8 research outputs found

    Online Targetless Radar-Camera Extrinsic Calibration Based on the Common Features of Radar and Camera

    Full text link
    Sensor fusion is essential for autonomous driving and autonomous robots, and radar-camera fusion systems have gained popularity due to their complementary sensing capabilities. However, accurate calibration between these two sensors is crucial to ensure effective fusion and improve overall system performance. Calibration involves intrinsic and extrinsic calibration, with the latter being particularly important for achieving accurate sensor fusion. Unfortunately, many target-based calibration methods require complex operating procedures and well-designed experimental conditions, posing challenges for researchers attempting to reproduce the results. To address this issue, we introduce a novel approach that leverages deep learning to extract a common feature from raw radar data (i.e., Range-Doppler-Angle data) and camera images. Instead of explicitly representing these common features, our method implicitly utilizes these common features to match identical objects from both data sources. Specifically, the extracted common feature serves as an example to demonstrate an online targetless calibration method between the radar and camera systems. The estimation of the extrinsic transformation matrix is achieved through this feature-based approach. To enhance the accuracy and robustness of the calibration, we apply the RANSAC and Levenberg-Marquardt (LM) nonlinear optimization algorithm for deriving the matrix. Our experiments in the real world demonstrate the effectiveness and accuracy of our proposed method

    Extrinsic Calibration of 2D Millimetre-Wavelength Radar Pairs Using Ego-Velocity Estimates

    Full text link
    Correct radar data fusion depends on knowledge of the spatial transform between sensor pairs. Current methods for determining this transform operate by aligning identifiable features in different radar scans, or by relying on measurements from another, more accurate sensor. Feature-based alignment requires the sensors to have overlapping fields of view or necessitates the construction of an environment map. Several existing techniques require bespoke retroreflective radar targets. These requirements limit both where and how calibration can be performed. In this paper, we take a different approach: instead of attempting to track targets or features, we rely on ego-velocity estimates from each radar to perform calibration. Our method enables calibration of a subset of the transform parameters, including the yaw and the axis of translation between the radar pair, without the need for a shared field of view or for specialized targets. In general, the yaw and the axis of translation are the most important parameters for data fusion, the most likely to vary over time, and the most difficult to calibrate manually. We formulate calibration as a batch optimization problem, show that the radar-radar system is identifiable, and specify the platform excitation requirements. Through simulation studies and real-world experiments, we establish that our method is more reliable and accurate than state-of-the-art methods. Finally, we demonstrate that the full rigid body transform can be recovered if relatively coarse information about the platform rotation rate is available.Comment: Accepted to the 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2023), Seattle, Washington, USA, June 27- July 1, 202

    Automated Automotive Radar Calibration With Intelligent Vehicles

    Full text link
    While automotive radar sensors are widely adopted and have been used for automatic cruise control and collision avoidance tasks, their application outside of vehicles is still limited. As they have the ability to resolve multiple targets in 3D space, radars can also be used for improving environment perception. This application, however, requires a precise calibration, which is usually a time-consuming and labor-intensive task. We, therefore, present an approach for automated and geo-referenced extrinsic calibration of automotive radar sensors that is based on a novel hypothesis filtering scheme. Our method does not require external modifications of a vehicle and instead uses the location data obtained from automated vehicles. This location data is then combined with filtered sensor data to create calibration hypotheses. Subsequent filtering and optimization recovers the correct calibration. Our evaluation on data from a real testing site shows that our method can correctly calibrate infrastructure sensors in an automated manner, thus enabling cooperative driving scenarios.Comment: 5 pages, 4 figures, accepted for presentation at the 31st European Signal Processing Conference (EUSIPCO), September 4 - September 8, 2023, Helsinki, Finlan

    Accurate Identification of Traffic Signs Using Radar and Camera Fusion

    Get PDF
    Self-driving cars are no doubt the future of commuting for the world and it is paramount to make them as safe as possible on the road. The paper will cover a start to end process of making a system to easily collect data from the radar and camera and then using algorithms on the data collected to reduce anomalies and detect objects with better accuracy. Radar and camera both act as a data input for self-driving cars and are extremely important for the safety of both passengers and pedestrians, however, both of these sensors can be easily fooled. The advantage here is that what deceives one of the sensors doesn’t always mislead the other one, hence, using the suitable traits of each to overcome the deficiencies of the other will make them more robust and less susceptible to be fooled by such anomalies. By the end of this paper, the reader will have an in-depth understanding of how data is taken in, manipulated, and converted into results that power a self-driving car

    Providentia - A Large-Scale Sensor System for the Assistance of Autonomous Vehicles and Its Evaluation

    Get PDF
    The environmental perception of an autonomous vehicle is limited by its physical sensor ranges and algorithmic performance, as well as by occlusions that degrade its understanding of an ongoing traffic situation. This not only poses a significant threat to safety and limits driving speeds, but it can also lead to inconvenient maneuvers. Intelligent Infrastructure Systems can help to alleviate these problems. An Intelligent Infrastructure System can fill in the gaps in a vehicle's perception and extend its field of view by providing additional detailed information about its surroundings, in the form of a digital model of the current traffic situation, i.e. a digital twin. However, detailed descriptions of such systems and working prototypes demonstrating their feasibility are scarce. In this paper, we propose a hardware and software architecture that enables such a reliable Intelligent Infrastructure System to be built. We have implemented this system in the real world and demonstrate its ability to create an accurate digital twin of an extended highway stretch, thus enhancing an autonomous vehicle's perception beyond the limits of its on-board sensors. Furthermore, we evaluate the accuracy and reliability of the digital twin by using aerial images and earth observation methods for generating ground truth data

    ESTIMATION OF VEHICLE TRAILER ROTATION USING CALIBRATED RADARS WITH MULTIPLE VIEWPOINTS

    Get PDF
    Multiple sensors are increasingly being deployed on systems for perception applications. In particular, vehicles are becoming equipped with a suite of sensors for advanced driver assistance features and autonomous driving. This dissertation considers automotive radar sensors mounted at the rear of a vehicle with the main objective of using their point cloud detections to estimate the rotation of a trailer which is attached to the vehicle\u27s hitch ball. A simulation-based study of the problem is presented first. Thereafter, the problem is considered with respect to experimental radar data collected in both indoor and outdoor environments; the environmental difference is in the roughness of the ground surfaces. The apparatus used for the data collection includes two radars, which provide point detections in two dimensions -- range and azimuth, installed in the tail light fixtures of a truck. The estimation algorithm, based on the experimental data, includes the fusion of radar detections onto a coordinate system centered at the hitch ball position, a rotational point set registration algorithm, constrained orthogonal Procrustes optimization, and state estimation with the Kalman filter to obtain smooth estimates of the trailer rotation angle. In one implementation of the estimation algorithm, the dimensions of the radar geometry, which are required in its radar fusion procedure, are obtained by direct measurement. In another implementation, the calibration of the radar geometry is considered; two extrinsic calibration methods which estimate the dimensions of the geometry using the radar detections are provided. The trailer angle estimation algorithm is then used with respect to the calibration parameters. The results presented show that the trailer angle estimates obtained with respect to a direct measurement of the radar geometry parameters are comparable with those obtained with respect to the calibration parameters and that the algorithms presented for trailer angle estimation and extrinsic radar calibration are feasible for deployment. It is also shown that the trailer angle estimation algorithm has improved performance with the indoor dataset than with the outdoor dataset. The challenges observed with the outdoor dataset are presented and recommended for future research

    LiDAR-Based Object Tracking and Shape Estimation

    Get PDF
    Umfeldwahrnehmung stellt eine Grundvoraussetzung für den sicheren und komfortablen Betrieb automatisierter Fahrzeuge dar. Insbesondere bewegte Verkehrsteilnehmer in der unmittelbaren Fahrzeugumgebung haben dabei große Auswirkungen auf die Wahl einer angemessenen Fahrstrategie. Dies macht ein System zur Objektwahrnehmung notwendig, welches eine robuste und präzise Zustandsschätzung der Fremdfahrzeugbewegung und -geometrie zur Verfügung stellt. Im Kontext des automatisierten Fahrens hat sich das Box-Geometriemodell über die Zeit als Quasistandard durchgesetzt. Allerdings stellt die Box aufgrund der ständig steigenden Anforderungen an Wahrnehmungssysteme inzwischen häufig eine unerwünscht grobe Approximation der tatsächlichen Geometrie anderer Verkehrsteilnehmer dar. Dies motiviert einen Übergang zu genaueren Formrepräsentationen. In der vorliegenden Arbeit wird daher ein probabilistisches Verfahren zur gleichzeitigen Schätzung von starrer Objektform und -bewegung mittels Messdaten eines LiDAR-Sensors vorgestellt. Der Vergleich dreier Freiform-Geometriemodelle mit verschiedenen Detaillierungsgraden (Polygonzug, Dreiecksnetz und Surfel Map) gegenüber dem einfachen Boxmodell zeigt, dass die Reduktion von Modellierungsfehlern in der Objektgeometrie eine robustere und präzisere Parameterschätzung von Objektzuständen ermöglicht. Darüber hinaus können automatisierte Fahrfunktionen, wie beispielsweise ein Park- oder Ausweichassistent, von einem genaueren Wissen über die Fremdobjektform profitieren. Es existieren zwei Einflussgrößen, welche die Auswahl einer angemessenen Formrepräsentation maßgeblich beeinflussen sollten: Beobachtbarkeit (Welchen Detaillierungsgrad lässt die Sensorspezifikation theoretisch zu?) und Modell-Adäquatheit (Wie gut bildet das gegebene Modell die tatsächlichen Beobachtungen ab?). Auf Basis dieser Einflussgrößen wird in der vorliegenden Arbeit eine Strategie zur Modellauswahl vorgestellt, die zur Laufzeit adaptiv das am besten geeignete Formmodell bestimmt. Während die Mehrzahl der Algorithmen zur LiDAR-basierten Objektverfolgung ausschließlich auf Punktmessungen zurückgreift, werden in der vorliegenden Arbeit zwei weitere Arten von Messungen vorgeschlagen: Information über den vermessenen Freiraum wird verwendet, um über Bereiche zu schlussfolgern, welche nicht von Objektgeometrie belegt sein können. Des Weiteren werden LiDAR-Intensitäten einbezogen, um markante Merkmale wie Nummernschilder und Retroreflektoren zu detektieren und über die Zeit zu verfolgen. Eine ausführliche Auswertung auf über 1,5 Stunden von aufgezeichneten Fremdfahrzeugtrajektorien im urbanen Bereich und auf der Autobahn zeigen, dass eine präzise Modellierung der Objektoberfläche die Bewegungsschätzung um bis zu 30%-40% verbessern kann. Darüber hinaus wird gezeigt, dass die vorgestellten Methoden konsistente und hochpräzise Rekonstruktionen von Objektgeometrien generieren können, welche die häufig signifikante Überapproximation durch das einfache Boxmodell vermeiden

    Perception of Unstructured Environments for Autonomous Off-Road Vehicles

    Get PDF
    Autonome Fahrzeuge benötigen die Fähigkeit zur Perzeption als eine notwendige Voraussetzung für eine kontrollierbare und sichere Interaktion, um ihre Umgebung wahrzunehmen und zu verstehen. Perzeption für strukturierte Innen- und Außenumgebungen deckt wirtschaftlich lukrative Bereiche, wie den autonomen Personentransport oder die Industrierobotik ab, während die Perzeption unstrukturierter Umgebungen im Forschungsfeld der Umgebungswahrnehmung stark unterrepräsentiert ist. Die analysierten unstrukturierten Umgebungen stellen eine besondere Herausforderung dar, da die vorhandenen, natürlichen und gewachsenen Geometrien meist keine homogene Struktur aufweisen und ähnliche Texturen sowie schwer zu trennende Objekte dominieren. Dies erschwert die Erfassung dieser Umgebungen und deren Interpretation, sodass Perzeptionsmethoden speziell für diesen Anwendungsbereich konzipiert und optimiert werden müssen. In dieser Dissertation werden neuartige und optimierte Perzeptionsmethoden für unstrukturierte Umgebungen vorgeschlagen und in einer ganzheitlichen, dreistufigen Pipeline für autonome Geländefahrzeuge kombiniert: Low-Level-, Mid-Level- und High-Level-Perzeption. Die vorgeschlagenen klassischen Methoden und maschinellen Lernmethoden (ML) zur Perzeption bzw.~Wahrnehmung ergänzen sich gegenseitig. Darüber hinaus ermöglicht die Kombination von Perzeptions- und Validierungsmethoden für jede Ebene eine zuverlässige Wahrnehmung der möglicherweise unbekannten Umgebung, wobei lose und eng gekoppelte Validierungsmethoden kombiniert werden, um eine ausreichende, aber flexible Bewertung der vorgeschlagenen Perzeptionsmethoden zu gewährleisten. Alle Methoden wurden als einzelne Module innerhalb der in dieser Arbeit vorgeschlagenen Perzeptions- und Validierungspipeline entwickelt, und ihre flexible Kombination ermöglicht verschiedene Pipelinedesigns für eine Vielzahl von Geländefahrzeugen und Anwendungsfällen je nach Bedarf. Low-Level-Perzeption gewährleistet eine eng gekoppelte Konfidenzbewertung für rohe 2D- und 3D-Sensordaten, um Sensorausfälle zu erkennen und eine ausreichende Genauigkeit der Sensordaten zu gewährleisten. Darüber hinaus werden neuartige Kalibrierungs- und Registrierungsansätze für Multisensorsysteme in der Perzeption vorgestellt, welche lediglich die Struktur der Umgebung nutzen, um die erfassten Sensordaten zu registrieren: ein halbautomatischer Registrierungsansatz zur Registrierung mehrerer 3D~Light Detection and Ranging (LiDAR) Sensoren und ein vertrauensbasiertes Framework, welches verschiedene Registrierungsmethoden kombiniert und die Registrierung verschiedener Sensoren mit unterschiedlichen Messprinzipien ermöglicht. Dabei validiert die Kombination mehrerer Registrierungsmethoden die Registrierungsergebnisse in einer eng gekoppelten Weise. Mid-Level-Perzeption ermöglicht die 3D-Rekonstruktion unstrukturierter Umgebungen mit zwei Verfahren zur Schätzung der Disparität von Stereobildern: ein klassisches, korrelationsbasiertes Verfahren für Hyperspektralbilder, welches eine begrenzte Menge an Test- und Validierungsdaten erfordert, und ein zweites Verfahren, welches die Disparität aus Graustufenbildern mit neuronalen Faltungsnetzen (CNNs) schätzt. Neuartige Disparitätsfehlermetriken und eine Evaluierungs-Toolbox für die 3D-Rekonstruktion von Stereobildern ergänzen die vorgeschlagenen Methoden zur Disparitätsschätzung aus Stereobildern und ermöglichen deren lose gekoppelte Validierung. High-Level-Perzeption konzentriert sich auf die Interpretation von einzelnen 3D-Punktwolken zur Befahrbarkeitsanalyse, Objekterkennung und Hindernisvermeidung. Eine Domänentransferanalyse für State-of-the-art-Methoden zur semantischen 3D-Segmentierung liefert Empfehlungen für eine möglichst exakte Segmentierung in neuen Zieldomänen ohne eine Generierung neuer Trainingsdaten. Der vorgestellte Trainingsansatz für 3D-Segmentierungsverfahren mit CNNs kann die benötigte Menge an Trainingsdaten weiter reduzieren. Methoden zur Erklärbarkeit künstlicher Intelligenz vor und nach der Modellierung ermöglichen eine lose gekoppelte Validierung der vorgeschlagenen High-Level-Methoden mit Datensatzbewertung und modellunabhängigen Erklärungen für CNN-Vorhersagen. Altlastensanierung und Militärlogistik sind die beiden Hauptanwendungsfälle in unstrukturierten Umgebungen, welche in dieser Arbeit behandelt werden. Diese Anwendungsszenarien zeigen auch, wie die Lücke zwischen der Entwicklung einzelner Methoden und ihrer Integration in die Verarbeitungskette für autonome Geländefahrzeuge mit Lokalisierung, Kartierung, Planung und Steuerung geschlossen werden kann. Zusammenfassend lässt sich sagen, dass die vorgeschlagene Pipeline flexible Perzeptionslösungen für autonome Geländefahrzeuge bietet und die begleitende Validierung eine exakte und vertrauenswürdige Perzeption unstrukturierter Umgebungen gewährleistet
    corecore