λ = 0.01 and r = 0.2, we note that the

estimated PDF not imitating the actual PDF. When it comes to estimating CDF, the results are better

compared to the estimation of PDF.

Finally, let us now consider the results obtained for Bounded Weibull distribution (refer to Fig-

ures 6.11, 6.12 and 6.13). We perform the density estimation for three different Bounded Weibull

distributions with three different α parameters, namely, 0.5, 1.5 and 2.5. We have chosen these

9Note that the y axis does not start from 0 rather it starts from value closer to 1. This has been done in order to clearly
illustrate the changes that occur when y is close to 1.
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Figure 6.5: Estimating Bounded Pareto distribution: α = 0.5

parameters so that we get Bounded Weibull distributions with different properties particularly with

different variances and shapes as illustrated in Figures 6.11, 6.12 and 6.13. Note that the estimated

PDF for Weibull distribution imitates the actual PDF except when r = 0.8, where the estimated PDF

has a rough curve. On the other hand, the estimated CDF imitates the actual CDF under all r values.
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Figure 6.6: Estimating Bounded Pareto distribution: α = 1.4

We note that (non-parametric) kernel density estimators perform well in estimating different types

of distributions. Moreover, we note that r has a significant effect on the quality of the fit; hence, the

accuracy of results. Most of the r values, produced very good overall fit, in particular when estimating

the cumulative distribution function. However, the question is which r value will result in the best
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Figure 6.7: Estimating Bounded Pareto distribution: α = 2.1

fit. It was clear from our experiments that the r value that results in the most accurate fit varies from

distribution to distribution and varies for different parameters for the same distribution. As such,

we compute the expected waiting time of policies using different r values and then take the average

performance. It important to note that estimation of the probability density function and cumulative
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Figure 6.8: Estimating Bounded exponential distributions: λ = 0.001

distribution function multiple times can be computationally intensive. However, the frequency at

which these computations are carried out is low because ADAPT-POLICY only performs the density

estimation after it collects n number of service times, where n > 20000 (refer to Section 6.3). For

example, in the simulation results presented in the following section, even though there 50000 tasks
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Figure 6.9: Estimating Bounded exponential distributions: λ = 0.01

in total, the density estimation is only being performed a maximum of 20 times.
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Figure 6.10: Estimating Bounded exponential distributions: λ = 0.1

6.3 Experimental analysis

Previous section showed that non-parametric density estimators can be successfully applied for es-

timating different types of distributions with different properties. This section provides simulation
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Figure 6.11: Estimating Bounded Weibull distributions: α = 0.5

results for ADAPT-POLICY, which is based on the non-parametric techniques discussed in the previ-

ous section. We consider task assignment in a server farm that does not support preemptive migration.

As discussed, there exist a number of core policies, which can be utilised in such a system. Since the

aim of this section is to demonstrate the main concepts behind ADAPT-POLICY, we limit the number
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Figure 6.12: Estimating Bounded Weibull distributions: α = 1.5

of task assignment policies in the policy list (of ADAPT-POLICY) to two and these are TAGS and

Random. We compare the performance of ADAPT-POLICY with STATIC-TAGS, ADAPT-TAGS.

Details of these policies are given below. Note that the criteria for generating test data for simulations

are discussed in Section 6.3.2.
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Figure 6.13: Estimating Bounded Weibull distributions: α = 1.5

• Random: Refer to Section 2.3.

• STATIC-TAGS: TAGS [Harchol-Balter, 2002] is one of the most popular task assignment poli-

cies that has shown better performance under a range of workload conditions in particular

highly variable traffic conditions. This STATIC-TAGS is identical to TAGS. The term STATIC
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has been used simply to indicate that TAGS has fixed cut-offs. In the simulations we use two

variants of STATIC-TAGS.

– STATIC-TAGS-HIGH-VAR: The cut-offs for STATIC-TAGS-HIGH-VAR are computed

to optimise the performance under very high task size variances.

– STATIC-TAGS-LOW-VAR: The cut-offs for STATIC-TAGS-LOW-VAR are computed to

optimise the performance under low task size variances.

• ADAPT-TAGS: To be more compatible with ADAPT-POLICY, we introduce a new version

of TAGS called ADAPT-TAGS. ADAPT-TAGS is based on the non-parametric density esti-

mation techniques that we have introduced in Section 6.1 for ADAPT-POLICY. The difference

between ADAPT-TAGS and ADAPT-POLICY is that ADAPT-POLICY has the ability to adap-

tively change the assignment policy and the cut-offs, whereas ADAPT-TAGS can only change

the cut-offs of TAGS on-line.

6.3.1 Simulation algorithm

The simulation model, as illustrated in Figure 6.14, consists of a task generator, a switch, a num-

ber of back-end hosts and a sink device. The task generator generates tasks using different ser-

vice time distributions and these tasks are sent to the switch (central dispatcher), which distributes

these tasks among the back-end hosts according to a specific task assignment policy. The cal-

culations for ADAPT-POLICY are implemented at the sink device and it is configured in such

a way that each time a host completes processing a task, a message is sent to the sink device.

The following is the algorithm executed at the sink, whenever a new message arrives at the sink.

sampling_time = 0.0 /*set once when the simulation starts up*/

task_count = 0 /*set once when the simulation starts up*/

if current_time()≥ next_sampling_time then
if task_count = 0 AND task.arrival_time()≤ current_time() then

lower_id = task.get_my_id()

upper_ld = task.get_my_id()+window_size

end if
if lower_id ≤ task.get_my_id() AND upper_id ≥ task.get_my_id() then

task_count = task_count +1

task_size_vec.push_back(task.get_my_size())

end if
if task_count = window_size then

task_count = 0, lower_id = 0,upper_id
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next_sampling_time = sampling_interval +next_sampling_time

for r = 0.9 r ≥ 0.2 r = r−0.1 do
estimate_pd f (task_size_vec)

estimate_cd f (task_size_vec)

estimate_m1(task_size_vec)

estimate_m2(task_size_vec)

if cd f _valid then
for eachpolicyinpolicy_list do

e_w[r][policyid ] = compute_e_w(policy_id,m1,m2, pd f ,cd f , pso)

end for
end if

end for
f ind_best_policy(per f ormance[r][policyid ],criteria)

deploy_new_policy()

end if
next_sampling_time = next_sampling_time+ sampling_time

task_count = 0

end if

Figure 6.14: OMNET++ simulation model for ADAPT-POLICY

Let us now discuss the above algorithm in more detail. The next_sampling_time parameter of the

above algorithm allows the ADAPT-POLICY to be configured in two different operating modes,

namely, the exhaustive mode and non-exhaustive mode. To perform the density estimation ex-
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haustively, next_sampling_time is set at 0 and to perform the density estimation non-exhaustively

next_sampling_time is set at a higher value (e.g. 10 hours).10 Figures 6.15 and 6.16 illustrate the

timing diagram for exhaustive and non-exhaustive modes respectively. The exhaustive density esti-

mation will be useful for rapidly changing service time distributions. If the service time distribution

of tasks do not vary at a higher rate then the density estimation can be performed at a lower frequency

(i.e. non-exhaustive density estimation) by increasing the vale of sampling_time to a higher value.

Figure 6.15: Timing plot for ADAPT-POLICY under exhaustive mode

Figure 6.16: Timing plot for ADAPT-POLICY under non-exhaustive mode

We note that when ADAPT-POLICY operates on exhaustive mode it collects the first batch of service

10Each time a new message arrives at the sink, it checks whether next_sampling_time is greater than or equal to the
current system time. If this condition is true, this means that the sink can start storing the service times of tasks that
complete their execution in the system.
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times during the period T = Tstart and T = T1, the second batch of service times during the period

T = T1 and T = T2 and so on. During each period it collects window_size number of service times,

where window_size is set at the fixed value of 20000.11 Immediately after collecting window_size

number of service times, ADAPT-POLICY estimates the service time distribution and its distribu-

tional properties (multiple times) using different r values by applying the techniques presented in

Section 6.1.2.12 This calculation results in multiple sets of PDF, CDF and moment arrays, where

each set corresponds to a different r value. For each r and each task assignment policy, ADAPT-

POLICY then computes the expected waiting time. This calculation results in multiple expected

waiting times for each policy. ADAPT-POLICY computes the final expected waiting time for each

policy by taking the average of these individual expected waiting times. The task assignment policy

with the least final expected waiting time is then used for assigning the next batch of tasks. The time

it takes to perform these computations are not shown in the timing diagram because it is not signif-

icant compared to the time it takes to collect the sample, which will vary depending on the arrival

rates of tasks into the system. In fact, the total computational time depends on numerous factors such

as the sample size, the number of times density estimation is performed (using different r) and the

configuration of the PSO algorithm (if it is used). Immediately after ADAPT-POLICY finishes these

computations, it starts collecting the data for the next sample and so on.

6.3.2 Experimental results

This section presents the simulation results for the policies discussed in Section 6.3. The simulation

model is developed using the C++ based OMNET++ discrete event simulator. Some important details

about the simulations are given below.

• The task generator of the simulator is configured to generate tasks from three different service

time distributions, namely, the Bounded exponential, Bounded Pareto and Bounded Weibull.

The parameters for these distributions have been selected to cover a wide range of traffic pat-

terns.13 Which distribution to generate traffic from and which parameters to use for the chosen

distribution are chosen randomly, i.e. from (different) uniform distributions.14

11The reason for using 20000 as the sample size is discussed in Section 6.3.2
12Note that r determines the bandwidth of the kernel estimator (refer to Equation 6.6).
13It is assumed that the services times of tasks have a fixed upper bound of 107 and a mean of 3000 [Harchol-Balter

et al., 1999]. The reason for using these values has been discussed in Section 2.1.2.
14For Bounded Pareto and Bounded Weibull distributions α parameter is generated randomly, whereas for the expo-

nential distribution λ is generated randomly. Once these parameters are determined the lower bound for the distribution is
computed such that the upper bound is 107 and the mean is 3000 (refer to Section 2.1.2).
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• Once the distribution is selected, the task generator generates n number of tasks from the chosen

distribution, where n is a uniform random variable, which determines the rate at which the

distribution changes. We define three different distribution change rates.

– Moderate: n∼U(75000.0,85000.0)

– High: n∼U(35000.0,45000.0)

– Very high: n∼U(15000.0,25000.0)

• The tasks that are generated by the task generator are sent to the central dispatcher of the

server farm, which distributes these tasks among the back-end hosts according to one of the

task assignment policies discussed in Section 6.3. The system load is maintained at 0.5 for all

the simulations by controlling the average arrival rate.

• The moving average of waiting time is used as the performance metric. Simulation results are

provided under the three distribution change rates (i.e. moderate, high and very high) discussed

above. For each distribution, change rate two sets of simulation results are provided using two

different seeds generated using the seed generating tools available in OMNET++. Simulation

results under seed 1 and 2 are called the Run 1 and Run 2 respectively.

• The sample size for density estimation is set at the fixed value 20000. This value has been

selected after conducting numerous experiments using different service time distributions. In

these experiments, it was noted that sample size must be at least 20000 in order to accurately

estimate the service time distribution of tasks.15 For certain distributions (e.g. once with the

low variance and low skewness), the sample size does not have to be as high as 20000. Large

sample sizes are only required for particular types of distributions (e.g. Pareto distributions

with low α value).

(a) Moderate distribution change rates
Let us first investigate the performance of policies under moderate distribution change rates. Figures

6.17 and 6.18 plot the moving average (of waiting time for policies) for Run 1 and Run 2 respectively,

while Tables 6.1 and 6.2 present the distribution change profile for ADAPT-POLICY under Run 1

and Run 2 respectively.

These tables are produced using the log files, which are created by the simulator. In Tables 6.1

and 6.2, POLICY ID denotes the ID of the current policy that ADAPT-POLICY uses to assign tasks.

15Note that previous simulations that investigate the performance of policies have used similar sample sizes [Broberg
et al., 2006; 2004].
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Figure 6.17: Moving average for policies under moderate distribution change rates: Run 1
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Figure 6.18: Moving average for policies under moderate distribution change rates: Run 2

As pointed out, we provide simulation results for ADAPT-POLICY, when the task assignment policy

list of ADAPT-POLICY consists of the two task assignment policies; Random and TAGS. In Tables

6.1 and 6.2, POLICY ID = 0 and POLICY ID = 1 denote Random and TAGS respectively. In addition
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Table 6.1: ADAPT-POLICY: Run 1, distribution change rate: moderate

1 distribution = boundedweibull: alpha = 2.5, p = 1e+07, beta = 3381, task_id = 50000
2 POLICY ID = 0, task_id = 70003
3 POLICY ID = 0, task_id = 90006
4 POLICY ID = 0, task_id = 110010
5 POLICY ID = 0, task_id = 130011
6 distribution = boundedexponential: k = 2000, p = 1e+07, rate = 0.001, task_id = 131697
7 POLICY ID = 0, task_id = 150015
8 POLICY ID = 0, task_id = 170016
9 POLICY ID = 0, task_id = 190017
10 distribution = boundedpareto: k = 1571.53, p = 1e+07, alpha = 2.1, task_id = 207440
11 POLICY ID = 0, task_id = 210019
12 POLICY ID = 0, task_id = 230021
13 POLICY ID = 0, task_id = 250021
14 POLICY ID = 0, task_id = 270025
15 POLICY ID = 0, task_id = 290028
16 distribution = boundedpareto: k = 878.08, p = 1e+07, alpha = 1.4, task_id = 291900
17 CHANGE POLICY: POLICY ID = 1 CUT OFFS: 10876.6, 1e+07, task_id = 310572
18 POLICY ID = 1 CUT OFFS: 21408.7, 1e+07, task_id = 330579
19 POLICY ID = 1 CUT OFFS: 8746.52, 1e+07, task_id = 350594
20 POLICY ID = 1 CUT OFFS: 8896.83, 1e+07, task_id = 370596
21 distribution = boundedexponential: k = 2900, p = 1e+07, rate = 0.01, task_id =376740
22 POLICY ID = 1 CUT OFFS: 3777.36,1e+07, task_id = 390683
23 CHANGE POLICY: POLICY ID = 0, task_id = 411024
24 POLICY ID = 0, task_id = 431028
25 POLICY ID = 0, task_id = 451033

to POLICY ID, the tables also show the current task id and the optimal scheduling parameters for the

current task assignment policy if it has any scheduling parameters. The term CHANGE POLICY is

used in the tables to indicate that there has been a change in the task assignment policy.

Let us discuss the moving average for policies under Run 1. Note from Table 6.1 that in the first

half of Run 1, the service times have been generated using the service distributions with relatively

low variances. Therefore, STATIC-TAGS-LOW-VAR performs well in this run as its scheduling pa-

rameters have been computed to optimise the performance under low task size variances. On the

other hand, STATIC-TAGS-HIGH-VAR has the worst performance because scheduling parameters

for STATIC-TAGS-HIGH-VAR have been computed to optimise the performance under high task

size variabilities. ADAPT-TAGS outperforms both STATIC-TAGS-LOW-VAR and STATIC-TAGS-

HIGH-VAR because unlike STATIC-TAGS-HIGH-VAR and STATIC-TAGS-LOW-VAR, ADAPT-

TAGS can dynamically compute its optimal parameters according to changes that occur in the in-

coming service time distribution.

Both ADAPT-POLICY and Random perform extremely well. Note that ADAPT-POLICY out-

performs Random, when task_id is in the range 300000 and 400000, whereas Random outperforms
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Table 6.2: ADAPT-POLICY: Run 2, distribution change rate: moderate

1 distribution = boundedpareto: k = 28.5212, p = 1e+07, alpha = 0.7
2 POLICY ID = 1 CUT OFFS: 96679.6, 1e+07, task_id = 70004
3 POLICY ID = 1 CUT OFFS: 117927, 1e+07, task_id = 90022
4 POLICY ID = 1 CUT OFFS: 534884, 1e+07, task_id = 114650
5 distribution = boundedexponential: k = 2900, p = 1e+07, rate = 0.01
6 POLICY ID = 1 CUT OFFS: 45043.9, 1e+07, task_id = 134755
7 CHANGE POLICY: POLICY ID = 0, task_id = 154769
8 POLICY ID = 0, task_id = 174774
9 POLICY ID = 0, task_id = 194777
10 distribution = boundedweibull: alpha = 2.5, p = 1e+07, beta = 3381
11 POLICY ID = 0, task_id = 214778
12 POLICY ID = 0, task_id = 234779
13 POLICY ID = 0, task_id = 254781
14 POLICY ID = 0, task_id = 274783
15 distribution = boundedweibull: alpha = 1.5, p = 1e+07, beta = 3323.2
16 POLICY ID = 0 CUT OFFS, task_id = 294786
17 POLICY ID = 0 CUT OFFS, task_id = 314792
18 POLICY ID = 0 CUT OFFS, task_id = 334793
19 POLICY ID = 0 CUT OFFS, task_id = 354794
20 POLICY ID = 0 CUT OFFS, task_id = 374797
21 distribution = boundedpareto: k = 1571.53, p = 1e+07, alpha = 2.1
22 POLICY ID = 0, task_id = 394797
23 POLICY ID = 0, task_id = 414800
24 POLICY ID = 0, task_id = 434801
25 POLICY ID = 0, task_id = 454802

ADAPT-POLICY when task_id is in the range 400000 and 450000. Note from Table 6.1 that there is

a change in the service time distribution from Bounded Pareto with α = 2.1 to Bounded Pareto with

α = 1.4 at task_id = 291900. The optimal policy for Bounded Pareto with α = 1.4 is TAGS, which

is initiated at 310572 (after performing the density estimation).

Let us now briefly discuss the moving average for policies for Run 2 under moderate distribution

change rates. We note from Table 6.2 that in the initial stages of Run 2, the moving average (of wait-

ing time) for Random increases rapidly up to task_id 114650. This is because Random has very poor

performance under a Bounded Pareto distribution with low α values, which has been used to generate

traffic at the start. Also note that STATIC-TAGS-HIGH-VAR performs well until task_id = 114650

as it is the optimal policy for assigning tasks until task_id = 114650. However, from there onwards

its performance degrades significantly as the traffic becomes less variable later on. ADAPT-POLICY

performs well for both Run 1 and Run 2 since it has the ability to adaptively change the task assign-

ment policy and the scheduling parameters based on the most recent traffic conditions.

(b) High distribution change rates
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Figure 6.19 and Table 6.3 illustrate the moving average and the distribution profile for Run 1 re-

spectively under high distribution change rates. First we note that the moving average for Random
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Figure 6.19: Moving average for policies under high distribution change rates: Run 1

increases rapidly at the start of Run 1 and then the moving average decreases. At the start of the Run

1, Bounded Pareto distribution with α = 0.7 has been used to generate tasks under which the Random

has very poor performance. On the other hand, STATIC-TAGS-HIGH-VAR has the lowest moving

(the best) average at the start because its scheduling parameters have been computed to optimise the

waiting time under service time distributions with high variances (e.g. Bounded Pareto distribution

with α = 0.7). The moving average of STATIC-TAGS-HIGH-VAR, however, degrades significantly

in the later stages because STATIC-TAGS-HIGH-VAR is not the optimal policy for assigning tasks

under the rest of service time distributions used in this run.

ADAPT-TAGS, ADAPT-POLICY, STATIC-TAGS-LOW-VAR have similar behaviour for this

particular run. However, towards the end of the run ADAPT-POLICY outperforms both STATIC-

TAGS-LOW-VAR and ADAPT-TAGS because neither STATIC-TAGS-LOW-VAR nor ADAPT-TAGS

is the optimal policy for assigning tasks towards the end of run. At the start of the experiment,

ADAPT-POLICY does not perform as well as STATIC-TAGS-HIGH-VAR because it takes some

time for it to change the task assignment policy and the scheduling parameters to match with the

incoming service time distribution.
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Table 6.3: ADAPT-POLICY: Run 1, distribution change rate: high

1 distribution = boundedpareto: k = 28.5212, p = 1e+07, alpha = 0.7, task_id = 50000
2 POLICY ID = 1 CUT OFFS: 85313.1, 1e+07, task_id = 70003
3 POLICY ID = 1 CUT OFFS: 115956, 1e+07, task_id = 90016
4 distribution = boundedexponential: k = 2900, p = 1e+07, rate = 0.01, task_id = 91697
5 POLICY ID = 1 CUT OFFS: 3866.2, 1e+07, task_id = 110123
6 distribution = boundedweibull: alpha = 2.5, p = 1e+07, beta = 3381, task_id = 127440
7 CHANGE POLICY: POLICY ID = 0, task_id = 130309
8 POLICY ID = 0, task_id = 150313
9 POLICY ID = 0, task_id = 170318
10 distribution = boundedweibull: alpha = 1.5, p = 1e+07, beta = 3323.2, task_id = 171900
11 POLICY ID = 0, task_id = 190320
12 POLICY ID = 0, task_id = 210323
13 distribution = boundedpareto: k = 1571.53, p = 1e+07, alpha = 2.1, task_id = 216740
14 POLICY ID = 0, task_id = 230324
15 POLICY ID = 0, task_id = 250328
16 distribution = boundedweibull: alpha = 2.5, p = 1e+07, beta = 3381, task_id = 260578
17 POLICY ID = 0, task_id = 270330
18 POLICY ID = 0, task_id = 290333
19 distribution = boundedpareto: k = 878.08, p = 1e+07, alpha = 1.4, task_id = 298945
20 POLICY ID = 1 CUT OFFS: 4605.11, 1e+07, task_id = 310334
21 POLICY ID = 1 CUT OFFS: 8367.33, 1e+07, task_id = 330341
22 distribution = boundedexponential: k = 2990, p = 1e+07, rate = 0.1, task_id = 339933
23 POLICY ID = 1 CUT OFFS: 3471.87, 1e+07, task_id = 350454
24 CHANGE POLICY: POLICY ID = 0, task_id = 370557
25 distribution = boundedweibull: alpha = 2.5, p = 1e+07, beta = 3381, task_id = 381410
26 POLICY ID = 0, task_id = 390559
27 POLICY ID = 0, task_id = 410562
28 distribution = boundedexponential: k = 2000, p = 1e+07, rate = 0.001, task_id = 421626
29 POLICY ID = 0, task_id = 430564
30 POLICY ID = 0, task_id = 450565

The moving average for policies for Run 2 under high distribution rates is illustrated in Figure

6.20. As was done before, the behaviour of moving average can be explained using the distribution

change profile illustrated in Table 6.4.

(c) Very high distribution change rates
Let us now consider the moving average of policies under very high distribution change rates. Al-

though one may think ADAPT-POLICY would perform poorly under very high distribution change

rates (as it may not be able to cope up with the rate at which the distribution changes), experimental

results indicate that this is not the case for most of the scenarios.

Figure 6.21 and Table 6.5 illustrate the moving average and the distribution change profile for Run

1. We note that Random and STATIC-TAGS-HIGH-VAR perform very poorly. On the other hand,

STATIC-TAGS-LOW-VAR and ADAPT-TAGS perform well. However, ADAPT-TAGS performs

169 (May 27, 2012)



CHAPTER 6. ADAPT-POLICY: TASK ASSIGNMENT IN DISTRIBUTED SYSTEMS WHEN THE
SERVICE TIME DISTRIBUTION OF TASKS IS NOT KNOWN A PRIORI

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 100000  200000  300000  400000  500000

M
ov

in
g 

A
ve

ra
ge

task count

ADAPT-POLICY
ADAPT-TAGS

STAIC-TAGS-LOW-VAR
STATIC-TAGS-HIGH-VAR

RANDOM

Figure 6.20: Moving average for policies under high distribution change rates: Run 2

better compared to STATIC-TAGS-LOW-VAR because ADAPT-TAGS can dynamically adjust its

scheduling parameters according to the changes that occur in the incoming service time distribution

of tasks. On the other hand, ADAPT-POLICY, outperforms both ADAPT-TAGS and STATIC-TAGS-

LOW-VAR under a wide range of task ids. Figure 6.22 illustrates behaviour of policies for Run 2

under very high distribution change rates. We can explain the moving average for policies using the

distribution profile presented in Table 6.6.

(d) Overall expected waiting time
So far, we have considered the moving average of waiting time of tasks under three distribution

change rates. Let us now discuss the (overall) expected waiting time for policies. Table 6.7 illustrates

the policy with the best overall expected waiting time. We note that out of six cases that we considered

ADAPT-POLICY outperforms all other policies in four cases. Recall that in this chapter we only

considered moderate, high and very high distribution change rates. We expect the performance of

ADAPT-POLICY to be much better under low distribution change rates.

6.4 Conclusion

This chapter proposed a novel policy for assigning tasks in server farms. The proposed policy made

no assumptions regarding the underlying service time distribution of tasks or the actual sizes of tasks.
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Table 6.4: ADAPT-POLICY: Run 2, distribution change rate: high

1 distribution boundedweibull: alpha = 2.5, p = 1e+07, beta = 3381, task_id = 91697
2 CHANGE POLICY: POLICY ID = 0, task_id = 70002
3 CHANGE POLICY: POLICY ID = 0, task_id = 90004
4 distribution = boundedpareto: k = 28.5212, p = 1e+07, alpha = 0.7, task_id = 127440
5 CHANGE POLICY: POLICY ID = 1 CUT OFFS: 73025.3, 1e+07, task_id = 110173
6 distribution = boundedpareto: k = 1571.53, p = 1e+07, alpha = 2.1, task_id = 171900
7 CHANGE POLICY: POLICY ID = 1 CUT OFFS: 56609.3, 1e+07, task_id = 131072
8 CHANGE POLICY: POLICY ID = 0, task_id = 151125
9 CHANGE POLICY: POLICY ID = 0, task_id = 171145
10 distribution = boundedpareto: k = 28.5212, p = 1e+07, alpha = 0.7, task_id = 216740
11 CHANGE POLICY: POLICY ID = 1 CUT OFFS: 201103, 1e+07, task_id = 191147
12 CHANGE POLICY: POLICY ID = 1 CUT OFFS: 65161.4, 1e+07, task_id = 211208
13 distribution = boundedexponential: k = 2900, p = 1e+07, rate = 0.01, task_id = 260578
14 CHANGE POLICY: POLICY ID = 1 CUT OFFS: 24602.5, 1e+07, task_id = 231230
15 CHANGE POLICY: POLICY ID = 0, task_id = 251506
16 distribution = boundedweibull: alpha = 0.5, p = 1e+07, beta = 1500, task_id = 298945
17 CHANGE POLICY: POLICY ID = 1 CUT OFFS: 3972.63, 1e+07, task_id = 271510
18 CHANGE POLICY: POLICY ID = 1 CUT OFFS: 7525.57, 1e+07, task_id = 291513
19 distribution = boundedexponential: k = 2900, p = 1e+07, rate = 0.01, task_id = 339933
20 CHANGE POLICY: POLICY ID = 0, task_id = 311576
21 CHANGE POLICY: POLICY ID = 0, task_id = 331582
22 distribution = boundedweibull: alpha = 1.5, p = 1e+07, beta = 3323.2, task_id = 381410
23 CHANGE POLICY: POLICY ID = 0, task_id = 351591
24 CHANGE POLICY: POLICY ID = 0, task_id = 371592
25 distribution = boundedexponential: k = 2990, p = 1e+07, rate = 0.1, task_id = 421626
26 CHANGE POLICY: POLICY ID = 0, task_id = 391594
27 CHANGE POLICY: POLICY ID = 0, task_id = 411597
28 distribution = boundedpareto: k = 28.5212, p = 1e+07, alpha = 0.7, task_id = 461609
29 CHANGE POLICY: POLICY ID = 1 CUT OFFS: 19833.7, 1e+07, task_id = 431598
30 CHANGE POLICY: POLICY ID = 1 CUT OFFS: 43442.4, 1e+07, task_id = 451599

ADAPT-POLICY defines a set of static-based policies for a given distributed system and it then

utilises the task assignment policy with the least expected waiting time for assigning the next batch

of tasks. The task assignment policy with the least expected waiting time is determined using the

service time distribution of tasks and the various properties of the service time distribution that are

estimated on-line using the service times of tasks collected over a period of time. The technique

ADAPT-POLICY uses to estimate these distributions is called the non-parametric kernel based den-

sity estimation. This is a much more general approach to estimation with a wider range of validity

than the corresponding parametric method of estimation such as method of moments and maximum

likelihood estimation. Through extensive numerical experiments, we showed that ADAPT-POLICY

outperforms other policies under a wide range of scenarios.
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Figure 6.21: Moving average for policies under very high distribution change rates: Run 1
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Figure 6.22: Moving average for policies under very high distribution change rates: Run 2
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Table 6.5: ADAPT-POLICY: Run 1, distribution change rate: very high

1 distribution = boundedweibull: alpha = 0.5, p = 1e+07, beta = 1500, task_id =
2 POLICY ID = 1 CUT OFFS: 7195.84, 1e+07, task_id = 70004
3 distribution = boundedexponential: k = 2000, p = 1e+07, rate = 0.001, task_id = 71697
4 distribution = boundedpareto: k = 28.5212, p = 1e+07, alpha = 0.7, task_id = 87440
5 POLICY ID = 1 CUT OFFS: 4312.76, 1e+07, task_id = 90281
6 POLICY ID = 1 CUT OFFS: 106231, 1e+07, task_id = 111846
7 distribution = boundedpareto: k = 28.5212, p = 1e+07, alpha = 0.7, task_id = 111900
8 POLICY ID = 1 CUT OFFS: 81372.2,1e+07, task_id = 134168
9 distribution = boundedexponential: k = 2000, p = 1e+07, rate = 0.001, task_id = 136740
10 POLICY ID = 1 CUT OFFS: 3968.78, 1e+07, task_id = 154211
11 distribution = boundedweibull: alpha = 0.5, p = 1e+07, beta = 1500, task_id = 160578
12 POLICY: POLICY ID = 1 CUT OFFS: 4780.15, 1e+07, task_id = 174215
13 distribution = boundedexponential: k = 2900, p = 1e+07, rate = 0.01, task_id = 178945
14 CHANGE POLICY ID = 0, task_id = 194251
15 distribution = boundedweibull: alpha = 1.5, p = 1e+07, beta = 3323.2, task_id = 199933
16 POLICY ID = 0, task_id = 214254
17 distribution = boundedexponential: k = 2990, p = 1e+07, rate = 0.1, task_id = 221410
18 POLICY ID = 0, task_id = 234256
19 distribution = boundedpareto: k = 28.5212, p = 1e+07, alpha = 0.7, task_id = 241626
20 CHANGE POLICY: POLICY ID = 1 CUT OFFS: 36300.2, 1e+07, task_id = 254710
21 distribution = boundedpareto: k = 1571.53, p = 1e+07, alpha = 2.1, task_id = 261609
22 POLICY ID = 1 CUT OFFS: 19536.5, 1e+07, task_id = 274817
23 distribution = boundedweibull: alpha = 2.5, p = 1e+07, beta = 3381, task_id = 279111
24 CHANGE POLICY ID = 0, task_id = 294923
25 distribution = boundedexponential: k = 2000, p = 1e+07, rate = 0.001, task_id = 296274
26 POLICY ID = 0, task_id = 314930
27 distribution = boundedpareto: k = 1571.53, p = 1e+07, alpha = 2.1, task_id = 316684
28 POLICY ID = 0, task_id = 334931
29 distribution = boundedexponential: k = 2000, p = 1e+07, rate = 0.001, task_id = 339474
30 POLICY ID = 0, task_id = 354932
31 distribution = boundedexponential: k = 2990, p = 1e+07, rate = 0.1, task_id = 358868
32 POLICY ID = 0, task_id = 374935
33 distribution = boundedexponential: k = 2900, p = 1e+07, rate = 0.01, task_id = 378923
34 POLICY ID = 0, task_id = 394939
35 distribution = boundedweibull: alpha = 1.5, p = 1e+07, beta = 3323.2, task_id = 400301
36 POLICY ID = 0, task_id = 414942
37 distribution = boundedexponential: k = 2990, p = 1e+07, rate = 0.1, task_id = 421038
38 POLICY ID = 0, task_id = 434947
39 distribution = boundedpareto: k = 28.5212, p = 1e+07, alpha = 0.7, task_id = 445606
40 CHANGE POLICY: POLICY ID = 1 CUT OFFS: 4156.32, 1e+07, task_id = 454947
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Table 6.6: ADAPT-POLICY: Run 2, distribution change rate: very high

1 distribution = boundedpareto: k = 28.5212, p = 1e+07, alpha = 0.7
2 POLICY ID = 1 CUT OFFS: 84526.6, 1e+07, task_id = 70004
3 distribution = boundedexponential: k = 2000, p = 1e+07, rate = 0.001
4 distribution = boundedweibull: alpha = 0.5, p = 1e+07, beta = 1500
5 CHANGE POLICY: POLICY ID = 0, task_id = 90058
6 POLICY ID = 1 CUT OFFS: 6970.88, 1e+07, task_id = 110066
7 distribution = boundedweibull: alpha = 0.5, p = 1e+07, beta = 1500
8 POLICY ID = 1 CUT OFFS: 6504.32, 1e+07, task_id = 130090
9 distribution = boundedpareto: k = 28.5212, p = 1e+07, alpha = 0.7
10 POLICY ID = 1 CUT OFFS: 30125.5, 1e+07, task_id = 150091
11 distribution = boundedweibull: alpha = 2.5, p = 1e+07, beta = 3381
12 POLICY ID = 1 CUT OFFS: 17604, 1e+07, task_id = 170108
13 distribution = boundedpareto: k = 878.08, p = 1e+07, alpha = 1.4
14 POLICY ID = 1 CUT OFFS: 4168.56, 1e+07, task_id = 190116
15 distribution = boundedexponential: k = 2990, p = 1e+07, rate = 0.1
16 POLICY ID = 1 CUT OFFS: 3444.75, 1e+07, task_id = 210220
17 distribution = boundedweibull: alpha = 2.5, p = 1e+07, beta = 3381
18 CHANGE POLICY: POLICY ID = 0, task_id = 230225
19 distribution = boundedexponential: k = 2000, p = 1e+07, rate = 0.001
20 POLICY ID = 0, task_id = 250227
21 distribution = boundedexponential: k = 2990, p = 1e+07, rate = 0.1
22 POLICY ID = 0, task_id = 270228
23 distribution = boundedweibull: alpha = 2.5, p = 1e+07, beta = 3381
24 POLICY ID = 0, task_id = 290229
25 distribution = boundedpareto: k = 28.5212, p = 1e+07, alpha = 0.7
26 CHANGE POLICY: POLICY ID = 1 CUT OFFS: 34866.2, 1e+07, task_id = 310621
27 distribution = boundedpareto: k = 1571.53, p = 1e+07, alpha = 2.1
28 POLICY ID = 1 CUT OFFS: 18033.2, 1e+07, task_id = 330633
29 distribution = boundedexponential: k = 2000, p = 1e+07, rate = 0.001
30 CHANGE POLICY: POLICY ID = 0, task_id = 350756
31 distribution = boundedweibull: alpha = 2.5, p = 1e+07, beta = 3381
32 POLICY ID = 0, task_id = 370762
33 distribution = boundedpareto: k = 28.5212, p = 1e+07, alpha = 0.7
34 CHANGE POLICY: POLICY ID = 1 CUT OFFS: 40807.7, 1e+07, task_id = 390797
35 distribution = boundedweibull: alpha = 2.5, p = 1e+07, beta = 3381
36 POLICY ID = 1 CUT OFFS: 9710.09, 1e+07, task_id = 410937
37 distribution = boundedexponential: k = 2900, p = 1e+07, rate = 0.01
38 CHANGE POLICY: POLICY ID = 0, task_id = 431128
39 distribution = boundedpareto: k = 28.5212, p = 1e+07, alpha = 0.7
40 CHANGE POLICY: POLICY ID = 1 CUT OFFS: 3812.46, 1e+07, task_id = 451133

Table 6.7: Expected waiting for policies

Distribution change rate Run no Best policy
moderate run 1 Random
moderate run 2 ADAPT-POLICY
high run 1 ADAPT-POLICY
high run 2 ADAPT-POLICY
very high run 1 ADAPT-POLICY
very high run 2 STATIC-TAGS-LOW-VAR
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Discussion

This thesis looked at four important research questions related to scheduling and task assignment

in server farms. These questions were formulated taking into consideration the major limitations

associated with existing scheduling and task assignment policies. The solutions were proposed under

two realistic workload scenarios, namely, the heavy-tailed service time distributions and arbitrary

service time distributions. The key contributions of this thesis are summarised below.

• How can we efficiently schedule tasks in a time sharing server under heavy-tailed service time

distributions?

This research question deals with the way tasks are assigned in a time sharing server under

heavy-tailed service time distributions. Our main focus was on multi-level time sharing policy

(MLTP). The use of MLTP can result significant performance improvements over other poli-

cies, if the service time distribution of tasks possesses the property of decreasing failure rate, a

key property of modern heavy-tailed traffic.

Existing work on MLTP has been carried out under very unrealistic conditions such as the

infinitely small quanta, infinite number of levels and exponential service time distributions. In

contrast, we investigated the performance of MLTP under realistic conditions, i.e. under finite

number of levels, when the quanta are not infinitely small, where the service time distributions

are heavy-tailed. This model is more consistent with those implemented on real computer

systems. The key findings are as follows.

– We showed that MLTP with optimal quanta (MLTP-O) significantly outperforms both

MLTP with equal quanta (MLTP-E) and FCFS, especially when the system load and the

variability of service times are high. For example, under high system loads and high
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task size variabilities, 2-MLTP-O (i.e. MLTP-O with two queues) outperforms FCFS

and 2-MLTP-E (i.e. MLTP-E with two queues) by factors of 3 and 2 respectively. Under

high system loads and moderate task size variabilities, 2-MLTP-O outperforms FCFS and

2-MLTP-E by factors of 2 and 1.5 respectively.

– We showed that as the number of levels increases the performance (i.e. the expected wait-

ing time and expected slowdown) of both MLTP-O and MLTP-E increases. Moreover,

the rate at which the performance increases depends on the variability of service times

and the system load.

– We investigated the behaviour of quanta for 2-MLTP-O. We showed that the (optimal)

set of quanta is unique for most of the scenarios. Moreover, for some system loads and

task size variabilities, there is another set of quanta that will result in near optimal perfor-

mance. When the expected waiting time is used (as the performance metric), we noted

that there is a sudden drop in optimal Quantum 1 that occurs between the system loads of

0.5 and 0.7.

– We investigated the degradation in the expected waiting time for 2-MLTP-O, when

quanta/cut-offs are computed to optimise the expected slowdown and vice versa. We

showed that under high system loads and high task size variabilities (i.e. low α values),

the degradation in the expected waiting time is very high when the quanta for 2-MLTP-O

are computed to optimise the expected slowdown. For example, under very high system

loads and very high task size variabilities, the degradation in the expected waiting time is

equal to 250%. On the other hand, the degradation in the expected slowdown lies in the

range 10%- 60% for all system loads and task size variabilities considered. In general,

using relatively small values for Quantum 1 improves both the expected slowdown and

expected waiting time. However, the use of very small values for Quantum 1 to optimise

the expected slowdown can result in the expected waiting time to deteriorate significantly

(250%).

– We investigated the performance of N-MLTP-E under a large number of queues using the

expected waiting time and expected slowdown. We showed that the relationship between

the performance and the number of levels has a power law relationship, and the coeffi-

cients of the power curve are functions of both the variability of tasks and the system

load.

– We compared the performance of N-MLTP-E with the performance of FB and showed

that under highly variable traffic conditions, N-MLTP-E requires a large number of queues
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if it is to achieve the same performance levels as FB.

• How can we efficiently assign tasks in time sharing server farms under heavy-tailed workload

conditions?

This research question aimed at addressing a core issue associated with existing task assign-

ment policies, which is their inability to efficiently assign tasks in time sharing server farms

under heavy-tailed service time distributions.

We extended the work proposed for the first research question, and proposed three task assign-

ment policies dedicated to time sharing server farms. They are called: MLMS, MLMS-M and

MLMS-PM. MLMS is suitable for time sharing server farms that do not have task migration

facilities. On the other hand, MLMS-PM and MLMS-M are designed for time sharing server

farms that support preemptive migration and non-preemptive migration respectively. MLMS

improves the performance by giving preferential treatment to small tasks and by reducing the

task size variability in queues within hosts. MLMS-M and MLMS-PM improve the perfor-

mance by giving preferential treatment to small tasks and by reducing the task size variability

in queues both within hosts (locally) and at host level (globally). For each task assignment

policy, we provided an analytical performance model. The key finding related to these policies

are summarised below.

– MLMS: MLMS outperforms TAGS under certain workload scenarios, while TAGS out-

performs MLMS under certain other scenarios. Whether or not MLMS outperforms

TAGS depends on a number of factors, which include the number of levels, number of

hosts, task size variability (i.e. α) and the system load. We noted that MLMS generally

performs better than TAGS under high system loads in specific ranges of α , where α
represents the task size variability. On the other hand, under low and moderate system

loads, TAGS outperforms MLMS, particularly if the task size variability is high.

The number of hosts does not affect the performance of MLMS under a given task size

variability, system load and number of levels. This is because an increase/decrease in the

number of hosts does not affect the service time distribution of tasks seen by hosts or the

average arrival rates of tasks into hosts.

MLMS does not support task migration and as such MLMS does not kill tasks, nor does it

restart them from scratch. This means that it does not generate excess load on the system

and therefore, it scales well. However, the main issue with MLMS is that it only performs
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well under specific workload scenarios, particularly under low system loads and low task

size variabilities.

– MLMS-M: MLMS-M outperforms TAGS for almost all the cases considered. The highest

improvement in the performance is seen under high system loads and very high task size

variabilities (i.e. low α values). For example, in a 2 Host system, when both the system

load and the task size variability are high, MLMS-M with two levels outperforms TAGS

by a factor of 2.7. Under the same conditions, MLMS-M with five levels outperforms

TAGS by a factor 6.75.

Under a fixed system load, the expected waiting time for MLMS-M does not continuously

improve with the decreasing task size variability. This is particularly the case under

moderate and high system loads when the number of levels is relatively high. As the

task size variability decreases, the expected waiting time decreases up to a minimum

value and then it starts to increase. This is because there is an increase in the excess load

with the decreasing task size variability, due to restarting tasks from scratch. This results

in the expected waiting time to degrade.

Under a fixed system load, the expected waiting time for MLMS-M improves with the

number of hosts for certain task size variabilities. For example, under moderate system

loads and moderate task size variabilities, MLMS-M with three levels performs 1.5 times

better in a 3 Host system compared to that of a 2 Host system. However, if the task size

variability is less than a certain value, an increase in the number of hosts does not result

in an improvement in the expected waiting time. Although a 3 Host system offers higher

reduction in the variance of task sizes in queues, under low task size variabilities, a three

hosts MLMS-M system generates significantly higher excess load compared to that of a

2 Host MLMS-M system. As a result, the performance of MLMS-M degrades in 3 Host

system if the task size variability is low.

– MLMS-PM: MLMS-PM address the main issue associated with MLMS-M, i.e. poor

performance under high α values and high system loads. MLMS-PM is based on pre-

emptive task migration (work-conserving migration) and as such it does not restart tasks

from scratch.

The performance analysis of MLMS-PM shows that it outperforms TAGS-PM under all

the scenarios considered. The highest improvement in the performance is obtained under

high system loads and high task size variabilities. For example, in a 2 Host system,

when both the system load and task size variability are high, MLMS-PM with five levels
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outperforms TAGS-PM by a factor of 4.

We note that MLMS-PM outperforms MLMS under all the system loads considered.

MLMS does not outperform MLMS-PM even if the number of levels of MLMS is very

high. This means that two level (global and local) variance reduction model and preemp-

tive task migration can result in significant performance improvements.

• How can we efficiently assign tasks in multiple batch server farms under heavy-tailed workload

conditions?

Our aim was to look into one of the key issues in existing task assignment policies, i.e. their

inability to efficiently assign tasks in multiple server farm environments.

First we proposed MTTMEL policy for a stand-alone batch server farm. This policy addresses

the major issues in existing traditional task assignment policies (e.g. poor performance under

high task size variabilities) as well as those of TAGS (e.g. poor performance under low and

moderate task size variabilities, poor performance under high system loads and poor perfor-

mance in large-sized server farms). MTTMEL is based on a flexible multi-tier host architecture

that reduces the variance of tasks in hosts queues (in each tier). In addition, it speeds up the

flow of small tasks by processing them in a relatively large number of hosts. These features

allow MTTMEL to perform well under a range of heavy-tailed workload conditions. The num-

ber of tiers and number of hosts for MTTMEL are computed to optimise the performance under

a given scenario. Second we extended MTTMEL and proposed MCTPM for assigning tasks

in multiple server farms. MCTPM is based on the same multi-tier host architecture. MCTPM

has the ability to control the traffic flow into server farms via a global dispatching device so

as to optimise the performance. In addition, MCTPM supports preemptive task migration be-

tween servers in the same farm as well as between servers in different farms. This ensures that

MCTPM can resume the execution of a task that was previously suspended at a different host.

We provided an analytical performance models for MTTMEL and MCTPM taking into account

the cost of migration and then carried out an extensive analytical and experimental performance

analysis of policies under a wide range of workload conditions. The key finding relating to

MTTMEL and MCTPM are as follows.

– MTTMEL: This policy outperforms Random under a wide range of task size variabilities.

The most significant improvements in the performance is seen when α lies in the range

0.7-1.5. For example, under a system load of 0.5, when α equals 1.1, MTTMEL out-

performs Random by a factor of 23. In addition, MTTMEL outperforms TAGS under a
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range of α values, particularly moderate and high α values. For example, under a system

load of 0.7, when α equals 1.3, MTTMEL outperforms TAGS by a factor of 2.6. We note

that MTTMEL operates in steady state throughout the entire range of α values consid-

ered. TAGS, on the other hand, fails to operate in steady state under a range of α values.

The reason is that TAGS generates significantly large amounts of excess load compared

to that of MTTMEL. For example, the ratio between TAGS excess and MTTMEL excess

is equal to 4.6 under high α values and moderate system loads.

– MCTPM: We showed that MCTPM outperforms existing policies under a wide range of

workload conditions. The experimental and analytical performance analysis of MCTPM

in small-sized server farms demonstrates that this policy significantly outperforms MC-

Random, MC-TAGSPM and MC-MTTPM. For example, under high system loads, high

task size variabilities and low migration cost, MCTPM outperforms MC-Random by a

factor of 190. Under moderate system loads, low task size variabilities and high migration

cost, MCTPM outperforms MC-TAGSPM by a factor of 5. In small-sized server farms,

MCTPM does not perform well if the system load and migration cost are high, and the

variability of task sizes is low. In large-sized server farms, this specific case can be

avoided by changing the number of tiers and the number of hosts allocated to tiers.

MC-TAGSPM cannot operate in steady state (due to high excess load) under a range

of conditions (e.g. high system loads and high task size variabilities). MCTPM does

not suffer from this problem because it can control the fraction of tasks assigned to server

farms, number of hosts and number of tiers in such a way that the system does not become

unstable.

We noted that the proportional migration cost has a significant impact on the performance

if the task size variability is very high. However, under low and moderate task size vari-

abilities, proportional migration cost does not impact the performance at large. The fixed

migration cost has minimal effects on the performance under almost all the scenarios

considered.

We investigated the performance of MCTPM in large-sized server farms. We noticed that

when there are a large number of hosts in the system, there is more than one possible host

architecture for MCTPM. The architecture that results in the least expected waiting time

depends on the system load and the task size variability.

• How can we efficiently assign tasks in server farms when the service time distribution of tasks

is not known a priori?
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The previous three research questions were related to performance optimisation under heavy-

tailed workloads, while this research question investigated a way of designing adaptive task

assignment policies that make no assumptions regarding the underlying service time distribu-

tion of tasks. We proposed an adaptive task assignment policy called, ADAPT-POLICY, which

is based on a set of static-based task assignment policies. ADAPT-POLICY adaptively changes

the task assignment policy to suit the most recent traffic conditions.

ADAPT-POLICY consists of three main stages, namely, the on-line data collection, on-line

density estimation and on-line selection of task assignment policies. This policy aims at defin-

ing a set of static-based task assignment policies for a server farm and then utilising the task

assignment policy with the least expected waiting time for assigning the next batch of tasks.

The task assignment policy with the least expected waiting time is determined using the service

time distribution of tasks as well as the various properties of the service time distribution that

are estimated on-line using the service times of tasks collected over a period of time. Since

ADAPT-POLICY adaptively changes the task assignment policy based on the most recent traf-

fic conditions, it performs well under a range of evolving (non-stationary) traffic conditions.

We developed a simulation model for ADAPT-POLICY using C++ based OMNET++ network

simulator and investigated the performance of ADAPT-POLICY under a range of scenarios.

The key finding relating to ADAPT-POLICY are as follows.

– We showed that transformation-based non-parametric kernel density estimators can be

used to estimate PDF and CDF of different types of distributions (with different proper-

ties) by applying these estimators to estimate PDF and CDF of Bounded Pareto, Bounded

exponential and Bounded Weibull distributions. When estimating CDF and PDF, we

noted that bandwidth has a significant effect on the quality of the fit and the accuracy

of results. The bandwidth (i.e. hn) for the density estimator is computed using the for-

mula hn = n−r, where n denotes the sample size and 0.2 < r < 1. Most of the r values,

produced a good overall fit, in particular when estimating the cumulative distribution

function. However, the r value that results in the most accurate fit varies from distribu-

tion to distribution and varies for different parameters for the same distribution. As such,

ADAPT-POLICY estimates the service time distribution multiple times using different r

values and then computes the expected waiting time for each policy (in the policy list)

for each r. For each task assignment policy (in the policy list), the final expected waiting

time is computed by taking the average of these individual expected waiting times.

– We investigated the moving average of waiting time for ADAPT-POLICY under three
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different distribution change rates, namely, the moderate, high and very high. We noted

that ADAPT-POLICY outperforms other task assignment policies (i.e. ADAPT-TAGS,

Random and STATIC-TAGS) under most of the scenarios considered, because unlike

other policies, ADAPT-POLICY can adaptively change the task assignment policy on-

line based on the most recent traffic conditions. However, in a few scenarios ADAPT-

POLICY does not perform so well because there is a delay in identifying the rapid

changes in the incoming service time distribution. As a result, a non-optimal task as-

signment policy is used for assigning tasks for a short period of time, which results in

a rapid increase in the moving average of waiting time for a short period of time. In

addition, we compared the overall expected waiting time for ADAPT-POLICY with four

other policies for six different cases. Out of these six cases that we considered, ADAPT-

POLICY outperforms other policies in four cases.

7.1 Future work

The performance analysis provided in MLTP in Chapter 3 assumes that the context switch overhead

of tasks can be equated to zero. In the cases where there is a significant context switch overhead,

the context switch overhead should be taken into account when computing the optimal quanta for

MLTP. Future work could consider incorporating the context switch overhead into the model and

then investigating the effect of context switch overhead on the performance of MLTP.

MLMS-PM model proposed in Chapter 4 assumes that tasks possess minimal state information

and therefore, migration cost is negligible. It is possible for certain types of tasks to incur significant

amounts of migration cost on the system. In this case, these costs will have be to incorporated into

the performance model. This could be considered in future work. However, it is anticipated that

inclusion of these costs would result in very complex analytical models for time sharing systems.

MCTPM proposed in Chapter 5 supports preemptive migration of tasks between server farms.

When a task is migrated from a particular host in one server farm to another host in a different

server farm, it is possible that there is some delay between the time at which the task arrives at the

destination host and the time at which the task departs the source host. MCTPM assumes that this

delay is at its minimal level and hence can be equated to zero. In order for this condition to be true,

it may be necessary for the set of server farms to be located in close proximity to each other. In

the case where server farms are located far apart, there are significant delays and additional delay

parameters will have to be included into the performance equations to cater for such delays. This we

did not consider in MCTPM. Future work could look into incorporating the delay components into
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the analytical model and then investigating the effect of these delays on the performance.

In Chapter 6, we noted that ADAPT-POLICY could result in promising results under a range of

workload scenarios even under rapidly changing service time distributions. The future work could

consider the following two enhancements to improve the computational time of ADAPT-POLICY.

1. Distribution comparison test

The current version of ADAPT-POLICY does not perform any tests to check if there is a sig-

nificant difference between the previous service time distribution and the current service time

distribution prior to computing the optimal performance for policies. The distribution compar-

ison test compares the current estimated distribution with the previously estimated distribution

and if the two distributions are not significantly different then the same policy will be used to

assign the next batch of tasks. To compare two distributions, methods such as Kolmogorov-

Smirnov [Mood et al., 1974] test can be used.

2. Learning algorithm

When ADAPT-POLICY operates in exhaustive mode, it estimates the service time distribution

of tasks and its distributional properties for each new batch of tasks, which completes their

processing. The purpose of the learning algorithm is to learn how fast the service time distri-

bution of tasks changes (i.e. distribution change rate) over time. Once this rate is computed

then ADAPT-POLICY can reduce the frequency of the density estimation. For example, if the

rate at which distribution changes is low, then there is no need to perform density estimation

and optimisation exhaustively rather it can be done in a periodic manner (for example every 10

hours, 1,000,000 tasks, etc.). If there are no changes in the service time distribution then there

is no need to perform on-line density estimation at all. In this case one static-task assignment

policy can be used to assign tasks with the correct scheduling parameters. If the system appears

to be performing poorly then the density estimation procedure can be reinitiated.
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