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Abstract

Multiple sensors are increasingly being deployed on systems for perception applica-

tions. In particular, vehicles are becoming equipped with a suite of sensors for ad-

vanced driver assistance features and autonomous driving. This dissertation considers

automotive radar sensors mounted at the rear of a vehicle with the main objective

of using their point cloud detections to estimate the rotation of a trailer which is

attached to the vehicle’s hitch ball. A simulation-based study of the problem is pre-

sented first. Thereafter, the problem is considered with respect to experimental radar

data collected in both indoor and outdoor environments; the environmental differ-

ence is in the roughness of the ground surfaces. The apparatus used for the data

collection includes two radars, which provide point detections in two dimensions –

range and azimuth, installed in the tail light fixtures of a truck. The estimation algo-

rithm, based on the experimental data, includes the fusion of radar detections onto a

coordinate system centered at the hitch ball position, a rotational point set registra-

tion algorithm, constrained orthogonal Procrustes optimization, and state estimation

with the Kalman filter to obtain smooth estimates of the trailer rotation angle. In one

implementation of the estimation algorithm, the dimensions of the radar geometry,

which are required in its radar fusion procedure, are obtained by direct measurement.

In another implementation, the calibration of the radar geometry is considered; two

extrinsic calibration methods which estimate the dimensions of the geometry using

xxix



the radar detections are provided. The trailer angle estimation algorithm is then

used with respect to the calibration parameters. The results presented show that the

trailer angle estimates obtained with respect to a direct measurement of the radar

geometry parameters are comparable with those obtained with respect to the cal-

ibration parameters and that the algorithms presented for trailer angle estimation

and extrinsic radar calibration are feasible for deployment. It is also shown that the

trailer angle estimation algorithm has improved performance with the indoor dataset

than with the outdoor dataset. The challenges observed with the outdoor dataset are

presented and recommended for future research.
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Chapter 1

Introduction

1.1 Research Overview

Recent technological and research advances have resulted in smaller sensors which

are both low-cost and readily available to the public. For instance, 1radar systems,

which were once beyond the reach of civilians, are now available in small form factors

(few centimeters in length) for industrial and automotive applications. In particular,

the automotive industry now uses multiple sensors to provide data for perception al-

gorithms which enhance advanced driver assistance features and autonomous driving

technologies.

1RADAR, which originally was an acronym for RAdio Detection and Ranging, is now widely accepted
as a single word.
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This dissertation considers the use of automotive radar sensors, which are installed

at the rear of a vehicle, to estimate the rotation of a trailer which is attached to

the hitch ball of the vehicle. The radars are installed at separate locations on the

vehicle, such that their detections represent multiple viewpoints of the trailer. The

point cloud detections provided by the radars are used for the estimation. One of

the steps involved in the estimation, as described in this dissertation, is the fusion of

detections from the radars onto a convenient coordinate system, so that the different

viewpoints of the radars are merged for combined observation in the same coordinate

system. Therefore, this dissertation also contains extrinsic calibration methods which

estimate the radar geometry parameters required for the fusion procedure, with the

objective of using the calibration parameters in the trailer angle estimation algorithm.

In the literature, the angle of trailer rotation about the hitch ball, defined with

respect to the longitudinal axis of the vehicle, is often referred to as the trailer angle

or the hitch angle. The angle is needed in algorithms used for trailer control and

backup applications. A review of existing methods, which estimate the trailer angle,

is provided in sections 2.2 and 3.2. Some challenges observed in the existing methods,

based on the literature review, are listed below.

(a) Installing a new hardware or sensor at the hitch ball position to measure the

trailer angle increases the production cost of the system.

(b) Methods which require a sticker to be placed on the trailer do not encourage easy
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trailer replacement when a spare sticker becomes unavailable. Also, stickers can

gradually become occluded with dust, thereby preventing vision-based tracking

if the stickers are not cleaned regularly.

(c) Some methods require the dimensions of the trailer to be known. This also does

not encourage easy trailer replacement when the replacement trailer’s dimen-

sions have not been determined.

(d) Camera-based methods, which track the trailer or a feature on the trailer, gen-

erally have a reduced performance in extreme weather conditions [3].

The approach discussed for trailer rotation estimation in this dissertation addresses

the above challenges. It does not introduce a new hardware sensor; rather, it reuses

the existing radars such as those installed for blind spot applications. Stickers are

not used, the trailer’s dimensions are not required to be known, and radar sensing

has advantages over camera-based sensing in extreme weather conditions [3]. The

extrinsic calibration methods presented for the radar fusion procedure are also novel

to the best of our knowledge.
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1.2 Organization

The remainder of this dissertation is arranged as follows:

Chapter 2 is a preliminary study of the trailer angle estimation problem. Two radars

are simulated to be directly located behind the vehicle, close to the tail light fixtures,

such that the radars’ boresights are in the direction of the vehicle’s longitudinal axis.

The work was tested on synthetic data only.

Unlike the research presented in chapter 2, it became necessary to estimate the

trailer angle using experimental data collected from two blind spot information radars

in both indoor and outdoor environments; the outdoor environment has a rougher

ground surface than the indoor environment. As seen in existing vehicular designs,

blind spot information radars often have non-zero mount angles and their boresights

are not in the direction of the vehicle’s longitudinal axis. Chapter 3 implemented the

new design constraints and presents a procedure which estimated the trailer angle.

The first step in the estimation procedure presented in chapter 3 is the fusion of radar

detections. The step requires the detections from both radars to be transformed onto

a coordinate system, whose origin is the hitch ball position, for further signal pro-

cessing. Therefore, the radar geometry parameters required for the fusion need to be
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determined. The geometry parameters used in chapter 3 are ground truth measure-

ments obtained from the experimental apparatus with protractors and a meter rule.

Meanwhile, they can be estimated. Chapters 4 and 5 present two extrinsic calibration

methods which estimate the geometry parameters using the radar detections.

Chapter 6 combines the theories presented in chapters 3 to 5. The radar data col-

lected from the indoor and outdoor environments in chapter 3 are reused for the

trailer angle estimation. Unlike the use of ground truth measurements of the radar

geometry in chapter 3, the trailer angle estimation algorithm makes use of the geom-

etry parameters obtained by the extrinsic calibration methods, which are provided in

chapters 4 and 5. The trailer angle estimates obtained by combining the theories are

presented and discussed.

Chapter 7 provides the conclusions based on the results obtained from testing the

trailer angle estimation algorithm and the extrinsic calibration algorithms. Some

recommendations for future research are also provided.

5





Chapter 2

Estimation of Trailer-Vehicle

Articulation Angle Using 2D

Point-Cloud Data

2.1 Chapter Abstract

In the quest to achieving more autonomous features on articulated vehicles, such

as backing up and trailer stability, the vehicles need to keep track of the angle of

articulation for proper control. While there are existing approaches which estimate

The material contained in this chapter was previously published in the 2019 IEEE Radar Conference
(RadarConf) Proceedings [2]. The work was supported by Michigan Technological University and
the Dave House Family Foundation.
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the angle, most of the methods require a sticker on the trailer or additional hardware,

which adds to the many-sensors already on the vehicle. This study considers a typical

single-trailer articulation. Our approach takes advantage of the existing radar sensors

at the rear side of the vehicle. Fortunately, most vehicle manufacturers follow this

design. This prevents sourcing additional hardware for the task. We demonstrate the

estimation approach with simulated point clouds for one of the radars at the rear of the

vehicle with a view to implementing the approach on other sensors. The methods used

are ordinary least squares (OLS), principal component analysis (PCA), and maximum

likelihood estimation (MLE). Based on the simulation results, all three methods were

comparable for point clouds having a low variance along the vehicle’s longitudinal axis.

When the variance along the axis was increased, OLS had a reduced performance while

the PCA and the MLE methods retained their comparable performance. Meanwhile,

the MLE method required more computational resource than the PCA method.

2.2 Introduction

Articulated vehicles have attracted some recent autonomous driving research due

to the potential to automate many driver-assistance features on them. A common

challenge is that the vehicles are susceptible to unstable motions with varying trailer

dynamics [4]. Such instabilities can result in a road crash. A well-known metric used

in tracking the trailer’s stability is the articulation angle, the angle θ in Fig. 2.1, with
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Figure 2.1: Plan view of a typical trailer-vehicle articulation.

which the trailer aligns with the vehicle. The metric is also required in applications

involving automated backing up of the trailer. Therefore, the articulation angle is an

important feature to study.

Previous works including [5] and [6] provided ways to measure the angle, however their

methods require a new hardware or sensor on the vehicle. A more recent work [7],

again requires a marker or sticker to be placed on the trailer for the angle estimation.

It also introduced a computing unit together with a camera display of the tracked

trailer unit to the driver. This then requires that the stickers be available before the

angle can be estimated. In [8], a controller design based on fuzzy logic was proposed to

track the angle. The design relies on the velocity dynamics on the hitch ball (therein

referred to as the fifth wheel) and a yaw rate sensing of the trailer unit. Similarly,

[9] considered the articulation joint’s velocity and yaw dynamics to design a state

observer for the angle estimation. The approach would also require a sensor for the

trailer dynamics.
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Generally, most methods require additional hardware, a computing unit, or a sticker.

Meanwhile, a typical autonomous vehicle already has many sensors installed, with

large amounts of data from the different sensors to process and fuse together. The data

processing is also required to be done in quick succession for time-critical decisions

to be made. Therefore, being able to estimate the articulation angle with neither an

increase in sensors nor a reliance on a special sticker is a promising method, similar to

the implementation in [10]. The invention in [10] performed sensor fusion to estimate

the angle using the data obtained from sensors which could comprise of light detection

and ranging sensor (LiDAR), radar, camera, and ultrasonic transducers. However,

the invention required the trailer’s dimensions for the estimation. This can be a

limiting factor when another trailer is being towed such that the trailer’s dimensions

change.

We propose the angle estimation with sensor point clouds without needing the di-

mensions of the trailer. We also take advantage of the existing sensing devices on

a typical autonomous vehicle. Most designs already include sensors at the rear of

the vehicle. We demonstrate the estimation approach with one of the sensors’ simu-

lated point cloud data. While we considered an automotive radar, the same approach

could be used with multiple sensing devices for their point clouds with the aim of

implementing a sensor fusion.
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2.3 Model

A typical trailer-vehicle articulation is presented in Fig. 2.1. The physical model is

based on the general vehicular designs which include sensors at the rear side. The

sensors, radars in this case, detect the spatial locations of point scatterers, which

include the range and angle information. A set of those detections is referred to as

the point cloud. While the radar manufacturer’s proprietary algorithms may not be

available to the public, the detections are available for use. An example radar that

can provide 2D point clouds from point scatterers is one of NXP’s latest sensors, the

MR3003 transceiver [11]. The trailer, in the figure, rotates about the articulation joint

J , from the vehicle-aligned position through the angle of interest θ, herein referred to

as the articulation angle.

We simulated point clouds for Radar 1 represented in Figs. 2.2 and 2.3. The radar,

as illustrated, has two point clouds before and after the trailer’s rotation. While it

is likely that some points could be false alarms, classification algorithms such as de-

scribed in [12] could be employed to separate the possible false alarms. However, the

scope of this work is to provide a theory into analyzing point clouds for angle estima-

tion. Therefore, the problem statement reduces to the estimation of the articulation

angle given the before-rotation and after-rotation point clouds.
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Figure 2.2: A depiction of point cloud returns having a low variance on
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For an ease in notation, the before-rotation points shall be called reference point

cloud, and the after-rotation points called observed point cloud.

2.4 Estimation Methods

Three methods were explored as described in this section.

2.4.1 Ordinary Least Squares (OLS) Method

This method fits least-squares regression lines through the reference and observed

point clouds, and computes the angle enclosed by the two lines. As described in Fig.

2.4, the zero-intercept regression line passes through the pivot.

Algorithm 1 Estimation via OLS
X and Y are column vectors for the x and y point-cloud coordinates respectively.

1: Determine line ŷ1 = β1x to fit the reference point cloud
2: Angle before rotation, θ1 = tan−1(β1)
3: Determine line ŷ2 = β2x to fit the observed point cloud
4: Angle after rotation, θ2 = tan−1(β2)
5: Rotation angle, θ̂ = θ2 − θ1
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r

r

Figure 2.4: A least squares regression line that fits a dataset, together
with the residual r.

Given a dataset, Dn×2, let X and Y be the first and second column vectors respec-

tively. The regression line is given by

Ŷ = βX

Residual = Ŷ − Y = βX − Y (2.1)

Cost function, C(β) = ‖βX − Y ‖2

= β2XTX − 2βXTY + Y TY

β̂ = argmin
β

(C(β))

∇β C(β) = 2βXTX − 2XTY → 0

β̂ols = (XTY )/(XTX) (2.2)
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While equation 2.2 is well known, it is provided here to communicate the effect of

the residual, in equation 2.1, on the estimation as presented in the simulation results.

The residual, also depicted in Fig. 2.4 as r, is the vertical distance from a point to the

regression line. Therefore, it is rotation-variant. Algorithm 1 describes the estimation

procedure using βols for β1 and β2 as necessary.

2.4.2 Principal Component Analysis (PCA) Method

This method compares the principal vector-components in the point clouds and com-

putes the angle enclosed by the vector pairs.

Algorithm 2 Estimation via PCA
Dataset, D has two columns; the point-cloud’s x coordinates in the first column
and the y coordinates in the second.
SVD(D) = UΣV T

1: Compute V12×2 with the reference point cloud
(V12×2 contains two orthogonal vectors a1 and b1)

2: Compute V22×2 with the observed point cloud
(V22×2 also contains two orthogonal vectors a2 and b2)

3: Rotation angle, θ̂ is the signed angle enclosed by either vector pair a1 and a2 OR
by the pair b1 and b2

Given a dataset, Dn×2, SVD(Dn×2) = UΣV T is a rotation-scale-rotation operation.

We are interested in the rotation in 2D space as provided by the matrix V . The

matrix contains two orthonormal vectors. The linear span of one of the vectors is a

total least squares’ fit to the dataset as illustrated in Fig. 2.5.
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Figure 2.5: Two principal vectors in a dataset. One of the vectors’ span is
a total least squares’ fit, unto which residual r is projected.

The residual to the line of fit, also represented in Fig. 2.5 with notation r, is an

orthogonal projection to the line, having components in both coordinates. Due to

this, the residual is rotation-invariant, which is an advantageous estimation feature

for the PCA-approach as presented in the simulation results.

Using algorithm 2, the angle estimate is the signed angle enclosed by the vectors pairs.

Either pair described in the algorithm suffices, since V is unitary with orthonormal

vectors. Computing the signed angle is required to preserve the direction of rotation,

i.e. the rotation angle from the reference point cloud to the observed point cloud.

PCA algorithm on the dataset is equivalent to implementing the algorithm on the

covariance matrix, since SVD(DTD) points to the same matrix V . Therefore, directly

implementing it on the dataset saves some computation resources.
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2.4.3 Maximum Likelihood Estimation (MLE) Method

In the absence of any experimental data, we do not have a model for the locations

of the scatterers on the trailer as seen by the radar. Therefore, for the purpose of

this simulation, we assume a bivariate Gaussian model for the point scatterers. This

assumption relates to the maximum likelihood method which requires the model for

both simulation of the points and estimation. Meanwhile, the first two methods

(OLS and PCA) do not rely on the model for estimation. We shall explore the point

scatterers with real experiments in future work.

Algorithm 3 Estimation via Maximum Likelihood
Dataset, X2×(n+p) = [Xa2×n , Q

T
(θ)Xb2×p ]

1: Compute the sample mean, µ̂(θ) using equation 2.3
2: Compute the sample covariance, K̂(θ) using equation 2.4
3: Form the likelihood with equation 2.9
4: θ̂ = argmax

θ
(− log[det(K̂(θ))])

It is well known that the mean and covariance estimates of the independent and

identically-distributed (i.i.d.) multivariate Gaussian distribution are the sample mean

and the biased sample covariance respectively [13].

Sample mean, µ̂s =
1

n

n∑
i=1

xi (2.3)

Biased sample covariance,

K̂s =
1

n

n∑
i=1

(xi − µ̂s)(xi − µ̂s)T (2.4)
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We form a dataset of i.i.d. column vectors

X2×(n+p) =
[
Xa2×n , Q

T
(θ)Xb2×p

]

where Xa2×n is the reference point cloud and Xb2×p is the observed point cloud.

Using equations 2.3 and 2.4,

µ̂ =
1

n+ p

n+p∑
i=1

xi (2.5)

K̂ =
1

n+ p
S (2.6)

where, S =

n+p∑
i=1

(xi − µ̂)(xi − µ̂)T (2.7)

When θ is known, there are closed-form expressions for µ̂ and K̂, but θ is unknown.

Therefore, stepping θ through a set hypothesized angles would estimate µ̂ and K̂ for

all the θ steps. The expression QT
(θ)Xb2×p in algorithm 3 performs an inverse rotation(

Q−1
(θ) = QT

(θ)

)
on the observed points, stepping θ through a range of angles. We seek

the combinations of µ̂ and K̂ that maximizes the likelihood, when the combined point

cloud has the least spread. Maximizing the likelihood with respect to θ gives the µ̂

and K̂ combination.
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Figure 2.6: Left : An illustration of two point clouds. The reference point
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circles. Right : The log likelihood is maximized when the observed point
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The log likelihood,

l(θ,µ̂,K̂) = −n+ p

2
log
[

det(K̂)
]
− 1

2
tr
[
K̂−1S

]
+ constant

where, S = (n+ p)K̂ from (2.6)

= −n+ p

2
log
[

det(K̂)
]
− n+ p

2
tr
[
K̂−1K̂

]
+ constant

tr
[
K̂−1K̂

]
= tr

[
I2×2

]
= 2

= −n+ p

2
log
[

det(K̂)
]

+ constant (2.8)

Maximizing the log likelihood l(θ,µ̂,K̂) with respect to θ gives the angle estimate

θ̂mle = argmax
θ

(
− log

[
det
(
K̂(θ)

)])
(2.9)

The illustration in Fig 2.6 shows the log likelihood’s response as it steps θ through
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the range
(−π

2
, π

2

)
rad. The function goes maximum when the the two point clouds

are superimposed.

2.5 Simulation

We assume that the point cloud is bivariate Gaussian distributed i.e. the points

were sampled from the distribution. Two cases were explored; without re-sampling,

and with re-sampling. In the without re-sampling case, the observed point cloud is

simply the same reference point cloud rotated by θtruth. It is reasonable that in some

situations the position of the point scatterers on the trailer could be the same or

vary a little. For the with re-sampling case, the observed point cloud is the result

of re-sampling a new cloud from the Gaussian distribution and rotating with θtruth.

The number of points n in the reference point cloud and the number of points p in

the observed point cloud may also differ in this case. The pivot, J in the simulation,

is set to be at the origin i.e. coordinate (0, 0).
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2.6 Results and Cost Analysis

2.6.1 Discussion of Results

2.6.1.1 Lower cloud variance on vehicle’s longitudinal axis

In this simulation, the point clouds have a lower variance along the vehicle’s longitu-

dinal axis as depicted in Fig. 2.2. The bivariate Gaussian parameters used are

Mean =

−60

−61

 cm Covariance =

100 0

0 50

 cm2

such that the standard deviation along the longitudinal axis is
√

50cm ≈ 7.07cm.

Considering three-standard deviations up/down the mean, the point cloud spans

about six standard deviations (42.42cm) along the axis.

Without re-sampling the point cloud, both the PCA and the MLE methods estimated

θtruth perfectly for all the simulation runs as presented in Fig. 2.7. However, the least

squares approach could not, due to the rotation-variant residuals given in equation 2.1

and depicted as r in Fig. 2.4.
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Figure 2.7: Without re-sampling
the points: Monte Carlo simulation
with 1000 runs, n = p = 20, θtruth =
25◦.
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Figure 2.8: With re-sampling of
points: Monte Carlo simulation with
1000 runs, n = 20, p = 22, θtruth =
25◦. Point cloud has low variance
along the vehicle’s longitudinal axis.

With re-sampling of the points, the estimation would have some bias, the results are

presented in Figs. 2.8, 2.9, and 2.10. The error bars in Fig. 2.9, computed from the

standard deviations, put the results as statistically equivalent.
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Figure 2.9: With re-sampling of points: Mean estimated angle for 1000
simulation runs, n = 20, p = 22, θtruth = 25◦. Point cloud has low variance
along the vehicle’s longitudinal axis.
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Figure 2.10: Estimation deviations for the simulation presented in Figs.
2.8 and 2.9.
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2.6.1.2 Higher cloud variance on vehicle’s longitudinal axis

Sometimes the point scatterers on the trailer can be more dispersed, such that the

returns have a higher variance along the vehicles’ longitudinal axis as depicted in

Fig. 2.3. Given this consideration, the Gaussian parameters were adjusted, without

changing the number of points, as follows:

Mean =

 −60

−100

 cm Covariance =

100 0

0 400

 cm2

such that the standard deviation along the longitudinal axis was increased to 20cm.

This makes the point cloud span about six standard deviations (120cm) along the

axis.

This was done with re-sampling of the point cloud. The result, as presented in

Figs. 2.11 and 2.12, indicate that the PCA and MLE methods retain their comparable

performance, while the least squares approach is more susceptible to the change in

point cloud variance along the vehicle’s longitudinal axis.
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Figure 2.11: With re-sampling of points: Mean estimated angle for 1000
simulation runs, n = 20, p = 22, θtruth = 25◦. Point cloud has a higher
variance along the vehicle’s longitudinal axis.
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Figure 2.12: Estimation deviations for the simulation presented in Fig.
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Figure 2.13: Computation time averaged over 1000 runs, n = 20, p = 22.

2.6.2 Computational Cost Analysis

The simulation was implemented with Wolfram’s Mathematica [14] on a 2.50GHz

CPU, 12GB RAM computer. The likelihood in equation 2.9 was numerically maxi-

mized using Mathematica’s NMaximize[] function with the DifferentialEvolution

method.

Both the PCA and the MLE methods have comparable performance based on the

simulation results. However, MLE’s performance comes with a cost. Its major com-

putation is spent in maximizing the likelihood such that every value of θ creates a

QT
(θ) on which both µ̂(θ) and K̂(θ) also depend. Therefore, stepping the likelihood

through the range of angles requires more computational resources.
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Meanwhile, computational complexity and communication bandwidth are big con-

siderations on autonomous vehicles, which already have a large amount of data to

process from other sensors. Therefore, PCA could be a candidate for implementa-

tion due to its faster computation, relative to the MLE method, without a significant

reduction in performance, and non-reliance on a distribution for estimation.

2.7 Conclusion

This work presented a theory for estimating a trailer’s articulation angle using the

point cloud data obtained from sensors which are already at the rear of the vehicle.

We simulated point clouds for one of the sensors, a radar, with a view to implementing

the approach on other sensors. Three methods were presented and their simulation

results shown. Importantly, the methods neither introduced additional hardware nor

stickers for the estimation.
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Chapter 3

Trailer Angle Detection Using Radar

Point Clouds

3.1 Chapter abstract

Algorithms for trailer control and backup need to keep track of the trailer angle,

also known as the hitch angle, and therefore the angle needs to be determined. In

this work, we estimate the angle using 2D point clouds collected from two automo-

tive radars installed in the tail light fixtures of a truck which attaches to a trailer

The material contained in this chapter has been submitted to the IEEE Journal of Selected Topics in
Signal Processing (Special Issue on Recent Advances in Automotive Radar Signal Processing). The
work was supported by the Ford Motor Company as an Alliance Project under Ford/MTU Master
Agreement #83437205.
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at the truck’s hitch ball. The detection threshold of each radar is reduced to allow

more detections of the trailer and consequently, more false positives are introduced.

A rotational point set registration algorithm is presented to match pairs of the radar

detection sets as the trailer rotates. The objective is to differentiate the trailer de-

tections from the false positives. Two estimation methods are provided based on the

registration algorithm, one which estimates the angle relative to a zero-angle position

of the trailer, and another method which introduces an additional measurement at

a nonzero-angle position. Angle estimates are refined through an application of the

orthogonal Procrustes algorithm and a Kalman filter. The experimental results and

computational cost analysis suggest that both methods are feasible for deployment.

3.2 Introduction

The detection of trailer angle or hitch angle has been of interest to the automotive

industry through the past few decades. The angle (illustrated as θ in Figure 3.1) is

needed in various trailer control applications such as backing up and the prevention

of trailer jackknife.

Due to this significance, multiple patents have been filed by researchers and auto-

motive organizations, few are [5, 7, 10, 15–21]. The methods described in [5, 15, 16]

require a sensing hardware to be integrated with the hitch ball in order to estimate
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Figure 3.1: A truck and trailer diagram showing the trailer angle (or hitch
angle) θ which is to be estimated.

the angle. In [17], ultrasonic sensors were installed at the vehicle rear and reflectors

were placed on the trailer surface. The distances measured between the sensors and

the reflectors were used to estimate the angle. A short-range communication device

was installed each on the truck and trailer in [18]. Either one of the devices has its

antenna spaced-apart so that the trailer angle can be determined using signal pro-

cessing methods. There were also vision-based approaches. One or more cameras

were installed at the vehicle rear to capture images from the trailer which were then

processed to determine the angle [7, 19–21]. A special sticker was placed on the trailer

in [7] to be tracked by the rear camera. In [10], existing sensors on the truck such

as radar, camera, and ultrasonic sensors were combined for the estimation. However,

the method requires some trailer dimensions.

This problem has also attracted the attention of researchers. In [22], the angle was es-

timated by comparing different templates of the trailer images captured by a camera.

The method was recommended for trailers having plain fronts. In [23], a wide-angle
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camera was installed at the vehicle rear. The video frames from the camera were pro-

cessed to estimate the angle. The approach provided in [9, 24] used a state observer

for the estimation. The observer requires some signals from different sources such

as yaw rate, lateral acceleration, and wheel angle sensors. In addition to the use of

signals, [24] also requires certain dimensions of the vehicle and trailer.

There are some challenges with most of the existing methods. Installing another

hardware sensor on the vehicle or trailer increases the production cost of the system.

It is also well known that vision-based sensing (and lidar if considered) is (are) not

reliable in extreme weather conditions [3]. Also, the camera-sticker technology does

not encourage easy trailer replacement when a spare sticker becomes unavailable.

Hence, like in [10], we recommend estimating the angle using existing sensors installed

on the vehicle, we considered radars in this work. This approach is plausible since

radars perform well in extreme weather conditions [3] and because no additional

sensor or sticker will be required. Also, our approach does not require the dimensions

of the trailer.

This paper is arranged as follows: section 3.3 describes the problem statement and

the experimental apparatus, section 3.4 gives an account of two estimation methods,

estimation results from both methods are discussed in section 3.5 (with computational

analysis), some more results are provided in section 3.6, and conclusion presented in

section‘3.7. These are the general notations used: a in bold lower case is a column

vector, A in upper case is a matrix, and T represents a transpose operation.
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Figure 3.2: Left : The experimental apparatus consists of a trailer coupled
with a truck mock-up. The inset image shows a Vernier rotary motion
sensor installed on the hitch ball to read the ground truth, it was not used for
the estimation. Right : The driver and passenger radars (encircled) installed
on the sides of the truck mock-up. A rear gate camera (shown in square
bounds) was also installed on the mock-up for trailer visualization, it was
not used for the estimation.

3.3 Problem Statement and Experimental Appara-

tus

3.3.1 Problem Statement

Modern vehicles have blind spot information system radars installed in similar lo-

cations as the two radars illustrated in Figure 3.1. We want to estimate the trailer

angle θ (shown in the figure) using only the detections obtained from both the driver

radar (DR) and the passenger radar (PR). As a constraint, we like to perform the

estimation without introducing a new hardware or sensor.
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Table 3.1
Waveform consideration

Parameter Value
Maximum range 6.5m

Range resolution 4.1cm

Maximum velocity 32cm/s

Velocity resolution 2cm/s

3.3.2 Experimental Apparatus

The apparatus was constructed as illustrated in Figure 3.2. The truck mock-up is

simply a truck’s rear gate mounted on a three-wheel platform. We simulated the

trailer’s rotation by actually rotating the truck mock-up instead, while the trailer

was fixed in its position. This was because the platform would be displaced if the

trailer rotated. Therefore, trailer rotation in this paper refers to this procedure.

Two radar modules were installed on the sides of the mock-up. We used the TI

AWR1642BOOST radar [25]. It has 2 transmit and 4 receive channels. There is an

available bandwidth of 4GHz in the 76 − 81GHz band. In multiple-input multiple-

output (MIMO) mode, its 8 virtual array elements spaced at half-wavelength apart

give a half-power transmit beamwidth of 0.25rad ≈ 14.3◦ (in azimuth) at boresight.

The MIMO configuration is for each radar having collocated elements. No attempt

was made to synchronize the configuration on both radars. Meanwhile, the radar

detections are in range, angle, and Doppler. We do not process the raw radar data.
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The considerations used in designing the frequency-modulated continuous-wave

(FMCW) waveform are provided in Table 3.1. We reduced the constant false alarm

rate (CFAR) range detection threshold through the radar configuration file to 3dB

to allow for more trailer detections. The waveform considerations and the detection

threshold are not guaranteed to be optimal in all situations and with all radars.

We wanted to be sure that the pulses received by a radar was transmitted by the

same radar. Therefore, we energized the radars sequentially (one after the other) for

data collection.

3.4 Estimation Methods

3.4.1 Method 1 - Detector block and the Kalman filter

Referring to the illustration in Figure 3.3. The detector block (DB) has two point set

inputs: Xr
0 ∈ R2×n is the zero-degree set containing the detections obtained when the

trailer is directly behind the truck and Y r ∈ R2×m is the set containing the detections

obtained after trailer rotation. Both are in radar coordinates. The truck can be

driven in a straight line to obtain Xr
0 . The following describes the three modules in

DB and the Kalman filter.
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Figure 3.3: Method 1 - Detector block and the Kalman filter.

Figure 3.4: A schematic diagram of the truck and trailer illustrated in
Figure 3.1. The trailer rotates about the hitch ball (pivot P) at true angle
θ with respect to the zero-degree position. The parameters α and β are the
radar installation angles, w1 and w2 are the lateral distances from the truck
center to PR and DR respectively, and v is the perpendicular distance from
the hitch ball to the lateral line connecting the radars.

3.4.1.1 Transform points onto pivot P and obtain ROI points

The trailer rotates about the hitch ball (pivot P ). Therefore, let us transform the

radar detections onto a common Cartesian coordinate having its origin at P . Let

Q(α) =

cos(α) − sin(α)

sin(α) cos(α)
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Figure 3.5: Data collection before trailer rotates i.e. at the zero-
degree trailer angle. Both radar detections are transformed onto a common
Cartesian coordinate having its origin on the hitch ball (pivot P ). The color
bars indicate signal strengths of the detections. The image shows the trailer,
it is not used for the estimation.

Figure 3.6: Data collection after trailer rotates. Both radar detections
are transformed onto a common Cartesian coordinate having its origin on the
hitch ball (pivot P ). The color bars indicate signal strengths of the detec-
tions. The image shows the rotated trailer, it is not used for the estimation.
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be a rotation matrix at an angle α (rotating a vector counter-clockwisely if α is

positive), Srpr and Srdr respectively be the PR and DR detections represented in range-

azimuth coordinates, Sppr and S
p
dr be the transformed PR and DR detections onto the

common Cartesian coordinate at origin P , and 1 be the column vector of 1’s of an

appropriate size. The rotation and translation parameters (α, β, w1, and v) used in

equations (3.1) and (3.2) are described in Figure 3.4. The detections are transformed

onto pivot P as follows:

Sppr = Q(α)Śrpr −

w1

v

1T (3.1)

Spdr = QT
(β)Śrdr −

−w2

v

1T (3.2)

where Śrpr and Śrdr are the Cartesian coordinate representations of Srpr and Srdr respec-

tively. The transformations in (3.1) and (3.2) will be performed in two instances: for

the detections obtained before trailer rotates (i.e. the trailer lies at the zero-degree

position) and for those obtained after trailer rotates.

Before trailer rotates: If the radar data was collected when the trailer was directly

behind the truck i.e. at the zero-degree position, then the detections before transfor-

mation make the zero-degree point set, Xr
0 :=

(
Śrpr, Śrdr

)
. This is the first input set

to Method 1 as described in Figure 3.3. An illustration of the transformed detections
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Xp :=
(
Sppr,S

p
dr

)
having origin at P is provided in Figure 3.5.

After trailer rotates: Likewise, if the radar data was collected after trailer rotates,

then the detections before transformation make the after-rotation point set, Y r :=(
Śrpr, Śrdr

)
. This is the second input set to Method 1 as described in Figure 3.3. The

transformed set of detections Y p :=
(
Sppr,S

p
dr

)
having origin at P is illustrated in

Figure 3.6.

It is necessary to only process the detections found within an area in which the trailer

can be found and discard the obvious non-trailer detections. Hence, we define a region

of interest (ROI) as the space in which the trailer occupies. The ROI used in this work

is the space within ranges
[
1, 4
]
m of the hitch ball (pivot P ). This was chosen based

on the form of the trailer used in this work. The points in the after-transformation

sets Xp and Y p (both having origin at P ) are then checked for existence in the ROI.

For each set, let the detections found within the ROI be passed to the output of the

module for further processing, Xp → X and Y p → Y . The output sets X ∈ R2×n

and Y ∈ R2×m respectively contain the detections found within the ROI before and

after the trailer rotates. They will be processed to estimate the trailer angle.
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Figure 3.7: An illustration of the rotational point set registration
with a minimal example. Left : Take sets X and Y as the trailer detections
at the zero-degree angle and after rotation respectively where points 6 and
7 are extra detections after rotation. Right : Search for angle ψ̂ which aligns
Q

(ψ̂)
X and Y . The corresponding pairs 1, 2, 3, 4, and 5 are obtained using

the condition in (3.4).

3.4.1.2 Point set correspondence

This is a major component of the detector block. The basic operating principle used

in this work is in the reduction of the radar threshold to obtain more detections of

scatterers from the trailer. Consequently, this increases the false positives. Mean-

while, the true trailer detections are persistent while the false positives are not. The

idea then is to identify the persistent detections across different point sets. Hence,

estimating the trailer angle reduces to finding the rotational transformation of the

persistent detections in the sets X and Y . This is equivalent to finding the corre-

sponding points in both sets through point set registration methods, a review of the

literature is provided in [26].
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We obtain the corresponding points from X =
(
xi
)n
i=1

and Y =
(
yj
)m
j=1

by using the

rotational point set registration given in Algorithm 4 and illustrated with a minimal

example in Figure 3.7. We did not consider the signal strengths of the detections in the

registration algorithm because the signal strengths vary considerably with rotation.

The algorithm was motivated by the iterative closest point (ICP) [27]. The ICP

considers both rotation and translation parameters while Algorithm 4 only considers

rotation because the trailer is constrained for rotational motion only.

Algorithm 4 Rotational point set registration
1: function Correspondence(X, Y, searchRange, r)
2: Search for angle ψ̂ as in (3.3)

. We used coarse-to-fine search in searchRange over 5 divisions

3: Obtain corresponding sets Xc and Yc based on (3.4)
4: return ψ̂, Xc, Yc
5: end function

The steps in Algorithm 4 are described as follows. The algorithm searches for a

rotation angle ψ̂ which aligns Q(ψ̂)X and Y .

ψ̂ = argmin
ψ

n∑
i=1

d
(
Q(ψ)xi,ynearest

)
(3.3)

where d(.) is a choice distance function, and ynearest ∈ Y is the nearest neighbor to

Q(ψ)xi with respect to the distance function. We used the Euclidean distance metric

in this work. Therefore, d(x,y) := ‖x − y‖ where ‖.‖ is the 2-norm. The search is

conducted within the angle bounds provided in searchRange. We used the coarse-

to-fine search approach to achieve (3.3) by first splitting searchRange coarsely into
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a number of divisions (we chose 5 divisions). We further split the division where the

minimum exists and iterate into finer divisions until convergence.

After obtaining angle ψ̂, we proceed to match the corresponding points in the aligned

sets
(
Q(ψ̂)X, Y

)
. Alignment here does not interpret complete overlapping of the

points since the detections are noisy and quantized in space (illustrated in Figure 3.7).

The registration algorithm assumes that two points matched for correspondence rep-

resent the detections from closely-located scatterers on the trailer before and after

trailer rotation. The amount of closeness between the scatterers is defined in (3.4) as

a basis for correspondence matching.

Let yclosest ∈ Y be the nearest neighbor to the rotated pointQ(ψ̂)xi. Use the condition,

d
(
Q(ψ̂)xi, yclosest

)
≤ r (3.4)

to match
(
xi, yclosest

)
as a pair of corresponding points, where r is the radius or

scatterer closeness parameter defined by the user. If a point in Y is paired in more

than one instance, keep the pair of points that has the least distance metric. This

ensures a one-to-one mapping. Save each point in the matched pair respectively in Xc

and Yc such that the ith points in Xc and Yc have correspondence. Hence, if there are

p unique matches, the output corresponding sets have the same size Xc, Yc ∈ R2×p.
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3.4.1.3 Constrained orthogonal Procrustes solution

Distance-based point set registration methods often require a least squares refinement

of a transformation which was initially obtained for the purpose of finding the pairs

of points that have correspondence [26]. We implement the same concept by solving

for a least squares refinement of the search angle ψ̂ obtained in (3.3) in the Euclidean

distance sense, with which the corresponding sets Xc and Yc were found.

Therefore, we are interested in the best rotational transformation from Xc to Yc in

the least squares sense to obtain angle φ̂. The problem is formulated as follows:

φ̂ = argmin
φ
‖Q(φ)Xc − Yc‖F

subject to

QT
(φ)Q(φ) = I, det

(
Q(φ)

)
= +1

where ‖.‖F is the Frobenius norm. The constraints ensure that the rotation matrix

Q(φ̂) does not include reflection. This is the constrained orthogonal Procrustes prob-

lem [28][29]. The solution, which is based on the singular value decomposition (SVD)

of YcXT
c ∈ R2×2, is presented in Algorithm 5.

43



Algorithm 5 Constrained orthogonal Procrustes solution
1: function CoProcrustesAngle(Xc, Yc)
2: WΣV T ← SVD(YcX

T
c )
. Let the singular values in Σ be arranged in descending order

3: Q(φ̂) ← W

[
1 0
0 det(WV T )

]
V T

. The diagonal matrix ensures the determinant det
(
Q(φ̂)

)
= +1

4: Obtain angle φ̂ from the 2× 2 rotation matrix Q(φ̂)

5: return φ̂
6: end function

Trailer tracking

We track the trailer in motion to narrow down the correspondence search region used

for the procedure in (3.3) and to prevent possible minimums outside the region. In

this experiment, the trailer was initialized directly behind the truck (i.e. at the zero-

degree position) before being rotated. Take subscript k as the time step. Let us define

the vector of angle search range, passed to Algorithm 4, as follows:

searchRange :=
[
− δ, δ

]
, for k = 1 (3.5)

searchRange :=
[
φ̂k−1 − δ, φ̂k−1 + δ

]
, for k > 1 (3.6)

where φ̂k−1 is the most recent orthogonal Procrustes observation. We choose to

perform the tracking with respect to the Procrustes angle φ̂ because it is a least

squares refinement of ψ̂. The angle parameter δ is defined by the user. The parameter

should be chosen based on the dynamics of the trailer rotation. For instance, backing
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up applications may consider a small value since the trailer is not swinging rapidly.

A small value can be seen as a measure of confidence that the trailer angle is really

within the range. However, setting the value too small will result in the propagation

of error. We varied δ in the results section.

3.4.1.4 Kalman filter (for Method 1)

Here, we use the Kalman filter to smooth the two angle estimates φ̂ and ψ̂ over time.

The angles will be referred to as observations. The filter, a well known tool, estimates

the state of a system using noisy observations recorded over time with respect to the

system’s dynamics (in this case the trailer’s rotation). The observation errors are

assumed to be Gaussian. We used the constant angular acceleration motion model of

the form,

ϕ = ϕ0 + ϕ̇0∆T +
1

2
a(∆T )2 (3.7)

ϕ̇ = ϕ̇0 + a∆T (3.8)

where ϕ0 and ϕ̇0 are respectively the initial angular displacement and velocity, ϕ and

ϕ̇ are respectively the angular displacement and velocity after the time interval ∆T ,

and a is the constant angular acceleration through the time interval.
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Define a two-element state vector as ϕ :=

ϕ
ϕ̇

 for the angular displacement and

velocity quantities. From (3.7) and (3.8), the linear time-invariant discrete state-

space model is given as:

ϕk = Aϕk−1 +Gak−1 (3.9)

yk = Cϕk + vk (3.10)

where

A =

1 ∆T

0 1

 , G =

 1
2 (∆T )2

∆T

 , yk =

φ̂k
ψ̂k

 , C =

1 0

1 0


with (3.9) as the state transition equation and (3.10) as the measurement equa-

tion. The system is observable since the observability matrix

 C

CA

 is full-ranked, at

∆T 6= 0.

Without a control input, Gak−1 is modeled as the process noise. The acceleration

term ak−1 ∼ N (0, σ2
k−1) so that the covariance matrix Qk−1 := cov(Gak−1) is given as

Qk−1 = GGTσ2
k−1 =

1
4(∆T )4 1

2(∆T )3

1
2(∆T )3 (∆T )2

σ2
k−1 (3.11)
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Similarly, the measurement noise vk ∼ N (0, Rk). We set the variance of the accel-

eration term in (3.11) as σ2
k−1 = 1(deg/s2)2 to obtain Qk−1 , ∀k and estimated Rk

directly from the observations using a similar 1heuristic method described in [30].

Let ϕ̂k|k−1 denote the predicted state at time step k without including the measure-

ment at k and Pk|k−1 be the corresponding state covariance. Also, let ϕ̂k|k denote

the estimated state at time step k including the measurement at k and Pk|k be the

corresponding state covariance.

The trailer was kept stationary directly behind the truck (the zero-degree position)

at the initialization stage. Thus, we initialized the state distribution as

ϕ̂0|0 =

0

0

, P0|0 =

0.01 1

1 0.01

.
The diagonals of P0|0 show a high confidence about the initialized state while keeping

the matrix positive definite. The two steps of the filter are given below with equations

for time step k ≥ 1:

(a) Prediction step (a-priori):

ϕ̂k|k−1 = Aϕ̂k−1|k−1

Pk|k−1 = APk−1|k−1A
T +Qk−1

1We used the exponential moving average smoothing, one of the options provided in [30].
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(b) Update step (a-posteriori):

gk = yk − Cϕ̂k|k−1

Sk = CPk|k−1C
T +Rk

Kk = Pk|k−1C
TS−1

k

ϕ̂k|k = ϕ̂k|k−1 +Kkgk

Pk|k = (I −KkC)Pk|k−1

where ϕ̂k|k−1 and Pk|k−1 are the prior state estimate and covariance respectively, gk

is the innovation, Sk is the innovation covariance, Kk is the Kalman gain, ϕ̂k|k and

Pk|k are the posterior state estimate and covariance respectively.

The kth Kalman filter output is

θ̂k :=
[
1 0

]
ϕ̂k|k .

The vector of estimation results θ̂ =
(
θ̂k
)
∀k will be presented in section 3.5.
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Figure 3.8: Method 2 - Augmented detector block and the Kalman filter.

3.4.2 Method 2 - Augmented detector block and the Kalman

filter

Let us refer to a ‘reference set’ as the set to which the after-rotation set Y r is being

compared for rotation estimation. Method 1 has Xr
0 as the zero-degree reference set.

The set Y r is always compared with Xr
0 . This is too much reliance on Xr

0 . The

method has one pair of input sets
(
Xr

0 , Y
r
)
.

This method, illustrated in Figure 3.8, introduces another θ̂r-degree reference set Xr
θ̂r

which will be learnt online. The set Y r will be compared with two reference sets Xr
0

and Xr
θ̂r
. This reduces the reliance on Xr

0 . The method will have two pairs of input

49



sets
(
Xr

0 , Y
r
)
and

(
Xr
θ̂r
, Y r

)
for the estimation.

The following gives a description of the augmented detector block and the Kalman

filter, contained in this method.

3.4.2.1 Augmented detector block

This has two detector blocks, DB 1 and DB 2. Each is a duplicate of DB from

Method 1. Let us define the following functions for DB 1 and DB 2 respectively:

[
φ̂k, ψ̂k

]
:= ExecuteDB1

(
Xr

0 , Y
r
)

(3.12)[
φ̂sk, ψ̂

s
k

]
:= ExecuteDB2withShift

(
Xr
θ̂r
, Y r, θ̂r

)
(3.13)

where ExecuteDB1 returns the observations φ̂k and ψ̂k, and Execut-

eDB2withShift returns the shifted observations φ̂sk and ψ̂sk. Both functions will

be called from Algorithm 6.

The after-rotation set Y r is common to both detector blocks but their reference sets

differ, Xr
0 is for DB 1 and Xr

θ̂r
is for DB 2. Unlike DB 1, the outputs of DB 2 are

not relative to the zero-degree angle, but to the reference angle θ̂r. Hence, we add θ̂r

to the outputs to make observations φ̂sk and ψ̂sk, where φ̂sk is the shifted orthogonal

Procrustes angle and ψ̂sk is the shifted correspondence search angle. Together with
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the two DB 1 observations, there are four observations passed to the Kalman filter.

Executing Method 2

The steps are provided in the Method2 procedure (Algorithm 6). The procedure

keeps a library RefLib of reference angles and their associated sets, in which a can-

didate gets selected. The library is initialized with the zero-degree reference angle

and its set Xr
0 . For each time step k, we run DB 1 and DB 2 in lines 6 and 7. The

resulting four observations are passed to the Kalman filter to obtain the trailer angle

estimate θ̂sk. The library needs to be updated. We append the angle θ̂r := θ̂sk and

the after-rotation set Xr
θ̂r

:= Y r in paired association to the library if θ̂sk is approxi-

mately a multiple of an angle interval parameter θinterval . A way to identify when this

occurs is to keep track of the absolute difference of two moduli mod
(
θ̂sk−1, θinterval

)
and mod

(
θ̂sk, θinterval

)
, there will be a spike to signify the occurrence. This can be

interpreted as sampling the estimates around the multiples of θinterval . For example,

if θinterval = 5◦, the library will be updated when θ̂sk ≈
(
0◦,±5◦,±10◦, . . .

)
.

Running detector block 2 and learning Xr
θ̂r
online

The zero-degree reference set Xr
0 can be obtained by driving the truck in a straight

line. However, we do not expect a prior knowledge of the θ̂r-degree reference sets.
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Algorithm 6 Procedure to execute Method 2
1: procedure Method2
. Define parameters and initialize library of reference sets and angles

2: Set θdifference and θinterval

3: RefLib.angle = {0}
4: RefLib.set = {Xr

0}
5: for each k time step do
6:

[
φ̂k, ψ̂k

]
= ExecuteDB1

(
Xr

0 , Y
r
)

. Referring to (3.12)

7:
[
φ̂sk, ψ̂

s
k

]
= DB2Online

(
RefLib, Y r, φ̂k, θ̂

s
k−1, θdifference

)
. The function is provided below

8: θ̂sk ← K(φ̂k,ψ̂k,φ̂
s
k,ψ̂

s
k)

9: save estimate θ̂sk
. Add new reference angle and set to the libary

10: if θ̂sk is approximately a multiple of θinterval then
11: append θ̂r := θ̂sk to RefLib.angle
12: append Xr

θ̂r
:= Y r to RefLib.set

13: end if
14: end for
15: end procedure

1: function DB2Online(RefLib, Y r, φ̂k, θ̂
s
k−1, θdifference)

2: anglesRejected = {}
3: while 1 do
4: angleList ← RefLib.angle − anglesRejected

. Seek candidate reference angle and set

5: θ̂r ← nearest in angleList to θ̂sk−1

6: Xr
θ̂r
← set in RefLib.set associated with θ̂r

7:
[
φ̃sk, ψ̃

s
k

]
= ExecuteDB2withShift

(
Xr
θ̂r
, Y r, θ̂r

)
. Referring to (3.13)

8: if |φ̂k − φ̃sk| ≤ θdifference or θ̂r = 0◦ then
. Accept the candidate reference angle θ̂r and its set Xr

θ̂r

9: φ̂sk ← φ̃sk
10: ψ̂sk ← ψ̃sk
11: break . Exit the while loop

12: else
. Reject the candidate reference angle θ̂r and its set Xr

θ̂r

13: append θ̂r to anglesRejected
14: end if
15: end while
16: return φ̂sk, ψ̂

s
k . Shifted observations from DB 2

17: end function
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Therefore, we need to learn Xr
θ̂r

online. The online learning steps are given in the

DB2Online function (Algorithm 6). The function’s objective is to select a candidate

from the library RefLib. We want the candidate reference angle (through which the

reference set will be selected) to be nearest to the most recent trailer angle estimate

θ̂sk−1 (line 5). This is because we expect more corresponding points at small angles.

The function proceeds to execute DB 2 with respect to the candidate reference angle

and its associated set to obtain candidate observations (line 7). The observations

will either be accepted or rejected. The condition for acceptance is either that the

absolute difference of the Procrustes angle from DB 1 and the candidate Procrustes

angle from DB 2 is within a threshold θdifference (the Procrustes solutions give the

best possible rotations in least squares terms [29]) or that the zero-degree reference

angle is the candidate (line 8). Note that the reference set shifting is prone to error

accumulation since the reference angle θ̂r is an estimate of the underlying true value.

However, the comparison of the Procrustes estimates from both detector blocks using

the parameter θdifference mitigates the error accumulation effect. Upon acceptance,

the two observations φ̂sk and ψ̂sk are returned to the main procedure in Algorithm 6.

If the observations are rejected, we append the candidate reference angle to the list

of rejected angles and run the loop again. In the worst case of rejecting multiple

candidates, the algorithm reverts to the zero-degree reference angle and its associated

set such that DB 2 becomes DB 1.
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Trailer tracking in Method 2

The angle search range used by the point set correspondence module while executing

DB 1 (line 6 of Method2 in Algorithm 6) is the same as that defined in (3.5) and

(3.6). However, the search range used by the correspondence module while executing

DB 2 (line 7 of DB2Online in Algorithm 6) is defined as follows:

searchRange :=
[
− δ, δ

]
, for k = 1 (3.14)

searchRange :=
[(
φ̂sk−1 − θ̂r

)
− δ,

(
φ̂sk−1 − θ̂r

)
+ δ
]
, for k > 1 (3.15)

where θ̂r is the reference angle illustrated in Figure 3.8.

3.4.2.2 Kalman filter (for Method 2)

The filter equations described in section 3.4.1.4 remain unchanged. However, the

state-space model in (3.9) and (3.10) now has four observations:

A =

1 ∆T

0 1

 , G =

 1
2 (∆T )2

∆T

 , yk =



φ̂k

ψ̂k

φ̂sk

ψ̂sk


, C =



1 0

1 0

1 0

1 0
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The kth Kalman filter output is

θ̂sk :=
[
1 0

]
ϕ̂k|k .

The vector of estimation results θ̂s =
(
θ̂sk
)
∀k will be presented in section 3.5.

3.5 Results and Discussion

The parameters used to transform radar detections onto the common coordinate at

P (as illustrated in Figure 3.4) are α = 22.0◦, β = 20.5◦, w1 = 0.8m, w2 = 0.8m, and

v = 0.32m based on our measurements. For the point set correspondence module,

function d(.) was the Euclidean distance and the radius/proximity parameter r =

0.5m. Radar data was collected at 3Hz and saved for post-processing. The results

presented in this section are from the saved dataset. The trailer was not modified to

enhance its detection (such as having corner reflectors on it).

We used the root mean square error (RMSE) to assess estimation performance.

RMSE(θ̃) =

√
E
[(
θ̃ − θtruth

)T (
θ̃ − θtruth

)]
(3.16)

where θ̃ is the vector of angle estimates compared for performance and θtruth is the

vector of ground truth angles obtained from the rotary motion sensor (installed on

the hitch ball).
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Table 3.2
Performance metric of Method 1 estimates θ̂ (in degrees)

δ = 5◦ δ = 4◦ δ = 3◦ δ = 2◦ δ = 1◦

RMSE(θ̂) 1.15 1.12 1.05 1.08 1.26

Table 3.3
RMSE

(θ̂s)
of Method 2 estimates varied by the online set learning

parameters (in degrees)

θdifference = 1◦ θdifference = 2◦

δ = 5◦ δ = 4◦ δ = 3◦ δ = 2◦ δ = 1◦ δ = 5◦ δ = 4◦ δ = 3◦ δ = 2◦ δ = 1◦

θ i
n

te
rv

a
l

5◦ 1.11 1.05 1.10 1.05 1.19 1.18 0.98 0.99 0.79 1.44

6◦ 1.15 1.09 1.03 1.10 1.27 1.02 1.06 0.89 0.92 0.98

7◦ 1.12 1.08 1.08 0.99 1.25 1.19 1.18 0.87 0.97 1.47

8◦ 1.13 1.08 1.03 1.05 1.23 1.00 1.03 1.11 1.04 1.48

9◦ 1.12 1.11 1.04 1.04 1.33 1.20 1.16 1.07 0.81 1.20

10◦ 1.12 0.93 0.94 0.99 1.15 1.08 0.94 1.02 1.09 1.30

An increasing estimation error may be tolerated as the true angle increases. Hence,

we define a hypothetical region of tolerance as

±
(
|10% θtruth|+ 0.25◦

)
(3.17)

where 0.25◦ is the accuracy of the rotary motion sensor. Note that this region is

only defined for visualization on the result plots, it is not used to assess estimation

performance.
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Figure 3.9: The four observations from both detector blocks (DB 1 and
DB 2) in Method 2 before Kalman filtering. The unshifted observations,
ψ̂ and φ̂ are from DB 1 which are the same observations from the detector
block in Method 1, δ = 2◦, θinterval = 5◦, and θdifference = 1◦.

Trailer angle estimates for both methods

Some observations before Kalman-filtering are shown in Figure 3.9. Subsequent

plots exclude the observations for cleaner presentation. TheKalman-filtered (trailer

angle) estimates are provided in Figures 3.10 to 3.14, varied by δ. The online set

learning parameters for Method 2 were fixed at θinterval = 5◦ and θdifference = 1◦ in all

the plots.

In addition to the plots, more results are summarized in Tables 3.2 and 3.3 with

respect to the RMSE performance metric defined in (3.16). Table 3.2 (for Method 1)

is varied by δ while Table 3.3 (for Method 2) varies by δ and the two set learning
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Figure 3.10: The Kalman-filtered estimates from both methods:
Method 1 (δ = 5◦) and Method 2 (δ = 5◦, θinterval = 5◦, and θdifference =
1◦).

Figure 3.11: The Kalman-filtered estimates from both methods:
Method 1 (δ = 4◦) and Method 2 (δ = 4◦, θinterval = 5◦, and θdifference =
1◦).
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Figure 3.12: The Kalman-filtered estimates from both methods:
Method 1 (δ = 3◦) and Method 2 (δ = 3◦, θinterval = 5◦, and θdifference =
1◦).

Figure 3.13: The Kalman-filtered estimates from both methods:
Method 1 (δ = 2◦) and Method 2 (δ = 2◦, θinterval = 5◦, and θdifference =
1◦).
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Figure 3.14: The Kalman-filtered estimates from both methods:
Method 1 (δ = 1◦) and Method 2 (δ = 1◦, θinterval = 5◦, and θdifference =
1◦).

parameters θinterval and θdifference . While the plots in Figures 3.10 to 3.14 appear to

be smoother as δ reduces, we notice from the two tables that δ = 1◦ seems to result

in error propagation suggesting that the value was set too small. The RMSE values

provided in both tables are comparable. Therefore, it is not obvious which method

performs better in this experiment based on the tables. However, the methods can

be differentiated as discussed below.

Both methods rely on the point set correspondence module. The number of corre-

sponding point pairs from Method 1 are indicated as (b) in Figure 3.15 (DB 1 is the

same detector block used in Method 1). More point pairs seem to be matched for cor-

respondence at lower angles, this can be seen in a time-axis comparison of the figure

with any of the plots in Figures 3.10 to 3.14. This is expected because the method

60



Figure 3.15: (a) The number of the combined detections from both radars
found within the ROI. (b) The number of point pairs matched by the point
set correspondence module in detector block 1, (δ = 2◦). (c) The number
of point pairs matched by the point set correspondence module in detector
block 2, (δ = 2◦, θinterval = 5◦, and θdifference = 1◦).

uses the zero-degree point set for correspondence always. Therefore, lesser number of

point pairs would be matched at large angles when the trailer’s profile significantly

changes from its zero-degree position. Meanwhile, Method 2 combines DB 1 and

DB 2. The number of corresponding point pairs matched in DB 2 (indicated as (c) in

Figure 3.15) are generally more than those from DB 1. Again, this is expected because

the algorithm makes it a priority to choose a reference angle θ̂r that is close to the

most recent estimated trailer angle (lines 5 and 6 of DB2Online, Algorithm 6). This

means that the current set of radar detections is few angles away from the θ̂r-degree

reference set, which in turn yields more pairs of points to be matched for correspon-

dence. Generally, it is better to have more point pairs matched for correspondence

because the radar detections are quantized. More points would sample the quantized
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space better than with few points. Therefore, this analysis suggests that Method 2

will be favored in situations when Method 1 could only match very few points for

correspondence.

3.5.1 Computational Analysis

The methods were implemented in 1MATLAB R2019b [31] on a 2.50GHz CPU, 12GB

RAM computer. The radar data was collected at a rate of 3Hz for a duration of 104

secs. This makes 312 time steps in the dataset. We post-processed a saved dataset

which was pre-loaded into the MATLAB workspace. Therefore, the analysis presented

in this section includes the time it took the algorithm to read the detections for each

time step from the workspace.

3.5.1.1 Analysis on Method 1

As illustrated in Figure 3.3, the ‘Point set correspondence’ module is in the ‘Detector

block’ which is also in the ‘Detector block and Kalman filter’. The cumulative com-

putation time for the three items is presented in Figure 3.16. The error bar on each

item represents the standard error (standard deviation estimate) of the computation

time vector recorded over the time steps.

1We expect the algorithms to still run faster with Python and C languages.
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Figure 3.16: Average computation time for Method 1 at δ = 2◦.

Figure 3.17: Average computation time for Method 2 at δ = 2◦ and online
set learning parameters θinterval = 5◦, θdifference = 1◦.

The input sets to the point set correspondence module had different sizes depending

on the number of radar detections found within the ROI, shown as (a) in Figure 3.15.

Hence, the variation in computation time indicated by the error bars.
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The constrained orthogonal Procrustes solution, based on the SVD operation on a

2 × 2 matrix, is very cheap to compute. Radar collection at a rate of 3Hz gives

a time interval of about 333ms in between the collection. Meanwhile, the average

computation time spent on the method (Detector block and Kalman filter) ≈ 1.6ms.

This suggests that the method is feasible for deployment.

3.5.1.2 Analysis on Method 2

In Figure 3.8, the ‘Detector block 1’ is in the ‘Augmented detector block’ which is also

in the ‘Augmented detector block and Kalman filter’. The cumulative computation

time for the three items is presented in Figure 3.17. As seen with the error bars, the

variation in computation time on ‘Augmented detector block’ is noticeably more than

that of ‘Detector block 1’. This is due to the set learning process which involves a

decision to either accept or reject a candidate set during the execution of DB2Online

in Algorithm 6.

The average computation time spent on the method (Augmented detector block and

Kalman filter) ≈ 4.5ms while the time interval in between data collection is 333ms.

This again suggests that the method is feasible for deployment.
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3.6 More Results based on Supplemental Indoor and

Outdoor Data Collections1

To further test the trailer angle estimation algorithm, more experiments were carried

out in both indoor and outdoor environments. In the experiments, the transformation

parameters, based on the radar geometry illustrated in Figure 3.4, are:

α = 19.0◦, β = 20.0◦

w1 = w2 = 0.8m, v = 0.32m

The parameters were obtained by directly measuring the dimensions from the ex-

perimental apparatus with protractors and a meter rule. The radar mount angle

parameters (α, β) differ from those provided in section 3.5 because the angles were

adjusted on the apparatus to demonstrate the performance of the algorithm with the

new mount angles. The estimation results for each experiment are presented and

discussed as follows.

1The supplemental experiments were conducted after submitting the research for publication.
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3.6.1 Trailer Angle Estimates with Supplemental Indoor

Dataset

A supplemental experiment was conducted in the same indoor environment where

the experiment presented in section 3.5 was carried out. The environment has a

smooth floor surface, which makes the truck mock-up vibrate minimally during the

trailer rotation. The trailer was rotated through a range of ground truth angles

[−43.25◦ 43.00◦] and the radar data was collected at a rate of 3Hz for a duration of

190 secs. This makes 570 time steps in the dataset.

The estimates of the trailer angle are obtained with respect to the two methods dis-

cussed in section 3.4. The results based on using estimation Method 1 (δ = 2◦) and

Method 2 (δ = 2◦, θinterval = 5◦, and θdifference = 1◦) are provided in Figure 3.18.

More results are summarized with the RMSE performance metric for the Method 1

estimates in Table 3.4 and for the Method 2 estimates in Table 3.5. It can be observed

from the figure that the estimates tend to be more accurate at smaller angles than

at larger angles; the estimation errors are larger as the trailer’s true rotation angle

approaches ±40◦. The RMSE values provided in the tables for both methods seem

comparable. However, as shown in Figure 3.19, the number of point set matches ob-

tained with estimation Method 2 are in most cases more than the number of matches

obtained with Method 1. This is a similar result presented in section 3.5.
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Figure 3.18: Indoor Dataset: The Kalman-filtered estimates from
both methods: Method 1 (δ = 2◦) and Method 2 (δ = 2◦, θinterval =
5◦, and θdifference = 1◦).

Table 3.4
Indoor Dataset: Performance metric of Method 1 estimates θ̂

(in degrees)

δ = 5◦ δ = 4◦ δ = 3◦ δ = 2◦ δ = 1◦

RMSE(θ̂) 1.37 1.37 1.38 1.37 1.45

Table 3.5
Indoor Dataset: RMSE

(θ̂s)
of Method 2 estimates varied by the online set

learning parameters (in degrees)

θdifference = 1◦ θdifference = 2◦

δ = 5◦ δ = 4◦ δ = 3◦ δ = 2◦ δ = 1◦ δ = 5◦ δ = 4◦ δ = 3◦ δ = 2◦ δ = 1◦

θ i
n

te
rv

a
l

5◦ 1.35 1.34 1.35 1.32 1.41 1.67 1.33 1.33 1.33 1.38

6◦ 1.34 1.36 1.32 1.37 1.43 1.70 1.51 1.29 1.47 1.42

7◦ 1.32 1.34 1.35 1.37 1.44 1.69 1.41 1.38 1.44 1.33

8◦ 1.37 1.39 1.38 1.41 1.47 1.76 1.36 1.25 1.23 1.34

9◦ 1.37 1.37 1.32 1.40 1.46 1.67 1.35 1.35 1.44 1.41

10◦ 1.39 1.39 1.35 1.40 1.49 1.73 1.48 1.40 1.47 1.45
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Figure 3.19: Indoor Dataset: (a) The number of the combined
detections from both radars found within the ROI. (b) The number of
point pairs matched by the point set correspondence module in detec-
tor block 1, (δ = 2◦). (c) The number of point pairs matched by the
point set correspondence module in detector block 2, (δ = 2◦, θinterval =
5◦, and θdifference = 1◦).

Figure 3.20: The experimental apparatus in an outdoor environment for
data collection. The inset image shows the roughness of the ground surface.
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3.6.2 Trailer Angle Estimates with Supplemental Outdoor

Dataset

Another experiment was conducted in an outdoor environment which is shown in Fig-

ure 3.20. As depicted in the figure, the texture of the ground is rough. The roughness

makes the radars on the truck mock-up vibrate significantly during data collection.

The trailer was rotated through a range of ground truth angles [−39.00◦ 47.00◦] and

the data was collected at a rate of 3Hz for a total of 335 data samples. This gives a

duration of about 111.67 secs.

Again, the trailer angle estimates are obtained using the two estimation meth-

ods. The estimates for Method 1 (δ = 2◦) and Method 2 (δ = 2◦, θinterval =

5◦, and θdifference = 1◦) are provided in Figure 3.21. More results are summarized

using the RMSE performance metric in Table 3.6 for the Method 1 estimates and in

Table 3.7 for the Method 2 estimates. Like the indoor-based results, the number of

point set matches obtained with estimation Method 2 are in most cases more than

the number of matches obtained with Method 1, this is shown in Figure 3.22.

We observe from Figure 3.21 that the estimates seem to follow the trend of the

ground truth. However, there are some estimation errors. One of the causes of the

errors is the vibration of the truck mock-up. Vehicle vibration is known to degrade
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Figure 3.21: Outdoor Dataset: The Kalman-filtered estimates from
both methods: Method 1 (δ = 2◦) and Method 2 (δ = 2◦, θinterval =
5◦, and θdifference = 1◦).

Table 3.6
Outdoor Dataset: Performance metric of Method 1 estimates θ̂

(in degrees)

δ = 5◦ δ = 4◦ δ = 3◦ δ = 2◦ δ = 1◦

RMSE(θ̂) 2.97 1.70 1.52 1.57 1.73

Table 3.7
Outdoor Dataset: RMSE

(θ̂s)
of Method 2 estimates varied by the online

set learning parameters (in degrees)

θdifference = 1◦ θdifference = 2◦

δ = 5◦ δ = 4◦ δ = 3◦ δ = 2◦ δ = 1◦ δ = 5◦ δ = 4◦ δ = 3◦ δ = 2◦ δ = 1◦

θ i
n

te
rv

a
l

5◦ 3.22 1.75 1.63 1.61 1.76 8.98 1.52 1.39 1.52 1.78

6◦ 3.19 1.48 1.69 1.57 1.83 1.37 1.44 1.47 1.40 1.77

7◦ 3.10 1.67 1.59 1.55 1.84 10.15 1.59 1.60 1.38 1.85

8◦ 3.20 1.54 1.50 1.56 1.84 1.88 1.84 1.60 1.51 1.76

9◦ 3.25 1.56 1.58 1.54 1.69 1.65 1.42 1.39 1.39 1.79

10◦ 3.25 3.09 1.60 1.55 1.77 1.73 1.46 1.53 1.66 1.77
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Figure 3.22: Outdoor Dataset: (a) The number of the combined
detections from both radars found within the ROI. (b) The number of
point pairs matched by the point set correspondence module in detec-
tor block 1, (δ = 2◦). (c) The number of point pairs matched by the
point set correspondence module in detector block 2, (δ = 2◦, θinterval =
5◦, and θdifference = 1◦).

the performance of radar detections [32–34]. This suggests that the vibration effect

should be mitigated [35–37] before using the detections in the estimation algorithm.

We also observe from Tables 3.6 and 3.7 that the RMSE values of most estimates

are below 2.00◦. In many cases, the RMSE values which exceed 2.00◦, show that the

algorithm lost track of the trailer during motion, suggesting that radar-only data may

not be sufficient to track the trailer in motion. Hence, the radars may be fused with

another sensor such as the camera for improved tracking performance.

We include the mitigation of radar vibration effects and a consideration of multi-sensor

fusion for trailer tracking in a list of future research recommendations in chapter 7.
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3.7 Conclusion

We showed that the trailer angle (or hitch angle) can be estimated using the already-

installed radar sensors on a truck. This was implemented in experiments conducted

in both indoor and outdoor environments. The apparatus used in the experiments

consisted of two radars installed on a trailer-coupled mock-up truck. We provided two

methods for the estimation. The basic operating principle is in the reduction of the

radar threshold to obtain more trailer detections. This increased the false positives.

While the true trailer detections are persistent, the false positives are not. The two

methods used this idea to obtain the persistent detections which in turn resulted in an

estimate of the trailer angle. It is shown from the results that the estimates obtained

based on indoor dataset are more accurate than those obtained based on outdoor

dataset. The challenges observed with the outdoor dataset are presented. In general,

the results and computational cost analysis on both methods are promising and they

suggest that the estimation approach is feasible for deployment.
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Chapter 4

Least Squares Calibration of

Automotive Radar Mount Angles and

Translation Vectors

4.1 Chapter abstract

Radars are part of the sensor suite installed on modern vehicles for environmental

perception. The position and orientation of the radar must be known in order to

transform the detections from the radar coordinate system to a vehicle coordinate

The material contained in this chapter has been submitted to the IEEE Transactions on Instru-
mentation and Measurement. The work was supported by the Ford Motor Company as an Alliance
Project under Ford/MTU Master Agreement #83437205.
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system (VCS), which is a common requirement for multi-sensor fusion. We present an

extrinsic calibration method which estimates the radar mount angle and translation

vector parameters needed to transform radar detections onto the VCS. The origin

of the VCS is not constrained to be on the vehicle, it can be chosen as convenient.

The method compares the radar detections of objects such as corner reflectors and

known locations of the objects in the VCS for the estimation. It also considers the

quantization of the detections for refined estimation of the parameters. The algorithm

can be used with one or two radars installed either in front or at the back of a vehicle.

It was tested with both synthetic and radar data. The radar data experiment was

conducted using two blind spot information radars installed in the tail light fixtures

of a truck. The results obtained from the synthetic and radar data suggest that the

algorithm is feasible for deployment.

4.2 Introduction

Multiple sensors are increasingly being deployed in systems, and the sensors are often

integrated for fused measurements. This is commonly seen in multi-sensor fusion and

environmental perception applications. The measurement precision of the individual

sensors and the fused sensor network depends on successful calibration of the sen-

sors. Calibration methods can either be intrinsic or extrinsic. Intrinsic calibration is

concerned with the internal working parameters of a sensor, such as its frequency of
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operation, while extrinsic calibration considers the installation geometry. The sensor

geometry is often considered with respect to rigid transformation; sensor orientation

(due to the mount angles) and position. Hence, extrinsic calibration, which is con-

sidered in this work, deals with the spatial transformation of the detections from

different sensor coordinates onto a common coordinate system for signal processing.

There are some existing extrinsic calibration methods available for different types of

sensors. For instance, extrinsic calibration algorithms are presented for cameras in

[38, 39], for a combination of lidar and camera in [40–42], and for a combination of

laser scanner and camera in [43–46]. We consider automotive radar sensors in this

work. Unlike lidars and laser scanners which provide high density detections for signal

processing and camera image frames which contain a considerably large number of

pixels for image processing, the detections from radar sensors are sparse. The sparsity

of the radar detections tends to make the processing of radar-only data challenging.

Interestingly, the development of methods and apparatus for extrinsic calibration of

radars has attracted the interests of researchers, especially those in the automotive

industry. This has resulted in a number of research articles and patents. The method

presented in [47] requires a truck, on which radars have been installed, to be placed

on a transport system. The longitudinal axis of the truck is made to align with

that of the transport system using a track system such as a conveyor belt. The

transport system is then moved along a known path past one or more corner reflectors.
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The radar detections with respect to the corner reflectors are used to calibrate the

radars. The method in [48, 49] also requires the vehicle to be driven past a target

object. The captured data is then evaluated offline with an occupancy grid map

over a range of candidate mount angles. The optimum angle estimate is selected

based on a performance metric. The authors in [50] calibrated multiple radars with

respect to a high definition digital map intended for autonomous navigation of the

vehicle. The work considered both rotation and translation components needed for

the calibration. Two 3D radar sensors were calibrated in [51] using the difference in

locations reported by the radars for the same target. Among other considerations,

the algorithm assumes that the detections do not contain location error. It was tested

using synthetic data. The authors in [52] studied the angular misalignment of a group

of sensors using synthetic data. They estimated only the rotation components. The

sensor locations, used as translation components in the algorithm, were to be known.

In [53], an alignment apparatus having a minimum of three corner-reflector targets

was provided. The method requires the distances of the targets to the radar sensor

on the truck. It then compares the known distances of the targets with the radar

detections for calibration. The method in [54] requires at least one target with known

location to be placed in a radar’s field of view. The radar detection is then compared

with the known location to compute a correction value.

In this work, we perform an extrinsic calibration of 1two radars installed at the rear

1The algorithm can be used with one or two radars installed either in front or at the back of a truck.
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Figure 4.1: Left : A diagram showing two radars installed at the rear of a
truck and a user-defined spatial point G, which is the origin of the vehicle
coordinate system (VCS). Right : A schematic diagram showing the geometry
of the two radars with respect to the spatial point. Six parameters will be
estimated; the radar mount angles α, β and the translation parameters
w1, w2, v1, v2. The mount angles are defined with respect to the truck’s
lateral line. The perpendicular distances from G to the lateral lines which
connect PR and DR are respectively v1 and v2. The geometry is robust to
both cases where v1 = v2 and v1 6= v2.

of a truck (as illustrated in Figure 4.1) with respect to a user-defined spatial point

G. We assume that the radars have been calibrated intrinsically. The spatial point

G is the origin of the vehicle coordinate system (VCS) onto which the detections will

be transformed, the point does not have to be located on the truck. The algorithm
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requires the locations of objects such as corner reflectors (CRs) to be known in the

VCS for comparison with the radar detections of the CRs to estimate the rotation

and translation parameters needed for the calibration. The rotation parameters cor-

respond to the mount angles of the radars while the translation parameters define

two translation vectors for both radars. When used with one radar, the algorithm es-

timates the radar’s mount angle and a translation vector. The work was tested using

both synthetic and radar data. Unlike prior methods such as [53, 54], the location

requirement of the CRs are not defined with respect to the radar, but the VCS, which

is an advantage since a radar installed behind a radome is not easily accessible.

The rest of the paper is arranged as follows: section 4.3 describes the problem state-

ment and experimental apparatus, a preliminary result is presented in section 4.4, the

calibration method is discussed in section 4.5, the results are presented and discussed

in section 4.6, and conclusion presented in section 4.7. These define the general no-

tations: x in bold lower case is a column vector, X in upper case is a matrix, and T

represents a transpose operation.
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4.3 Problem Statement and Experimental Appara-

tus

4.3.1 Problem Statement

We want to estimate the six parameters illustrated in Figure 4.1 with respect to the

geometry of the passenger radar (PR), the driver radar (DR), and the spatial point

G. The parameters are mount angles α, β and translation parameters w1, w2,

v1, v2. The mount angles are defined with respect to the truck’s lateral line. Both

radars provide detections in two dimensions. There are three parameters per radar.

For instance, extrinsically calibrating only the passenger radar reduces the problem

to estimating α,w1, and v1. The estimates are needed to rigidly transform detections

from the coordinates of the radars onto the VCS.

4.3.2 Experimental Apparatus for Data Collection

This work was tested using both synthetic data and radar data collected in an ex-

periment. In the radar data experiment, we let G in Figure 4.1 be the location of

the hitch ball (the user may define another location). The radar data was collected
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Figure 4.2: Left : A truck mock-up consisting of a rear gate mounted on
a three-wheel platform. Two radars (encircled) are installed on a plexiglass
surface at the tail light areas. A camera (in square bounds) was also in-
stalled for visualization, it was not used for the calibration. A protractor is
locked to the top of each radar’s plexiglass to read the mount angle (ground
truth) which will be estimated. Right : A calibration scenario where corner
reflectors (on top of boxes) were placed in the field of view of one of the
radars.

using the apparatus shown in Figure 4.2. The apparatus consists of a truck’s rear

gate mounted on a three-wheel platform, referred to as the truck mock-up. The blue

grid lines on the floor represent the VCS whose origin is at G, the hitch ball. The

grid is marked at 1m apart in the longitudinal direction. The lateral distances from

the grid’s origin extend in each direction at lengths w1 = 0.8m and w2 = 0.8m. The

grid was used as a quick guide to measure the locations of the CRs in the VCS. The

CRs used in this work are 10dBsm trihedral.

Two TI AWR1642BOOST automotive radar modules [25] were installed at the sides of

the truck mock-up. Each radar has 2 transmit and 4 receive channels and operates in

the 76− 81GHz frequency band. Its frequency-modulated continuous-wave (FMCW)

waveform use up to 4GHz bandwidth. Both radars are separately located and have

80



individual oscillators. No attempt was made to synchronize the operation of the two

radars. Also, we did not process the raw radar data since the TI module provides

the two-dimensional point detections already. The radar’s waveform was designed to

have a range resolution of about 4.1cm and a maximum range of about 6.5m based

on our experiment. We used a high constant false alarm rate (CFAR) range threshold

of 15dB to reject as much clutter as possible. The user may adapt the waveform and

CFAR threshold according to the use case.

4.4 Preliminary Result

In many applications involving rigid transformation of point sets, there exists the

following mathematical problem, defined in this work for two-dimensional sets and in

the form provided below. Given two corresponding point sets A,B ∈ R2×k such that

A = Q(φ)B −

t1
t2

1Tk +N

where

Q(φ) =

cos(φ) − sin(φ)

sin(φ) cos(φ)


is a rotation matrix which rotates a two-dimensional vector at an angle φ in the

counter-clockwise direction for positive φ, 1Tk is a row vector of k ones so that the
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term

−

t1
t2

1Tk

is a translation matrix, and N ∈ R2×k is a noise matrix. We are required to estimate

the rotation angle φ and translation vector parameters t1, t2 according to the least

squares minimization

φ̃, t̃1, t̃2 = argmin
φ,t1,t2

∥∥∥A− (Q(φ)B −

t1
t2

1Tk

)∥∥∥2

F
(4.1)

where ‖.‖F is the Frobenius norm. Let ai and bi be the ith column vectors in A and

B respectively; then (4.1) can be re-written as

φ̃, t̃1, t̃2 = argmin
φ,t1,t2

k∑
i=1

∥∥∥ai − (Q(φ)bi −

t1
t2

)∥∥∥2

(4.2)

where ‖.‖ is the 2-norm.

We assume that the rotation operation performed byQ(φ̃) is around an axis that passes

through the origin of the coordinate system of B [55, 56]. This assumption makes

(4.2) a partial Procrustes superimposition problem whose rotational component is

obtained using the Kabsch algorithm [57]. Its solution is given [55, 57] by decoupling

the rotation and translation components (a consequence of the centroid coincidence

theorem, proof in [56]) as follows:
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Let the centroids of point sets A and B be respectively obtained as:

µ
A

=
1

k

k∑
i=1

ai

µ
B

=
1

k

k∑
i=1

bi

Let us subtract the centroids off the two sets as follows:

Ao = A− µ
A
1Tk

Bo = B − µ
B
1Tk

The best proper rotation is solved using the zero-centroid sets,

φ̃ = argmin
φ

∥∥∥Ao −Q(φ)Bo

∥∥∥2

F
(4.3)

subject to

QT
(φ)Q(φ) = I, det

(
Q(φ)

)
= +1

This is the constrained orthogonal Procrustes problem [28][29] whose solution is pro-

vided as function orthoAngle in Algorithm 7. The estimate of the translation

vector is then obtained [55] by using Q(φ̃)

(
the best rotation matrix that solves (4.2)

)
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Algorithm 7 Estimation of rigid transformation parameters
1: procedure Kabsch(A,B, option)
2: µ

A
,µ

B
← centroids of sets A,B respectively

3: Ao ← A− µ
A
1Tk

4: Bo ← B − µ
B
1Tk

. Obtain the rotation angle estimate
5: φ̃← orthoAngle

(
Ao, Bo

)
. The function given below

. Obtain the translation parameter estimates

6:

[
t̃1
t̃2

]
= Q(φ̃)µB

− µ
A

7: if option is rotation then
8: return φ̃
9: else if option is translation then

10: return
[
t̃1
t̃2

]
11: end if
12: end procedure

1: function orthoAngle(Ao, Bo)
2: WΣV T ← SVD

(
AoB

T
o

)
. This is the singular value decomposition (SVD)
. Let the singular values in Σ be arranged in descending order

3: Q(φ̃) ← W

[
1 0
0 det(WV T )

]
V T

. The diagonal matrix ensures the determinant det
(
Q(φ̂)

)
= +1

4: Obtain angle φ̃ from the 2× 2 rotation matrix Q(φ̃)

5: return φ̃
6: end function

and the two centroids:

t̃1
t̃2

 = Q(φ̃)µB
− µ

A

The estimation steps provided above are summarized in Algorithm 7, for ease of reuse

in the remainder of this paper, such that a given problem of the form provided in
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(4.1) is solved as:

φ̃ = Kabsch
(
A,B, rotation

)
t̃1
t̃2

 = Kabsch
(
A,B, translation

)

There should be at least two unique vectors in each set (k ≥ 2) to ensure a unique

solution due to the use of the SVD in the algorithm.

4.5 Method

The basic operating principle of the calibration method is as follows. Let k CRs

be placed in the field of view of a radar (as depicted for the passenger radar in

Figure 4.3) and their locations in the vehicle coordinate system (VCS) be known.

The reflectors’ known locations in the VCS will be compared with the radar detections

to estimate the parameters.

The point-set variables which will be used in the algorithm are defined as follows.

(a) Three variables when the k CRs are in the PR field of view :

XPR
vcs – known locations of the CRs in the VCS
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Xpr – passenger radar detections of the CRs, expressed in Cartesian coor-

dinates

XG
pr – rigid transformation of Xpr onto the VCS

(b) Three variables when the k CRs are in the DR field of view :

XDR
vcs – known locations of the CRs in the VCS

Xdr – driver radar detections of the CRs, expressed in Cartesian coordinates

XG
dr – rigid transformation of Xdr onto the VCS

Assumptions

The algorithm assumes the following:

1. The VCS has an origin at a conveniently chosen point G, and its horizontal and

vertical axes align with the lateral and longitudinal lines, respectively, of the

vechicle.

2. The three point-set variables defined for each radar have correspondence and

the size of each set is 2 × k. This means that the ith column vector in each

set represents the ith CR. The correspondence can be easily achieved if the

calibration is performed in a controlled environment, free of clutter. This makes

it easy to associate the detections with the CRs.
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3. The estimate of the rotational operation (due to the radar mount angle) is taken

to be around an axis that passes through the origin of the radar coordinate

system. This is also an assumption in [55, 56].

Sign of the parameters

To prevent ambiguity in the equations presented in this paper, all the six parameters

(α, β, w1, w2, v1, and v2) are taken to be positive with respect to the geometry shown

in Figure 4.3. This means that v1 would be negative if G was below the lateral line

which connects to PR, and w1 would be negative if G was located to the left side of

PR.

Three parameters will be estimated per radar. The estimation with respect to one

radar is independent of the second radar.
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Figure 4.3: An illustration of k = 2 corner reflectors placed in the passenger
radar’s field of view. The orthogonal vectors indicated with blue arrows
represent the VCS.

4.5.1 Estimation of α,w1, and v1 using the passenger

radar

Let k corner reflectors be placed in the PR field of view as illustrated in Figure 4.3.

The PR detections can be transformed onto the VCS as follows:

XG
pr = Q(α)Xpr −

w1

v1

1Tk
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Let XG
pr ≈ XPR

vcs i.e. the transformed detections onto the VCS are approximately

equal to the known locations of the CRs in the VCS, so that

XPR
vcs ≈ Q(α)Xpr −

w1

v1

1Tk

The least-squares estimation problem is to solve for

α̃, w̃1, ṽ1 = argmin
α,w1,v1

∥∥∥XPR
vcs −

(
Q(α)Xpr −

w1

v1

1Tk

)∥∥∥2

F
(4.4)

which is of the form provided in (4.1). As described in the list of assumptions (As-

sumption 3), let the rotation estimate Q(α̃) be around an axis that passes through

the origin of the radar coordinate system. Therefore, the estimates of the parameters

with respect to Algorithm 7 are:

α̃ = Kabsch
(
XPR
vcs , Xpr, rotation

)
w̃1

ṽ1

 = Kabsch
(
XPR
vcs , Xpr, translation

)

The one-time estimates, obtained with one pair of point sets XPR
vcs and Xpr, may not

be sufficiently accurate since radar detections are quantized in space. Therefore, let

us use multiple pairs of point sets (multiple observations) to refine the estimates. The
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user can obtain a new set of observations by moving one or more corner reflector(s)

at known distance(s), or by moving the truck instead at a known distance, while

recording the locations of the CRs in the VCS and also saving the radar detections

of the CRs. The process of moving the reflectors may be automated in an industrial

setting. We moved the reflectors manually in our experimental work.

Let the number of observations i.e. the number point set pairs obtained be n, which is

a value decided by the user. Also, let XPR
vcs(i) be the ith set containing the locations of

the CRs in the VCS andXpr(i) be the ith set containing the passenger radar detections

of the CRs. We present these two methods to refine the estimates:

4.5.1.1 Refinement by averaging multiple estimates

This method models the radar quantization error as additive white noise [58, 59].

Multiple estimates of a parameter will be averaged with the aim of removing the

zero-mean noise.
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Let the ith observation be used to estimate the parameters as follows:

α̃i = Kabsch
(
XPR
vcs(i), Xpr(i), rotation

)
w̃1i

ṽ1i

 = Kabsch
(
XPR
vcs(i), Xpr(i), translation

)

such that there are n estimates for each parameter. Using this method, the refined

estimate is the average of the n estimates.

[
α̂, ŵ1, v̂1

]
=

1

n

n∑
i=1

[
α̃i w̃1i , ṽ1i

]

with the expression taken to be an element-wise operation i.e.

α̂ =
1

n

n∑
i=1

α̃i

4.5.1.2 Refinement based on global estimation

The objective of this method is to combine point set observations XPR
vcs(i) and Xpr(i),

for i = 1 : n, into two large sets so that the least squares estimation procedure

can be performed globally, at once. This model aims to reduce the effect of radar

quantization as the number of data points in the large sets increases i.e. as n increases.

91



Let us populate the sets as follows:

XPR
vcsall

=
[
XPR
vcs(1), X

PR
vcs(2), . . . , X

PR
vcs(n)

]
∈ R2×kn

Xprall =
[
Xpr(1), Xpr(2), . . . , Xpr(n)

]
∈ R2×kn

so that the parameters can be estimated globally by extending (4.4) to include all n

observations,

α̂g, ŵ1g , v̂1g = argmin
α,w1,v1

∥∥∥XPR
vcsall

−
(
Q(α)Xprall −

w1

v1

1Tkn

)∥∥∥2

F
(4.5)

The estimates are obtained using Algorithm 7:

α̂g = Kabsch
(
XPR
vcsall

, Xprall , rotation
)

ŵ1g

v̂1g

 = Kabsch
(
XPR
vcsall

, Xprall , translation
)

where the subscript g on the estimates denotes that the estimation was performed

globally.
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Figure 4.4: An illustration of k = 2 corner reflectors placed in the driver
radar’s field of view. The orthogonal vectors indicated with blue arrows
represent the VCS.

4.5.2 Estimation of β, w2, and v using the driver radar

This will be independently performed like section 4.5.1, however, there will be some

sign changes. Let k reflectors be placed in the DR field of view as illustrated in

Figure 4.4. We transform the DR detections onto the VCS as follows:

XG
dr = QT

(β)Xdr −

−w2

v2

1Tk
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Let XG
dr ≈ XDR

vcs so that

XDR
vcs ≈ QT

(β)Xdr −

−w2

v2

1Tk

XDR
vcs ≈ Q(−β)Xdr −

−w2

v2

1Tk

where QT
(β) = Q(−β) i.e. a clockwise rotation at an angle β is equivalent to a counter-

clockwise rotation at an angle −β. The least squares estimation problem becomes

−β̃,−w̃2, ṽ2 = argmin
−β,−w2,v2

∥∥∥XDR
vcs −

(
Q(−β)Xdr −

−w2

v2

1Tk

)∥∥∥2

F
(4.6)

The inclusion of the negative signs on the parameters formats the problem in the

form provided in (4.1) so that the solution is provided as:

−β̃ = Kabsch
(
XDR
vcs , Xdr, rotation

)
−w̃2

ṽ2

 = Kabsch
(
XDR
vcs , Xdr, translation

)
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which, by resolving the negative signs, can be written as:

β̃ = −Kabsch
(
XDR
vcs , Xdr, rotation

)
(4.7)w̃2

ṽ2

 =

−1 0

0 1

Kabsch
(
XDR
vcs , Xdr, translation

)
(4.8)

The estimate refinement methods described for the passenger radar side will also be

used. Again, let there be n point set observations, XDR
vcs(i) be the ith set containing

the locations of the CRs in the VCS and Xdr(i) be the ith set containing the driver

radar detections of the CRs. The estimates are refined as follows:

4.5.2.1 Refinement by averaging multiple estimates (DR side)

Like (4.7) and (4.8), the ith one-time estimates of the parameters are:

β̃i = −Kabsch
(
XDR
vcs(i), Xdr(i), rotation

)
w̃2i

ṽ2i

 =

−1 0

0 1

Kabsch
(
XDR
vcs(i), Xdr(i), translation

)
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The refined estimate for each parameter is the average of n estimates,

[
β̂, ŵ2, v̂2

]
=

1

n

n∑
i=1

[
β̃i w̃2i , ṽ2i

]

with the expression taken to be an element-wise operation.

4.5.2.2 Refinement based on global estimation (DR side)

Like the passenger side, let two large sets be populated as follows:

XDR
vcsall

=
[
XDR
vcs(1), X

DR
vcs(2), . . . , X

DR
vcs(n)

]
∈ R2×kn

Xdrall =
[
Xdr(1), Xdr(2), . . . , Xdr(n)

]
∈ R2×kn

so that the parameters can be estimated globally as

−β̂g,−ŵ2g , v̂2g = argmin
−β,−w2,v2

∥∥∥XDR
vcsall

−
(
Q(−β)Xdrall −

−w2

v2

1Tkn

)∥∥∥2

F
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using Algorithm 7. The estimates, after resolving the negative signs, are:

β̂g = −Kabsch
(
XPR
vcsall

, Xprall , rotation
)

ŵ2g

v̂2g

 =

−1 0

0 1

Kabsch
(
XPR
vcsall

, Xprall , translation
)

Again, the subscript g on the estimates denotes that the estimation was performed

globally.

We have obtained all six estimates with respect to each refinement method. Let

the estimates be referred to as:

(a) Averaged estimates : α̂, β̂, ŵ1, ŵ2, v̂1, v̂2 and

(b) Global estimates : α̂g, β̂g, ŵ1g , ŵ2g , v̂1g , v̂2g .

Corner reflectors in the overlapping field of view of both radars

If the k CRs are placed in the overlapping field of view of the two radars such that the

reflectors are all detected by both radars, then the set containing the known locations

of the CRs in the VCS used for the PR side can also be used for the DR side i.e.

XPR
vcs = XDR

vcs . The calibration of the radars are still independent. While this may
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seem like a more convenient choice in placing the reflectors, the caveat is that radar

detections tend to be more accurate near the boresight [60]. The user should consider

this when deciding the placement of the reflectors.

4.6 Results and Discussion

The results for both averaged estimates and global estimates will be presented. Unlike

the global estimate of a parameter, the averaged estimate is obtained by taking the

mean of n estimates. Statistically, estimates with lesser variability result in a higher

confidence than those with a higher variability. Therefore, let us consider the spread

of the multiple estimates, which are averaged, using the margin of error statistic to

determine the confidence interval of the averaged estimate.

If x̃i is the ith estimate of a parameter, and x̂ is the averaged estimate,

x̂ =
1

n

n∑
i=1

x̃i

the margin of error at 95% confidence is defined [61] as

e95 = tn−1
s√
n

(4.9)

where s is the sample standard deviation of the n estimates, and tn−1 is obtained
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from the two-tail t-distribution table at n−1 degree of freedom. This means that the

underlying true parameter x is contained in the interval x̂± e95 with 95% statistical

confidence.

4.6.1 Synthetic Data Results

This section presents some results from the calibration algorithm based on data sim-

ulation. The simulation was performed in MATLAB R2020a [62].

We simulate the two-radar geometry illustrated in Figure 4.1. Each radar is simulated

to have a 120◦ field of view (FoV). The synthetic radar detections are generated as

described in Algorithm 8. The four point sets XPR
vcs , XDR

vcs , Xpr, Xdr are noisy

measurements of the true sets XPR
vcstruth

, XDR
vcstruth

, Xprtruth , Xdrtruth respectively, where

NPR
vcs , NDR

vcs , Npr, and Npr are additive white Gaussian noises.

The noise matrices are zero-mean. Their covariances were chosen as follows:

cov
(
NPR
vcs

)
= cov

(
NDR
vcs

)
=

0.012 0

0 0.012

m2

gives the statistics of the error which the user makes in measuring the locations of

the CRs in the VCS. The standard deviation in each dimension is 1cm. This means

that the user makes up to 2cm error in measurement (two standard deviations) at
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Algorithm 8 Generation of the synthetic radar detections
1: Choose Xprtruth

. Error-free locations of k CRs in the PR coordinate system
2: for i = 1 : n do
3: Let Xdrtruth := Xprtruth

. Error-free locations of k CRs in the DR coordinate system
4: Obtain XPR

vcstruth
by transforming Xprtruth onto VCS

. True locations of the CRs in the VCS with respect to the PR
5: Obtain XDR

vcstruth
by transforming Xdrtruth onto VCS

. True locations of the CRs in the VCS with respect to the DR

The noisy sets:
6: XPR

vcs ← XPR
vcstruth

+NPR
vcs

7: XDR
vcs ← XDR

vcstruth
+NDR

vcs

8: Xpr ← Xprtruth +Npr

9: Xdr ← Xdrtruth +Ndr

. New reflector locations for the next iteration
10: Xprtruth ← Xprtruth +D

11: end for

about 95% of the time. We expect industrial measurement tools to achieve smaller

error. Also,

cov
(
Npr

)
= cov

(
Ndr

)
=

0.022 0

0 0.022

m2

gives the statistics of the radar detection error. The 2cm standard deviation in

each dimension means that each radar makes up to 4cm error in detection (two

standard deviations) at about 95% of the time. This value is chosen based on the

4cm approximate range resolution of a typical automotive radar, whose FMCW chirp

sweeps up to 4GHz bandwidth.

Corner reflectors are required to be moved after each data collection procedure in
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order to obtain multiple observations, which are needed for the estimate refine-

ment process. We simulate the movement of the reflectors by adding a displace-

ment matrix D ∼ N
(
0, KD

)
of an appropriate size to Xprtruth in Algorithm 8 (i.e.

Xprtruth ← Xprtruth +D), so that the reflectors have new locations at the next loop

iteration. The covariance matrix for the displacement matrix statistics is chosen as

KD =

0.32 0

0 0.32

m2 .

The points in the initial set Xprtruth (line 1 of Algorithm 8) are chosen randomly

within ranges 1m and 6m in the radar’s FoV. Also, the points in Xprtruth (line 10) are

constrained in the bounds such that if the addition of D results in one or more points

to be moved or displaced outside the bounds, the algorithm undoes the displacement

of the affected points and re-samples a new displacement matrix, of the appropriate

size, from the distribution to be added to the affected points until all the points are

located within the bounds.

The estimation procedure follows from the above information. We chose the true

parameters to be estimated as:

α = 40◦, β = 40◦

w1 = 0.6m, w2 = 1.0m, v1 = 0.3m, v2 = 0.4m
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Figure 4.5: Noiseless synthetic data: Averaged estimates with k = 2
reflectors.

To test the algorithm, we set all the four Gaussian noises in Algorithm 8 to zero to

make noiseless synthetic data. The reflectors were not moved for the test i.e. D

is a zero matrix. The averaged estimates obtained with the noiseless data sets are

presented in Figure 4.5, for k = 2 reflectors. The top-most subplot, in the figure, gives

an illustration of the two-radar geometry in which the CRs are placed in the FoV of

each radar, the origin of the subplot is at G. Each of the remaining six subplots is

an histogram of n parameter estimates. The average estimate of a parameter and its
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margin of error with 95% confidence are provided at the top of each histogram1. It can

be observed from the histograms that the algorithm returned the exact values of the

six parameters for all n = 10 observations. The global estimates are also obtained to

be exact values of the six parameters. This test confirms that the algorithm produces

correct locations with noiseless data.

Following the confirmation, we sample the noise from the covariance matrices to

make noisy synthetic data. The displacement matrix D is also sampled from its

distribution and used to simulate the movement of the CRs, as described earlier. The

averaged estimates obtained from 10 observations are presented with varying values of

k (the number of CRs) in Figure 4.6. The same results are summarized in Table 4.1(a)

sectioned under the n = 10 header. It can be observed from the figure and table that

the mount angle estimates for k = 2 have the most error margins, which translates to

the largest sample standard deviations based on the direct proportionality in (4.9),

when compared with those for which k = 3, 4, 5. The global estimates are provided in

Table 4.1(b). It can be observed from both tables that the two refinement methods

provide comparable estimates.

1The descriptions of the subplots in Figure 4.5 applies to each subfigure in Figures 4.6, 4.8 and 4.10.
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Table 4.1
Estimation results from the noisy synthetic data

(a) Averaged estimates based on n observations

n = 10 n = 1000

k = 2 k = 3 k = 4 k = 5 k = 3

Avg. e95 Avg. e95 Avg. e95 Avg. e95 Avg. e95

α̂ (◦) 40.02 1.07 40.06 0.48 39.85 0.21 40.01 0.33 39.99 0.03

β̂ (◦) 40.26 1.00 39.79 0.38 40.12 0.28 39.88 0.24 40.01 0.03

ŵ1 (m) 0.59 0.04 0.60 0.01 0.61 0.02 0.60 0.02 0.60 0.00

ŵ2 (m) 0.99 0.03 1.00 0.02 1.00 0.01 1.00 0.01 1.00 0.00

v̂1 (m) 0.30 0.01 0.29 0.02 0.30 0.01 0.30 0.02 0.30 0.00

v̂2 (m) 0.39 0.03 0.41 0.01 0.39 0.02 0.40 0.01 0.40 0.00

(b) Global estimates based on n observations

n = 10 n = 1000

k = 2 k = 3 k = 4 k = 5 k = 3

α̂g (◦) 40.06 39.94 39.85 40.03 39.98

β̂g (◦) 40.06 39.84 40.06 39.89 40.01

ŵ1g (m) 0.59 0.60 0.61 0.60 0.60

ŵ2g (m) 1.00 1.00 1.00 1.00 1.00

v̂1g (m) 0.30 0.30 0.30 0.29 0.30

v̂2g (m) 0.40 0.41 0.40 0.40 0.40
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(a) k = 2 (b) k = 3

(c) k = 4 (d) k = 5

Figure 4.6: Noisy synthetic data: Averaged estimates with the number
of corner reflectors, k varied. The number of observations n = 10.
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We proceed to show that if the number of observations n is large, then the estimator

appears to become more accurate. Figure 4.7 presents the root mean square error

(RMSE) performance of the estimates, where the functions in the legend of each

subfigure are defined with respect to the averaged estimates as:

rmse(α̂,β̂) =

1

2

∥∥∥∥∥∥∥∥
α
β

−
α̂
β̂


∥∥∥∥∥∥∥∥

2
1
2

deg. (◦)

rmse(ŵ1,ŵ2,v̂1,v̂2) =


1

4

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



w1

w2

v1

v2


−



ŵ1

ŵ2

v̂1

v̂2



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

1
2

m

and likewise with respect to the global estimates as:

rmse(α̂g ,β̂g) and rmse(ŵ1g ,ŵ2g ,v̂1g ,v̂2g ) .

The figure contains four log-log plots based on the number of reflectors k = 2, 3, 4, 5.

Each plot shows the RMSE values of the estimates as the number of observations

n increases from 1 to 1000. The high value of n is set for theoretical analysis, not

for practical situations. It can be seen from the trends of all four plots that the
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(a) k = 2 (b) k = 3

(c) k = 4 (d) k = 5

Figure 4.7: Noisy synthetic data: Each subfigure is a log-log plot show-
ing the root mean square error (RMSE) values of both averaged estimates
and global estimates for different number of corner reflectors, as the number
of observations increase from n = 1 to n = 1000.

RMSE values for the mount angle estimates and the RMSE values for the translation

parameter estimates appear to reduce as n increases. Hence, the estimates tend to

become more accurate as the number of observations increase. At k = 2, the RMSE

values of the global estimates appear to decay faster than the RMSE values of the

averaged estimates. However, at k = 3, 4, 5 the RMSE values for both refinement

methods appear to decay comparably.

The distribution of the averaged estimates, for k = 3 reflectors and n = 1000 obser-

vations, is presented in Figure 4.8. The averaged estimates and global estimates for
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Figure 4.8: Noisy synthetic data: Averaged estimates with k = 3
reflectors, n = 1000.

the same n and k values are summarized in Table 4.1 under the n = 1000 headers.

It can be observed from the figure (taking note of the very small margins of error;

the e95 values) and tables (in Table 4.1) that the estimates of all the six parameters

approach their true values as the number of observations increase. However, there is

a trade-off in increasing n for estimation precision since it would increase the work

needed to be done in moving the reflectors.
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4.6.2 Experimental Data Results

We are going to present the results obtained from testing the algorithm with exper-

imental radar data. Based on the experimental apparatus shown in Figure 4.2, we

let G be the location of the hitch ball. The true parameters to be estimated are

determined from the geometry of the apparatus, they are:

α = 19.0◦, β = 20.0◦

w1 = w2 = 0.8m, v1 = v2 = 0.32m

The radar mount angles α, β were read from the protractors (installed on the appa-

ratus as described in the figure) and the translation parameters w1, w2, v1, v2 were

obtained with a meter rule. We placed three CRs (k = 3) in the PR field of view as

shown in Figure 4.9. The reflectors’ locations in the VCS were recorded. The radar

detections of the reflectors were also saved. We then moved the reflectors manually

in a random manner and repeated the process to obtain 10 different sets of data at

the PR side (n = 10). The same procedure was performed at the DR side to also

obtain 10 different sets of data. The data obtained from both radar sides were used

to estimate the parameters as described in section 4.5. The averaged estimates are

presented in Figure 4.10 and summarized in Table 4.2(a), which includes the 10 one-

time estimates that are averaged. The global estimates are provided in Table 4.2(b).
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(a) Corner reflectors in the passenger radar’s FoV

(b) Corner reflectors in the driver radar’s FoV

Figure 4.9: Three corner reflectors (on top of boxes) were placed in each
radar’s FoV. The locations of the reflectors were known in the VCS (in this
experiment, the origin of the VCS is the hitch ball location). An empty radar
detection in each subfigure indicates that no corner reflector was present in
the radar’s FoV. The experiment in subfigure (a) provides estimates for pa-
rameters α,w1, and v while that in subfigure (b) provides estimates for pa-
rameters β,w2, and v. The clutter detections in the subfigures were removed.
This will not be necessary in a controlled environment.

The results show that the mount angle estimates, with respect to both refinement

methods, are within 0.35◦ range of the ground truth, while the translation parameter

estimates are all within 0.01m range of the ground truth. While the results presented

are based on our experiment, the user should note that the accuracy of the estimates

depends on the accuracy of the radar detections and the precision in measuring the

reflector locations in the VCS.

110



Figure 4.10: Radar data: Averaged estimates with k = 3 reflectors,
n = 10.

With respect to both synthetic and experimental radar data results, the estimates

obtained from using the two refinement methods seem to be comparable. However,

the refinement procedures have different computational requirements. The averaged

estimates require Algorithm 7 to be run n times for all observations, while the global

estimates are obtained by running the algorithm once.
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Table 4.2
Estimation results from the radar data, k = 3

(a) Averaged estimates based on n = 10 observations

One-time Estimates Average e95

α̃ (◦) 18.07 20.07 17.94 18.88 17.31 20.72 18.28 19.12 21.56 20.54 α̂ (◦) 19.25 0.95

β̃ (◦) 19.35 20.58 19.22 21.10 21.21 21.92 18.65 22.24 19.00 18.20 β̂ (◦) 20.15 0.97

w̃1 (m) 0.84 0.81 0.86 0.83 0.85 0.74 0.80 0.77 0.75 0.74 ŵ1 (m) 0.80 0.03

w̃2 (m) 0.85 0.78 0.74 0.75 0.77 0.73 0.85 0.72 0.82 0.87 ŵ2 (m) 0.79 0.04

ṽ1 (m) 0.31 0.29 0.29 0.37 0.38 0.28 0.31 0.33 0.28 0.29 v̂1 (m) 0.31 0.02

ṽ2 (m) 0.35 0.33 0.34 0.35 0.29 0.30 0.33 0.31 0.29 0.36 v̂2 (m) 0.33 0.02

(b) Global estimates based on n = 10 observations

α̂g β̂g ŵ1g (m) ŵ2g (m) v̂1g (m) v̂2g (m)

19.33 19.72 0.79 0.81 0.31 0.33
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4.7 Conclusion

We have shown that the mount angle of a radar and the translation vector needed

to transform detections onto a vehicle coordinate system (VCS) can be estimated by

comparing the radar’s detections of objects, such as corner reflectors, with the known

locations of the objects in the VCS. The required known locations of the objects are

not defined with respect to the radar, but the VCS, which is an advantage since a

radar installed behind a radome is not easily accessible. Multiple estimates are ob-

tained and refined based on multiple data observations. Two refinement methods are

provided; averaging the estimates and performing a global estimation on combined

data observations. The results obtained from testing the calibration method on syn-

thetic and radar data, with respect to both refinement methods, suggest that the

algorithm is a feasible tool for extrinsic calibration of automotive radars.
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Chapter 5

Extrinsic Radar Calibration with

Overlapping FoV and Hitch Ball

Position Estimation

5.1 Chapter abstract

Sensor fusion, in many perception algorithms, requires the detections from mul-

tiple sensors to be transformed onto a common coordinate system (CCS) for joint

processing. The position and orientation of the sensors need to be determined for

The material contained in this chapter is in preparation for submission to a journal. The work was
supported by the Ford Motor Company as an Alliance Project under Ford/MTU Master Agreement
#83437205.
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the fusion procedure. Two automotive blind spot information (BSI) radar sensors are

considered in this work and their orientation is defined with respect to the straight

line connecting them. We estimate the rotation and translation parameters which are

needed to transform the detections from the radars onto a CCS whose origin is at the

hitch ball of a truck. This CCS is a convenient choice for algorithms which use BSI

radars to monitor or sense the rotation of an attached trailer about the hitch ball.

The estimation is performed by rotating a trailer or a pivoting platform (upon which

corner reflectors are placed) about the hitch ball in the direction of both radars. The

algorithm is based on two principles: (1) the use of common detections found in the

overlapping field of view of the radars to estimate the rotation parameters and (2) a

search for the center of trailer or platform rotation to determine the translation pa-

rameters which define the hitch ball position relative to the radars. The experimental

results obtained, based on the data collected, suggest that the algorithm is feasible

for deployment.

5.2 Introduction

Multiple sensors are often fused for combined measurements. This is seen in per-

ception and multi-sensor applications. A common task for the fusion procedure is

to rigidly transform detections from the individual sensor coordinates onto a conve-

niently chosen common coordinate system (CCS) based on knowing the location and
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orientation of the sensors. Hence, an accurate representation of sensor measurements

in the CCS depends on the use of optimal parameters for the transformation. The

determination of the transformation parameters in a sensor network is referred to as

extrinsic calibration, while intrinsic calibration is concerned with the internal working

parameters of the sensor.

Some existing calibration methods have been proposed for different sensors; for cam-

eras in [38, 39], for lidar and camera in [40–42], for laser scanner and camera in

[43–46], for radar and camera in [63–65], and for radar, lidar, and camera in [66, 67].

Like in [49–51, 68], radar sensors only are considered for the calibration in this work.

We present an extrinsic calibration method for two automotive radars installed in

the tail light fixtures of a truck as illustrated in Figure 5.1, and assume that intrinsic

calibration has been performed. Each radar is installed such that its boresight is at

an angle away from the truck’s longitudinal line, like it is often done for blind spot

applications. We estimate the parameters needed to rigidly transform the detections

from both radars onto a CCS whose origin is the hitch ball; the parameters are

in terms of rotation (due to the radar’s orientation) and translation. This CCS is

a convenient choice for algorithms which monitor or sense the rotation of a trailer

attached to the hitch ball, using sensors such as blind spot information radars.

The estimation procedure requires a trailer or a pivoting platform, on which corner

reflectors (CRs) are placed, to be rotated about the hitch ball. The detections from
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Figure 5.1: Left : A diagram of a truck showing two blind spot information
radars and the hitch ball. Right : A schematic diagram of the two-radar
geometry with respect to the hitch ball. Four parameters φ1, φ2, w1, and
v will be estimated. 1The distance between the radars, w is known. The
rotation angle parameters φ1, φ2 are defined with respect to the line
connecting the radars. The translation parameters are w1, v; where v
is the perpendicular distance of the hitch ball to the line connecting the
radars, intersecting the line at a distance of w1 away from the passenger
radar. Meanwhile, w1 is not necessarily an exact half of w depending on the
locations of the radars.

CRs found in the overlapping field of view (FoV) of the radars are used to estimate the

rotation parameters, while the transformation parameters are estimated by finding the

center of trailer rotation, the hitch ball position. Many camera-based sensor fusion

1An analysis which supports the requirement for w to be known is provided in Appendix A.

118



methods have used the overlapping FoV concept for calibration in the literature,

some methods are presented in [69–75]. It was also considered in [51, 68] to remove

alignment errors from two 3D radars using the objects that are tracked by both

sensors.

This paper is arranged as follows: section 5.3 contains the problem statement and

a description of the experimental apparatus, the calibration method is presented in

section 5.4, results are provided and discussed in section 5.5, and the conclusion in

section 5.6. These are the general notations used: y in bold lower case is a column

vector, Y in upper case is a matrix, and T represents a transpose operation.

5.3 Problem Statement and Experimental Appara-

tus

5.3.1 Problem Statement

The objective of this work is to estimate the rotation angle parameters φ1, φ2, due

to the orientation of the radars, and the translation parameters w1, v with respect

to the geometry illustrated in Figure 5.1 using the detections from the passenger

radar (PR) and the driver radar (DR). The rotation angle parameters are defined
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Figure 5.2: Left : The experimental apparatus (truck mock-up) used for
radar data collection. Each of the two radars (encircled) is installed on a
plexiglass. A protractor, locked to the top of each plexiglass, provides the
ground truth of the rotation angle which will be estimated. A rear gate cam-
era (in square bounds) was also installed on the mock-up for visualization
of the procedure, it was not used for the calibration. Right : A calibration
scenario where corner reflectors were placed on a trailer attached to the truck.

with respect to the line which connects both radars. The line is parallel to the truck’s

lateral line if the radar positions on the truck are symmetric. Each radar provides

detections in two dimensions; range and azimuth. The parameter estimates will be

used to rigidly transform the detections onto the chosen CCS, whose origin is the

hitch ball.

5.3.2 Experimental Apparatus

The apparatus used in this work for data collection consists of a truck’s rear gate

mounted on a three-wheel platform as shown in Figure 5.2. It will be referred to as a

truck mock-up. The rotation of the trailer about the hitch ball, during the calibration
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process, was simulated by rotating the truck mock-up instead, while the trailer was

kept stationary. This helped to prevent the truck-mockup from being displaced.

Therefore, the trailer’s rotation described in this work refers to this procedure. Two

automotive radars were installed at the sides of the truck mock-up. We used the TI

AWR1642BOOST radar module [25], which has 2 transmit and 4 receive elements.

The radar provides point detections in range and azimuth. It operates in the 76 −

81GHz frequency band, and uses up to 4GHz bandwidth for its frequency-modulated

continuous-wave (FMCW) waveform. The waveform used in this work has a range

resolution of about 4.1cm and a maximum range of about 6.5m. To reject as much

clutter as possible, we set the constant false alarm rate (CFAR) range threshold of the

detections to 15dB. Both radars contain different oscillators and their operations are

not synchronized, they are separately located. The waveform and the CFAR threshold

provided are not guaranteed to be optimal in all situations, they were chosen based

on our experiment and the workshop space used for the calibration. The CRs used

in this work are 10dBsm trihedral.

5.4 Calibration Method

The calibration procedure can be simply described as follows. Let there be k corner

reflectors (CRs) placed on either a trailer or a pivoting platform attached to the

hitch ball as illustrated in Figure 5.3. The trailer or platform will be rotated in both
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Figure 5.3: An illustration of the rotation of a trailer or platform (on which
corner reflectors are placed in a pattern determined by the user) about the
truck’s hitch ball. The distance between the radars, w is known.

radar directions. As the trailer rotates, let us keep each radar’s set of detections

which contains all k reflectors. Let Xi ∈ R2×k and Yi ∈ R2×k respectively be the ith

detection sets provided by the passenger radar and driver radar respectively, during

the trailer rotation.

The algorithm will estimate the four parameters (φ1, φ2, w1, and v) based on two

principles: (a) the detections of reflectors in the overlapping field of view (FoV) of

both radars as the trailer rotates and (b) a search for the center of rotation, the hitch

ball position.
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Assumptions

The algorithm assumes the following:

1. The CCS has an origin at the hitch ball position and its horizontal axis is

parallel to the straight line connecting the radars.

2. The distance between the two radars, width w is known. A simulation analysis

which supports the requirement for this assumption is presented in Appendix A.

3. Both radar detection sets Xi and Yi have correspondence. This means that

the mth column vectors in the sets represent the detections of the mth reflec-

tor. This can be easily achieved by performing the calibration in a clutter-free

environment.

The two estimation principles are presented as follows.

5.4.1 Principle 1: Detections in the overlapping field of view

Let us use subscript j on the point set variables in this section. Let the k CRs be

located in the overlapping FoV region at an instance during the rotation of the trailer

or platform, such that both radars simultaneously detect the reflectors as a pair of
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Figure 5.4: An illustration of corner reflectors in the overlapping field of
view of both radars during trailer rotation (the trailer is not shown in this
figure). The distance between the radars, w is known.

detection sets (Xj, Yj). An illustration is provided in Figure 5.4. The algorithm will

estimate the rotation angles based on the common detections.

Let

Q(φ) =

cos(φ) − sin(φ)

sin(φ) cos(φ)



be a two-dimensional rotation matrix which rotates a vector at an angle φ in the

counter-clockwise direction for positive φ.
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Let us transform the detection sets onto the CCS:

Xp
j = Q(φ1)Xj −

w1

v

1Tk (5.1)

Y p
j = QT

(φ2)Yj −

−(w − w1)

v

1Tk (5.2)

= QT
(φ2)Yj +

w − w1

−v

1Tk

where Xp
j and Y p

j are the transformed PR and DR detections respectively, and 1k is

a column vector of k ones. The estimation task is to find the parameters that achieve

the approximation,

Xp
j ≈ Y p

j

Q(φ1)Xj −

w1

v

1Tk ≈ QT
(φ2)Yj +

w − w1

−v

1Tk

since the detections from both radars represent the same spatial locations of the
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reflectors in the CCS. The parameters will be estimated by minimizing the following:

min
∥∥∥(Q(φ1)Xj −

w1

v

1Tk

)
−
(
QT

(φ2)Yj +

w − w1

−v

1Tk

)∥∥∥
F

= min
∥∥∥Q(φ1)Xj −

(
QT

(φ2)Yj +

w
0

1Tk

)∥∥∥
F

(5.3)

i.e. argmin
φ1,φ2

∥∥∥Q(φ1)Xj −
(
QT

(φ2)Yj +

w
0

1Tk

)∥∥∥
F

(5.4)

where ‖.‖F is the Frobenius norm. The translation parameters w1 and v cancel in

(5.3), therefore, they are not observable. Instead, the rotation angles φ1 and φ2 are

observable and will be estimated.

Meanwhile, the estimation problem in (5.4) is based on one-time detection setsXj and

Yj as illustrated with a minimal example in Figure 5.5. The one-time estimates are

not guaranteed to be accurate due to the quantization of radar detections. Therefore,

let us refine the estimates by using multiple detection sets. Let the total number

of unique set pairs (Xj, Yj) for which the radars simultaneously detect the reflectors

in the overlapping FoV be n. Uniqueness means that duplicate set pairs have been
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Figure 5.5: An illustration of the rotation angle estimation with a minimal
example.

(a) Let there be three corner reflectors in the overlapping FoV of both radars i.e. k = 3. Let sets
Xj and Yj contain the passenger radar and driver radar detections, respectively.

(b) The two radar coordinate systems, where their horizontal axes are aligned with the line
connecting the radars. Both coordinate systems are separated by the translation vector
shown. Let us realign both point sets like the first subfigure.

(c) Estimate angles φ1 and φ2 which aligns Q(φ1)Xj (a counter-clockwise rotation of Xj in the PR

coordinate system) and QT(φ2)Yj +

[
w
0

]
1Tk (a clockwise rotation of Yj in the DR coordinate

system followed by a translation onto the PR coordinate system), where 1k is a column vector
of k ones.

removed. Let us populate each radar’s detection sets for j = 1 : n as:

Xofov =
[
X1, X2, . . . , Xn

]
∈ R2×kn

Yofov =
[
Y1, Y2, . . . , Yn

]
∈ R2×kn

where Xofov and Yofov each contain n detections (i.e. observations) in the overlapping

FoV, provided by the passenger radar and the driver radar respectively, as the trailer
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rotates. Also, the two sets have correspondence based on the correspondence between

sets Xj and Yj. Hence, the problem in (5.4) can be extended with respect to all n

observations as:

φ̂1, φ̂2 = argmin
φ1,φ2

∥∥∥Q(φ1)Xofov −
(
QT

(φ2)Yofov +

w
0

1Tkn

)∥∥∥
F

(5.5)

:= argmin
φ1,φ2

f(φ1,φ2) (5.6)

where φ̂1, φ̂2 are the refined estimates of the rotation parameters and f(φ1,φ2) is the

cost function. The minimization problem can be solved by fixing a value for φ2 to

make a constrained orthogonal Procrustes (CoP) problem [28][29].

When compared with (5.5), the CoP problem is of the form:

φ́1 = argmin
φ1

∥∥Q(φ1)Xofov −G
∥∥
F

(5.7)

where G := QT
(φ2)Yofov +

w
0

1Tkn for a fixed value of φ2. The solution to (5.7) is pro-

vided as function ProcrustesAngle in Algorithm 9. Hence, due to the convexity

of the Frobenius norm, we solve (5.5) by combining a coarse-to-fine grid search over a

range of values for φ2 and a CoP solution for φ1 as described in the EstRotAngles
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Algorithm 9 Estimation of the rotation angle parameters
1: procedure EstRotAngles(Xofov, Yofov, vecBnd, w)
2: while range(vecBnd) > ε do . We set ε = 10−6

3:
{
φ́2i

}p
i=1
← Split vecBnd to p divisions

. We chose p = 5

4: for i = 1 : p do

5: G← QT
(φ́2i)

Yofov +

[
w
0

]
1Tkn

6: φ́1i = ProcrustesAngle(Xofov, G)
. The function is provided below

7: fV ali ← f(φ́1i,φ́2i)
from (5.6)

8: end for
9:

[
minV al, id

]
← min

({
fV ali

}p
i=1

)
. id is the index of the minimum value, minV al

10: vecBnd← two values in
{
φ́2i

}p
i=1

which are the
closest boundaries of φ́2id

11: end while
. Obtain the rotation angle estimates for both radars

12: φ̂1 ← φ́1id

13: φ̂2 ← φ́2id

14: return φ̂1, φ̂2

15: end procedure

1: function ProcrustesAngle(Xofov, G)
2: WΣV T ← SVD

(
GXT

ofov

)
. This is the singular value decomposition (SVD)
. Let the singular values in Σ be arranged in descending order

3: Q(φ́1) ← W

[
1 0
0 det(WV T )

]
V T

. The diagonal matrix ensures the determinant det
(
Q(φ́1)

)
= +1

4: Obtain angle φ́1 from the 2× 2 rotation matrix Q(φ́1)

5: return φ́1

6: end function

procedure (Algorithm 9) i.e.

φ̂1, φ̂2 = EstRotAngles(Xofov, Yofov, vecBnd, w) (5.8)
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where vecBnd is a two-element vector which defines the range of angle bounds to be

searched for φ̂2. The algorithm splits the vector into p divisions to make a list of

angles
{
φ́2i

}p
i=1

(line 3 of the procedure). It then obtains the CoP solution φ́1i with

respect to a fixed value φ́2i. The cost function is evaluated for each pair of candidate

solutions φ́1i and φ́2i (line 7). The minimum of the p cost-function values (having an

index id) will be used to filter the candidate solutions, since the sought estimate φ̂2 is

somewhere close to φ́2id. Therefore, the algorithm checks for two values in
{
φ́2i

}p
i=1

which are the closest boundaries of φ́2id. The two boundary values in
{
φ́2i

}p
i=1

make a

new vecBnd vector (line 10) which is further split at the next iteration. The algorithm

iterates in this manner until convergence (i.e. when the range of vecBnd becomes

approximately zero) and returns the rotation angle estimates, φ̂1 and φ̂2.

5.4.2 Principle 2: A search for the center of trailer rotation

The entire rotation of the trailer will be considered in this section and subscript i

will be used on the point set detections of the reflectors. We denote Xi and Yi as the

ith sets of reflector detections by the passenger radar and driver radar respectively.

As the trailer rotates in the direction of both radars (Figure 5.3), the detections of a

reflector would approximately appear in a circular path in the CCS with respect to

the hitch ball origin. The path is approximately circular because the detections are

noisy and quantized. The algorithm will find the center of trailer rotation P , which
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is the hitch ball location, based on the range-invariant property of any point on a

circle from its origin. In other words, the radar detections of a reflector should be

approximately range-invariant from P .

Let us transform both the PR set Xi and the DR set Yi onto the CCS as functions

of the translation parameters w1 and v:

Xp
i(w1,v)

= Q(φ̂1)Xi −

w1

v

1Tk (5.9)

Y p
i(w1,v)

= QT
(φ̂2)

Yi −

−(w − w1)

v

1Tk (5.10)

= QT
(φ̂2)

Yi +

w − w1

−v

1Tk

where φ̂1 and φ̂2 are the estimated rotation angles obtained in (5.8).

We know that the range (or radius) of a 2 × 1 vector point m from its coordinate

origin is the Euclidean norm,
√
mTm. Let M =

[
m1 m2 . . . mk

]
∈ R2×k contain

k points, the range of each point in M from the origin is contained in the vector

function,

r(M) =
√

diag
(
MTM

)
∈ Rk×1
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where diag (.) returns the diagonal elements of its matrix argument as a column vector

and √. is taken to be an element-wise square root operation.

Therefore, r
(
Xp
i(w1,v)

)
and r

(
Y p
i(w1,v)

)
are k × 1 vector-valued functions which re-

spectively contain the ranges of the k reflectors from the hitch ball as detected by

the passenger and driver radars. Throughout the entire trailer rotation, let the total

number of unique Xi sets be a and the total number of unique Yi sets be b. Uniqueness

means that duplicate detections have been removed. Let us populate two matrices

(one for each radar) containing the ranges of the reflectors from the hitch ball:

RPR
(w1,v) =

[
r
(
Xp

1(w1,v)

)
r
(
Xp

2(w1,v)

)
. . . r

(
Xp
a(w1,v)

)]
RDR

(w1,v) =
[
r
(
Y p

1(w1,v)

)
r
(
Y p

2(w1,v)

)
. . . r

(
Y p
b(w1,v)

)]

Combining both matrices in no particular order:

R(w1,v) =
[
RPR

(w1,v) | RDR
(w1,v)

]
∈ Rk×(a+b) (5.11)

The mth row vector in R(w1,v) contains all the ranges of the mth reflector from the

hitch ball as detected by both radars through the entire rotation of the trailer. We

want the minimum variance of the values in each row vector i.e. the ranges of

the detections for each reflector to be approximately the same or invariant to trailer

rotation. Therefore, by taking the k row vectors as random variables and the column
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vectors as observations, the translation parameters can be estimated as:

ŵ1, v̂ = argmin
w1,v

Tr
[
cov

(
RT

(w1,v)

)]
(5.12)

where cov
(
RT

(w1,v)

)
∈ Rk×k is a covariance matrix and Tr [.] is the trace operation

which sums the diagonals of its argument matrix. This means that the estimates ŵ1

and v̂ result in the minimum sum of k variances on the diagonals of the covariance

matrix.

5.5 Results and Discussion

The algorithm was tested on radar data collected at a rate of 3Hz in an experiment in

which the trailer was rotated steadily about the hitch ball. Three reflectors (k = 3)

were placed on the trailer as depicted in Figure 5.6. The required distance between

the radars was measured with a meter rule to be w = 1.6m. The true rotation angles

are φ1 = 19.00◦ and φ2 = 20.00◦, they were measured with the protractors installed

on the truck mock-up as described in Figure 5.2. The true translation parameters

were also measured with a meter rule to be w1 = 0.80m, v = 0.32m. The estimation

results, presented in Table 5.1, are discussed as follows.
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(a) The reflectors are in the driver radar FoV as the trailer rotates

(b) The reflectors are in the overlapping FoV of the radars as the trailer rotates

(c) The reflectors are in the passenger radar FoV as the trailer rotates

Figure 5.6: Three moments during the rotation of the trailer (on which
three corner reflectors were placed) about the hitch ball in the direction of
both radars. An empty radar detection in each subfigure indicates that the
trailer was not in the radar’s FoV at that moment. The clutter detections
have been removed. This will not be necessary in a controlled environment.
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Table 5.1
The estimates of the parameters
k = 3, a = 69, b = 93, n = 10

Truth Estimates

φ1 19.00◦ φ̂1 18.87◦

φ2 20.00◦ φ̂2 19.99◦

w1 0.80m ŵ1 0.81m

v 0.32m v̂ 0.35m

5.5.1 Rotation angle estimates from Principle 1

The result presented here is based only on the radar detections obtained while the

reflectors are in the overlapping FoV during the trailer rotation, like in Figure 5.6(b).

The total number of unique radar observations in the overlapping FoV is n = 10. The

estimates of the rotation angles were obtained using (5.8). The estimate for φ2 was

searched within the range vecBnd = [0◦ 40◦], which is an input vector parameter to

Algorithm 9. The results obtained are φ̂1 = 18.87◦, φ̂2 = 19.99◦, which are within

a range of 0.20◦ from the ground truth.
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5.5.2 Translation parameter estimates from Principle 2

The translation parameters were estimated with respect to (5.12). The total number

of unique detections through the entire trailer rotation are a = 69 (from the pas-

senger radar) and b = 93 (from the driver radar). This means that R(w1,v) in (5.11)

contain 162 column vectors. The minimization problem was solved by conducting

a global search over a range of lower and upper bound values for each parameter

using MATLAB’s GlobalSearch algorithm with fmincon as its local solver, as pro-

vided in the program’s global optimization toolbox [76]. The search bounds used

are w1 ∈ [0.5m 1m] and v ∈ [0m 0.5m]. The estimates from the global search are

ŵ1 = 0.81m and v̂ = 0.35m, which are within 0.03m range from the ground truth.
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5.6 Conclusion

We have presented an extrinsic calibration method for automotive radars. The

method requires the distance between two radars to be known. It estimates the rota-

tion and translation parameters needed to rigidly transform radar detections onto a

common coordinate system whose origin is the hitch ball. The method uses two prin-

ciples for the estimation, which are based on the detections of corner reflectors in the

overlapping field of view of the radars and a search for the center of trailer rotation,

the hitch ball position. The experimental results suggest that the calibration method

is feasible for deployment.
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A Appendix

A simulation analysis on parameter w

The algorithm presented in this work assumes that the distance between the two

radars, w is known. To support the requirement for this assumption, we will dis-

cuss a 1simulation analysis in which noisy radar detections are used to estimate the

parameters based on these two cases:

Case 1: The parameter w is unknown. Three parameters φ1, φ2, and w will be

estimated.

Case 2: The parameter w is known. Two parameters φ1 and φ2 will be estimated.

The objective of the analysis is to show the sensitivity of radar detection noise on the

estimates for both cases. The estimates will be obtained with respect to the problem

defined in (5.3) since the problem shows the relationship among the rotation angles

φ1, φ2 and the distance w.

1We chose to conduct a simulation analysis, rather than a non-numerical mathematical analysis,
because we did not find closed-form solutions to the problems in (5.13) and (5.14) to the best of
our knowledge. In this work, (5.13) is solved by performing a global search and (5.14) is solved
by using Algorithm 9 (a combination of the constrained orthogonal Procrustes solution and a grid
search).
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Let the estimates for Case 1 be obtained as:

φ́1, φ́2, ẃ = argmin
φ1,φ2,w

∥∥∥Q(φ1)Xj −
(
QT

(φ2)Yj +

w
0

1Tk

)∥∥∥
F

(5.13)

and the estimates for Case 2 be obtained as:

φ̃1, φ̃2 = argmin
φ1,φ2

∥∥∥Q(φ1)Xj −
(
QT

(φ2)Yj +

w
0

1Tk

)∥∥∥
F

(5.14)

The radar point sets Xj and Yj in (5.13) and (5.14) are, respectively, the passenger

radar and driver radar detections of reflectors placed in the overlapping FoV of both

radars. Unlike (5.5), in which multiple observations are used to refine the estimates

(i.e. reduce the effect of the radar detection noise), this analysis is actually concerned

with the noise effect on the estimates. Therefore, unrefined estimates are considered

in this analysis using one-time detection sets Xj and Yj.

The two setsXj, Yj are simulated as noisy measurements of the true reflector locations

(each set contains 3 points i.e. k = 3) in the radar coordinates,

Xj = Xjtruth +N
X

Yj = Yjtruth +N
Y
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The true reflector locations are randomly generated, N
X

and N
Y
are additive zero-

mean Gaussian noise matrices whose covariances are chosen as follows:

cov
(
N
X

)
= cov

(
N
Y

)
= σ2

1 0

0 1

 cm2 (5.15)

where σ is the standard deviation of the noise matrices in each uncorrelated dimension,

it will be varied in the results.

The true values of the parameters to be estimated are:

φ1 = 30◦, φ2 = 30◦, w = 1.6m

The estimates φ́1, φ́2, ẃ in (5.13) are obtained by conducting a global search, using

MATLAB’s global optimization toolbox [76], over the bounds φ1, φ2 ∈ [0◦ 40◦] and

w ∈ [1m 2m], while the estimates in (5.14) are obtained using Algorithm 9 as

φ̃1, φ̃2 = EstRotAngles(Xj, Yj, vecBnd, w) (5.16)

where vecBnd = [0◦ 40◦].

The performance of the estimates for both cases are assessed using these root mean
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squared error (RMSE) functions.

rmse(φ́1,φ́2) =

1

2

∥∥∥∥∥∥∥∥
φ1

φ2

−
φ́1

φ́2


∥∥∥∥∥∥∥∥

2
1
2

deg. (◦) (5.17)

rmse(ẃ) =

√
(w − ẃ)2 × 100 cm (5.18)

rmse(φ̃1,φ̃2) =

1

2

∥∥∥∥∥∥∥∥
φ1

φ2

−
φ̃1

φ̃2


∥∥∥∥∥∥∥∥

2
1
2

deg. (◦) (5.19)

For any value of σ in (5.15), the functions in (5.17) and (5.18) provide the RMSE

of the estimates for Case 1 (w is unknown), where the multiplicative factor in (5.18)

converts the unit from meters to centimeters; and the function in (5.19) provides the

RMSE of the estimates for Case 2 (w is known).

The parameter σ is evenly varied over 200 values in the range 0cm ≤ σ ≤ 5cm. The

RMSE for all σ values are plotted in Figure 5.7. For Case 1, the red plot shows the

RMSE values of the rotation angle estimates φ́1, φ́2 while the black plot shows the

RMSE values of the ẃ estimates. For Case 2, the blue plot shows the RMSE values

of the rotation angle estimates φ̃1, φ̃2. At σ = 0cm, all three RMSE functions return

zero values, this is noticeable in the figure as all the three plots begin at the origin.

This means that the estimates for both cases are accurate with noiseless data sets.

However, the RMSE values differ with noisy data sets i.e when σ > 0cm. It can be

observed that the rotation estimates for Case 2 (blue plot) generally result in lower
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Figure 5.7: A plot showing the root mean squared error (RMSE) values
of estimates, varied by a noise parameter on the point sets used for the
estimation. The red and black plots are based on modelling parameter w
(the distance between the two radars) as unknown, while the blue plot is
based on known w.

RMSE values when compared with the rotation estimates for Case 1 (red plot). As

the value of σ increases, most of the RMSE values for the estimates of w (black plot)

are bounded at 40cm, this means that the estimates returned by the global search

are ẃ := 2m, which is a boundary value in the search range w ∈ [1m 2m].

The plots in Figure 5.7 show that the same noise N
X
, N

Y
in the radar detections,

generally result in larger estimation errors in the rotation angle estimates in Case 1

when compared with those in Case 2. In particular, the error in estimating w in

Case 1 is significant. The simulation results show that the problem defined in (5.13)

is ill-conditioned since small changes in the input point sets result in large changes in
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the output estimates unlike the problem defined in (5.14). Hence, w is modelled as a

known parameter in this work to avoid the ill-conditioned problem.
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Chapter 6

Implementation of the Calibration

Methods in the Trailer Angle

Detection Algorithm

An algorithm which estimates the angle of trailer rotation was presented in chapter 3.

The first step in the algorithm is to implement a radar fusion procedure i.e. to trans-

form the detections from the radars onto a coordinate system centered at the hitch

ball position for further signal processing. The fusion was performed in the chapter

by using ground truth measurements of the radar geometry; the measurements were

obtained with protractors and a meter rule. Meanwhile, the geometry parameters can

be estimated using the extrinsic calibration methods presented in chapters 4 and 5.
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The calibration results provided in each of the two chapters showed that the resulting

estimates of the parameters are close in values to their ground truths, hence, they can

be used in the trailer angle estimation algorithm. The objective of this chapter is to

check if the use of the geometry parameters obtained from the calibration methods

result in comparable trailer angle estimates with the use of ground truth geometry

parameters.

To perform the analysis, we reuse the same radar data collected in the indoor and

outdoor experiments described in section 3.6 to estimate the trailer angle. Unlike

in section 3.6 where the geometry parameters were ground truth measurements, the

geometry parameters obtained from the calibration methods are used in the trailer

angle estimation algorithm for radar fusion. The parameters are obtained from the

following sources:

(a) Extrinsic calibration algorithm presented in chapter 4. The calibration algo-

rithm considers the geometry shown in Figure 6.1(a). The parameters are esti-

mated with respect to two refinement methods. The estimates, as presented in

the chapter, are provided below:

i. Averaged estimates:

α̂ = 19.25◦, β̂ = 20.15◦

ŵ1 = 0.80m, ŵ2 = 0.79m, v̂1 = 0.31m, v̂2 = 0.33m
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ii. Global estimates:

α̂g = 19.33◦, β̂g = 19.72◦

ŵ1g = 0.79m, ŵ2g = 0.81m, v̂1g = 0.31m, v̂2g = 0.33m

(b) Extrinsic calibration algorithm presented in chapter 5. The calibration method

considers the geometry shown in Figure 6.1(b) and the parameter estimates

presented in the chapter are:

φ̂1 = 18.87◦, φ̂2 = 19.99◦

ŵ1 = 0.81m, v̂ = 0.35m

In total, we have three sources of the radar geometry parameters; two sources

from the extrinsic calibration algorithm presented in chapter 4 (averaged estimates

and global estimates), and the third source from the extrinsic calibration algorithm

presented in chapter 5.

The trailer angle estimation results will be presented using the same notations de-

scribed in chapter 3; estimation Method 1 refers to the Detector block and the

Kalman filter algorithm, Method 2 refers to the Augmented detector block and

the Kalman filter algorithm, δ is the angle parameter used to track the trailer

when it is in motion, and {θinterval , θdifference} are the online set learning parameters.
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Figure 6.1: Two schematic diagrams showing the geometries of the radars
with respect to the hitch ball location, P .
(a) The geometry considered in chapter 4, where P is taken as the origin of
the vehicle coordinate system (VCS) as described in the chapter.
(b) The geometry considered in chapter 5, where P is taken as the origin of
the common coordinate system (CCS) and the distance between the radars
w is assumed to be known, as described in the chapter.

6.1 Trailer Angle Estimates with Supplemental In-

door Dataset

This section extends the results presented in section 3.6.1 by reusing the same dataset

obtained in the indoor environment to estimate the trailer angle. The trailer angle
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Figure 6.2: Indoor Dataset: Radar geometry parameters obtained from
the extrinsic calibration algorithm in chapter 4 (averaged estimate
refinement). Kalman-filtered estimates of the trailer rotation: Method 1
(δ = 2◦) and Method 2 (δ = 2◦, θinterval = 5◦, and θdifference = 1◦).

Figure 6.3: Indoor Dataset: Radar geometry parameters obtained from
the extrinsic calibration algorithm in chapter 4 (global estimate
refinement). Kalman-filtered estimates of the trailer rotation: Method 1
(δ = 2◦) and Method 2 (δ = 2◦, θinterval = 5◦, and θdifference = 1◦).
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Figure 6.4: Indoor Dataset: Radar geometry parameters obtained
from the extrinsic calibration algorithm in chapter 5. Kalman-
filtered estimates of the trailer rotation: Method 1 (δ = 2◦) and Method 2
(δ = 2◦, θinterval = 5◦, and θdifference = 1◦).

estimates are obtained with respect to the three sources of radar geometry param-

eters; the estimates are plotted in Figures 6.2 to 6.4. Each figure shows the es-

timates for both estimation Method 1 (δ = 2◦) and Method 2 (δ = 2◦, θinterval =

5◦, and θdifference = 1◦). More results are summarized with the root mean square

(RMSE) performance metric for each estimation method in Tables 6.1 and 6.2. The

estimates plotted in the figures closely look like those plotted in Figure 3.18, and

the RMSE values in the two tables are also comparable with the values provided in

Table 3.4 for both estimation methods. This shows that the trailer angle estimates

obtained by implementing the calibrated geometry parameters are comparable with

those obtained by using the ground truth geometry parameters.
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Table 6.1
Indoor Dataset: Performance metric of Method 1 trailer angle estimates
θ̂ (in degrees) based on the source of radar geometry parameters

(a) Extrinsic calibration algorithm in chapter 4 (averaged estimate refinement)

δ = 5◦ δ = 4◦ δ = 3◦ δ = 2◦ δ = 1◦

RMSE(θ̂) 1.37 1.36 1.36 1.35 1.40

(c) Extrinsic calibration algorithm in chapter 4 (global estimate refinement)

δ = 5◦ δ = 4◦ δ = 3◦ δ = 2◦ δ = 1◦

RMSE(θ̂) 1.48 1.48 1.49 1.49 1.55

(d) Extrinsic calibration algorithm in chapter 5

δ = 5◦ δ = 4◦ δ = 3◦ δ = 2◦ δ = 1◦

RMSE(θ̂) 1.57 1.58 1.56 1.53 1.58
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Table 6.2
Indoor Dataset: RMSE

(θ̂s)
of Method 2 trailer angle estimates varied by

the online set learning parameters (in degrees) based on the source of
radar geometry parameters

(a) Extrinsic calibration algorithm in chapter 4 (averaged estimate refinement)

θdifference = 1◦ θdifference = 2◦

δ = 5◦ δ = 4◦ δ = 3◦ δ = 2◦ δ = 1◦ δ = 5◦ δ = 4◦ δ = 3◦ δ = 2◦ δ = 1◦

θ i
n

te
rv

a
l

5◦ 1.29 1.33 1.31 1.37 1.41 1.26 1.37 1.32 1.36 1.50

6◦ 1.32 1.33 1.38 1.35 1.46 1.31 1.37 1.29 1.32 1.39

7◦ 1.31 1.35 1.34 1.34 1.48 1.32 1.42 1.39 1.49 1.50

8◦ 1.34 1.37 1.36 1.33 1.45 1.32 1.40 1.32 1.36 1.46

9◦ 1.36 1.38 1.36 1.40 1.43 1.35 1.37 1.37 1.44 1.51

10◦ 1.38 1.38 1.37 1.39 1.46 1.35 1.47 1.36 1.39 1.47

(b) Extrinsic calibration algorithm in chapter 4 (global estimate refinement)

θdifference = 1◦ θdifference = 2◦

δ = 5◦ δ = 4◦ δ = 3◦ δ = 2◦ δ = 1◦ δ = 5◦ δ = 4◦ δ = 3◦ δ = 2◦ δ = 1◦

θ i
n

te
rv

a
l

5◦ 1.46 1.45 1.44 1.48 1.52 1.36 1.48 1.43 1.55 1.37

6◦ 1.47 1.46 1.46 1.46 1.49 1.35 1.33 1.44 1.34 1.49

7◦ 1.45 1.43 1.47 1.46 1.55 1.35 1.52 1.45 1.46 1.53

8◦ 1.47 1.48 1.46 1.44 1.51 1.45 1.33 1.44 1.56 1.27

9◦ 1.46 1.48 1.47 1.50 1.51 1.45 1.41 1.45 1.54 1.52

10◦ 1.50 1.51 1.51 1.55 1.53 1.51 1.49 1.49 1.43 1.43

(c) Extrinsic calibration algorithm in chapter 5

θdifference = 1◦ θdifference = 2◦

δ = 5◦ δ = 4◦ δ = 3◦ δ = 2◦ δ = 1◦ δ = 5◦ δ = 4◦ δ = 3◦ δ = 2◦ δ = 1◦

θ i
n

te
rv

a
l

5◦ 1.57 1.53 1.57 1.51 1.57 1.43 1.65 1.69 1.62 1.51

6◦ 1.58 1.54 1.54 1.52 1.56 1.51 1.61 1.53 1.66 1.47

7◦ 1.55 1.53 1.52 1.50 1.60 1.53 1.65 1.51 1.65 1.49

8◦ 1.57 1.57 1.57 1.53 1.58 1.43 1.65 1.52 1.61 1.71

9◦ 1.54 1.56 1.52 1.55 1.57 1.48 1.61 1.57 1.61 1.56

10◦ 1.57 1.57 1.55 1.54 1.60 1.44 1.67 1.52 1.64 1.58
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6.2 Trailer Angle Estimates with Supplemental Out-

door Dataset

This section is also an extension of the results presented in section 3.6.2. The same

dataset obtained in the outdoor environment are reused to estimate the trailer angle

with respect to the three sources of radar geometry parameters.

The plots of the estimates for Method 1 (δ = 2◦) and Method 2 (δ = 2◦, θinterval =

5◦, and θdifference = 1◦) are provided in Figures 6.5 to 6.7. More results are also

summarized with the RMSE performance metric in Tables 6.3 and 6.4. It can be

observed that the results plotted in the figures closely look like those plotted in

Figure 3.18. The RMSE values in the tables are also comparable with the values

provided in Table 3.6. Again, this shows that the trailer angle estimates obtained by

implementing the calibrated geometry parameters are comparable with those obtained

by using the ground truth geometry parameters.
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Figure 6.5: Outdoor Dataset: Radar geometry parameters obtained
from the extrinsic calibration algorithm in chapter 4 (averaged es-
timate refinement). Kalman-filtered estimates of the trailer rotation:
Method 1 (δ = 2◦) and Method 2 (δ = 2◦, θinterval = 5◦, and θdifference = 1◦).

Figure 6.6: Outdoor Dataset: Radar geometry parameters obtained
from the extrinsic calibration algorithm in chapter 4 (global estimate
refinement). Kalman-filtered estimates of the trailer rotation: Method 1
(δ = 2◦) and Method 2 (δ = 2◦, θinterval = 5◦, and θdifference = 1◦).
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Figure 6.7: Outdoor Dataset: Radar geometry parameters obtained
from the extrinsic calibration algorithm in chapter 5. Kalman-filtered
estimates of the trailer rotation: Method 1 (δ = 2◦) and Method 2 (δ =
2◦, θinterval = 5◦, and θdifference = 1◦).

Table 6.3
Outdoor Dataset: Performance metric of Method 1 trailer angle
estimates θ̂ (in degrees) based on the source of radar geometry

parameters

(a) Extrinsic calibration algorithm in chapter 4 (averaged estimate refinement)

δ = 5◦ δ = 4◦ δ = 3◦ δ = 2◦ δ = 1◦

RMSE(θ̂) 3.12 1.67 1.51 1.54 1.73

(c) Extrinsic calibration algorithm in chapter 4 (global estimate refinement)

δ = 5◦ δ = 4◦ δ = 3◦ δ = 2◦ δ = 1◦

RMSE(θ̂) 3.21 1.73 1.60 1.55 1.74

(d) Extrinsic calibration algorithm in chapter 5

δ = 5◦ δ = 4◦ δ = 3◦ δ = 2◦ δ = 1◦

RMSE(θ̂) 2.97 1.77 1.61 1.64 1.83
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Table 6.4
Outdoor Dataset: RMSE

(θ̂s)
of Method 2 trailer angle estimates varied

by the online set learning parameters (in degrees) based on the source of
radar geometry parameters

(a) Extrinsic calibration algorithm in chapter 4 (averaged estimate refinement)

θdifference = 1◦ θdifference = 2◦

δ = 5◦ δ = 4◦ δ = 3◦ δ = 2◦ δ = 1◦ δ = 5◦ δ = 4◦ δ = 3◦ δ = 2◦ δ = 1◦

θ i
n

te
rv

a
l

5◦ 1.83 1.74 1.60 1.62 1.76 1.83 1.44 1.39 1.54 1.66

6◦ 3.09 1.77 1.54 1.54 1.68 3.15 1.75 1.49 1.41 1.60

7◦ 1.79 3.00 1.57 1.51 1.78 8.95 1.78 1.62 1.65 1.61

8◦ 3.17 2.98 1.51 1.54 1.75 1.86 1.71 1.44 1.50 1.69

9◦ 3.23 1.85 1.49 1.54 1.74 1.37 1.61 1.43 1.44 1.67

10◦ 1.81 1.90 1.60 1.52 1.83 1.84 1.56 1.38 1.54 1.75

(b) Extrinsic calibration algorithm in chapter 4 (global estimate refinement)

θdifference = 1◦ θdifference = 2◦

δ = 5◦ δ = 4◦ δ = 3◦ δ = 2◦ δ = 1◦ δ = 5◦ δ = 4◦ δ = 3◦ δ = 2◦ δ = 1◦

θ i
n

te
rv

a
l

5◦ 3.15 1.77 1.53 1.58 1.73 5.22 1.55 1.36 1.53 1.80

6◦ 3.17 1.85 1.54 1.55 1.68 3.07 1.32 1.40 1.54 1.84

7◦ 3.18 1.80 1.66 1.53 1.73 13.58 1.57 1.46 1.46 1.96

8◦ 3.20 2.89 1.62 1.63 1.74 1.85 1.59 1.59 1.45 1.72

9◦ 3.23 3.03 1.55 1.57 1.63 1.76 1.40 1.43 1.28 1.80

10◦ 3.19 1.57 1.54 1.51 1.67 3.18 1.76 1.42 1.58 1.73

(c) Extrinsic calibration algorithm in chapter 5

θdifference = 1◦ θdifference = 2◦

δ = 5◦ δ = 4◦ δ = 3◦ δ = 2◦ δ = 1◦ δ = 5◦ δ = 4◦ δ = 3◦ δ = 2◦ δ = 1◦

θ i
n

te
rv

a
l

5◦ 3.05 3.01 1.57 1.63 1.78 7.58 1.68 1.43 1.62 1.77

6◦ 3.12 1.82 1.63 1.62 1.81 1.54 1.49 1.44 1.57 1.63

7◦ 3.02 3.14 1.63 1.63 1.87 9.16 1.73 1.66 1.50 1.65

8◦ 2.99 1.91 1.63 1.70 1.80 8.91 1.54 1.69 1.64 1.73

9◦ 2.95 1.90 1.65 1.68 1.79 1.53 1.48 1.51 1.43 1.89

10◦ 2.88 1.84 1.65 1.65 1.79 3.04 1.38 1.49 1.75 1.89
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6.3 Conclusion

We have shown that the radar geometry parameters required for the fusion procedure

in the trailer angle detection algorithm, which was introduced chapter 3, can be

obtained by using the extrinsic calibration methods presented in chapters 4 and 5.

This was demonstrated by reusing the indoor and outdoor data collected in section 3.6

of chapter 3 with respect to the calibrated geometry parameters. It is also shown that

the trailer angle estimates obtained by using the calibrated geometry parameters are

comparable with those obtained by using the ground truth geometry parameters.
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Chapter 7

Conclusions and Research

Suggestions

7.1 Conclusions

This dissertation contains algorithms which estimate the rotation of a trailer about

the hitch ball of a vehicle using the point cloud detections provided by automotive

radars, which are installed at the rear of the vehicle. It also contains two extrinsic

calibration algorithms for radar sensor fusion. The fusion procedure is one of the

steps required for the trailer rotation estimation method presented in this work.

Chapter 2 gives an account of a preliminary study of the problem. It considered two
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radars which are directly located behind the vehicle, the radars’ boresights are in the

direction of the vehicle’s longitudinal axis. Three methods based on the ordinary least

squares, principal component analysis, and maximum likelihood are presented and

tested using synthetic data only. The results suggest that the trailer angle estimates

vary more when the radar point cloud has a large variance in the vehicle’s longitudinal

direction than in situations when it has a low variance in the vehicle’s longitudinal

direction. The performance of the maximum likelihood estimation method also de-

pends on knowing the probability density function of the point cloud’s distribution,

which is a challenging task with non-synthetic data.

Chapter 3 presents another approach to the problem which considers experimental

data collected from two blind spot information radars which are installed in the tail

light fixtures of a truck. The radars are installed at non-zero mount angles such

that their boresights are not in the direction of the vehicle’s longitudinal axis. The

algorithm presented estimated the trailer rotation based on the experimental data

collected in both indoor and outdoor environments. The radar detections are first

transformed onto a coordinate system, centered at the hitch ball position, for further

signal processing. The approach then uses a rotational point set registration algo-

rithm, which matches one set of detections obtained after trailer rotation with another

baseline set of detections (referred to as the reference set), to establish rotational cor-

respondence between the two sets and also obtain an initial rotation angle estimate.

The estimate is then refined in the least squares sense by the constrained orthogonal
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Procrustes optimization method. The estimates, before and after the refinement, are

provided as input observations to a Kalman filter to obtain the overall estimate of the

rotation angle. Two variants of the approach were presented based on the number of

reference sets used for the estimation. One variant (Method 1, Detector block and

the Kalman filter) uses the detections obtained at the zero-degree trailer position as

its reference set and provides two input observations to the Kalman filter while the

other variant (Method 2, Augmented detector block and the Kalman filter) adds a

second reference set as the trailer rotates and provides four input observations to

the Kalman filter. The results, based on the experiments conducted, showed that

the root mean square error of trailer angle estimates obtained using both methods

are comparable, and also suggested that Method 2 will be preferred in situations

where Method 1 could only match very few detections for correspondence. It was

also shown that the trailer angle estimates are more accurate with data collected in

an indoor environment having a smooth floor surface than with data collected in an

outdoor environment having a rough ground surface. The challenges identified with

the outdoor-based estimation were identified and included in a list of suggested future

research in chapter 7.

The first step in the estimation approach presented in chapter 3 is to transform the

radar detections from their sensor coordinates onto a coordinate system centered at

the hitch ball. Two extrinsic calibration methods were provided in chapters 4 and 5

to estimate the radar geometry parameters needed for the transformation.
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In chapter 4, an extrinsic calibration algorithm was presented to estimate the mount

angle of a radar and a translation vector needed to transform detections from the

radar onto a vehicle coordinate system (VCS) whose origin is at a conveniently chosen

location. The horizontal axis of the VCS aligns with the lateral line of the vehicle. The

algorithm can be used with one or two radars installed either at the front or rear of a

vehicle. It compares known locations of objects such as corner reflectors in the VCS

with the radar detections to estimate the parameters. Different data observations

are collected to obtain refined estimates of the parameters. Two refinement methods

are presented; one which averages multiple estimates and another which combines all

observations for global estimation. The algorithm was tested on both synthetic and

experimental data collected from two radars. With respect to the radar data results

obtained from both refinement methods, the estimates of the mount angles are within

0.35◦ range of the ground truth, while the estimates of the translation parameters are

within 0.01m range of the ground truth.

The second extrinsic calibration algorithm discussed in chapter 5 estimates the ro-

tation and translation parameters needed to transform the detections obtained from

two blind spot information radars, having an overlapping field of view (FoV) region,

onto a common coordinate system (CCS) whose origin is the hitch ball position. The

horizontal axis of the CCS aligns with the straight line connecting the radars. The

estimation procedure requires a trailer or rotating platform, on which corner reflectors

(CRs) are placed, to be rotated about the hitch ball in the direction of both radars.
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Two principles are used for the calibration. The first principle estimates the rotation

parameters using the detections of CRs in the overlapping FoV of both radars as the

trailer rotates. The second principle estimates the translation parameters by search-

ing for the center of trailer rotation, the hitch ball, based on the ranges of the reflector

detections. The algorithm was tested on radar data collected in an experiment, the

results presented showed that the estimates of the rotation parameters are within

0.20◦ range of the ground truth and the estimates of the translation parameters are

within 0.03m range from the ground truth.

Chapter 6 was introduced to combine the theories presented in chapters 3 to 5. This

was necessary because the trailer angle estimation in chapter 3 was performed by

using the ground truth radar geometry parameters. Meanwhile, the parameters can

be estimated by using the extrinsic calibration methods presented in chapters 4 and 5.

The indoor and outdoor radar data collected in section 3.6 were reused in chapter 6

to estimate the trailer angle using the same algorithm provided in chapter 3. The

algorithm was used with the calibrated geometry parameters. It is shown that the

trailer angle estimates obtained based on using the ground truth radar geometry are

comparable with the estimates obtained based on using the calibrated radar geometry.

This dissertation has provided algorithms which estimate the rotation of a trailer
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attached to a vehicle’s hitch ball using radar detections obtained from multiple view-

points. The position of the hitch ball, which is the center of rotation, was also de-

termined in the estimation problem. In a broader sense, the work provided methods

which estimate the rotation of a rigid body attached to another body at a pivot, and

the rotation operation is constrained to a plane. An example of the motion model

is seen in the hinge joint in anatomy, which allows motion (flexion and extension) in

a plane; flexion reduces the angle between two coupled body parts while extension

increases the angle between the body parts. The motion model can also be extended

to three dimensions such that a rigid body which attaches to a pivot can move in a

three-dimensional space as is the case for ball and socket joints. The kinematics of

human joints with respect to different pivots on the body is of interest to researchers

in the computer vision and the biomechanics fields. Efficient methods for finding the

position of a pivot (center of rotation) and the axis of rotation in body parts are also

sought in the fields. Sensors such as lidars and camera (used with markers placed

on a body) provide the point detections on the body of interest from one or more

viewpoints so that the body pose can be estimated for use in applications such as

virtual and augmented realities. Hence, the methods provided in this dissertation or

derivatives of the methods may also be helpful to study the motion of human body

parts with respect to pivot joints in the body.
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7.2 Suggestions for Future Research

The results presented in this dissertation have demonstrated the feasibility of the

trailer angle estimation using radars, based on experiments conducted off the road.

Subsequently, the algorithms presented or derivatives of the algorithms will need to

be tested on the road. These are some future research directions to be considered for

on-the-road experiments.

7.2.1 Mitigating the effects of radar vibration

The trailer angle estimation algorithm introduced in chapter 3 was tested in both

indoor and outdoor environments. Unlike the indoor environment, the outdoor envi-

ronment has a rough ground surface which makes the radars vibrate significantly as

the trailer rotates during data collection. The trailer angle estimation results indicate

that the vibration of the radars has effects on the performance of the algorithm. This

is supported in the literature, as vehicle vibration is shown to degrade the perfor-

mance of radars [32–34]. Meanwhile, the effects of the vibration can be mitigated

[35–37]. Hence, it is suggested that the vibration effects be mitigated first before

using the radar detections in the trailer angle estimation algorithm.
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7.2.2 Multi-sensor fusion for improved trailer tracking

The algorithm presented in chapter 3 needs to track the trailer when it rotates in

order to estimate the trailer angle successfully. It is shown, based on the results

obtained with outdoor data, that the algorithm sometimes loses track of the trailer.

Hence, radar-only detections may not be sufficient or robust to track the trailer in

all situations. Therefore, it is suggested that the radars be fused with another sensor

such as the camera to improve the tracking of the trailer.

7.2.3 Online radar calibration

This dissertation includes two extrinsic calibration methods which are used to esti-

mate the radar geometry parameters needed in the trailer angle estimation algorithm.

Both calibration methods make use of corner reflectors and assume that the cali-

bration procedure is performed in a controlled environment. Hence, the calibration

methods do not apply to driving situations. It will be useful if the radars self-calibrate

when the vehicle is being driven. This becomes very helpful when the position and

orientation of the radars gradually change. Therefore, methods which would achieve

online calibration of the radars are also recommended for future research.
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