822 research outputs found

    Auralization of Air Vehicle Noise for Community Noise Assessment

    Get PDF
    This paper serves as an introduction to air vehicle noise auralization and documents the current state-of-the-art. Auralization of flyover noise considers the source, path, and receiver as part of a time marching simulation. Two approaches are offered; a time domain approach performs synthesis followed by propagation, while a frequency domain approach performs propagation followed by synthesis. Source noise description methods are offered for isolated and installed propulsion system and airframe noise sources for a wide range of air vehicles. Methods for synthesis of broadband, discrete tones, steady and unsteady periodic, and a periodic sources are presented, and propagation methods and receiver considerations are discussed. Auralizations applied to vehicles ranging from large transport aircraft to small unmanned aerial systems demonstrate current capabilities

    Aeronautical engineering: A continuing bibliography, supplement 125

    Get PDF
    This bibliography lists 407 reports, articles, and other documents introduced into the NASA scientific and technical information system in July 1980

    New Insights into the Design and Application of a Passive Acoustic Monitoring System for the Assessment of the Good Environmental Status in Spanish Marine Waters

    Full text link
    [EN] Passive acoustic monitoring systems allow for non-invasive monitoring of underwater species and anthropogenic noise. One of these systems has been developed keeping in mind the need to create a user-friendly tool to obtain the ambient noise indicators, while at the same time providing a powerful tool for marine scientists and biologists to progress in studying the effect of human activities on species and ecosystems. The device is based on a low-power processor with ad-hoc electronics, ensuring that the system has efficient energy management, and that the storage capacity is large enough to allow deployments for long periods. An application is presented using data from an acoustic campaign done in 2018 at El Gorguel (Cartagena, Spain). The results show a good agreement between theoretical maps created using AIS data and the ambient noise level indicators measured in the frequency bands of 63 Hz and 125 Hz specified in the directive 11 of the EU Marine Strategy Framework Directive. Using a 2D representation, these ambient noise indicators have enabled repetitive events and daily variations in boat traffic to be identified. The ship noise registered can also be used to track ships by using the acoustic signatures of the engine propellers¿ noise.Lara Martínez, G.; Miralles Ricós, R.; Bou-Cabo, M.; Esteban, JA.; Espinosa Roselló, V. (2020). New Insights into the Design and Application of a Passive Acoustic Monitoring System for the Assessment of the Good Environmental Status in Spanish Marine Waters. Sensors. 20(18):1-12. https://doi.org/10.3390/s20185353S1122018Lara, G., Bou-Cabo, M., Esteban, J. A., Espinosa, V., & Miralles, R. (2019). Design and Application of a Passive Acoustic Monitoring System in the Spanish Implementation of the Marine Strategy Framework Directive. Proceedings of 6th International Electronic Conference on Sensors and Applications. doi:10.3390/ecsa-6-06568SAMARUC Webhttp://samaruc.webs.upv.esExplora (Patents and Software) UPV Webhttps://aplicat.upv.es/exploraupv/ficha-tecnologia/patente_software/15065?busqueda=R-16202-2012Beghi, M. G. (Ed.). (2013). Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices. doi:10.5772/2581Oceans Physics at Your Fingertipshttps://www.emodnet-physics.eu/Map/Gridded Bathymetric Datahttps://www.gebco.net/data_and_products/gridded_bathymetry_data/Mackenzie, K. V. (1981). Nine‐term equation for sound speed in the oceans. The Journal of the Acoustical Society of America, 70(3), 807-812. doi:10.1121/1.386920Ross, D., & Kuperman, W. A. (1989). Mechanics of Underwater Noise. The Journal of the Acoustical Society of America, 86(4), 1626-1626. doi:10.1121/1.398685Gervaise, C., Kinda, B. G., Bonnel, J., Stéphan, Y., & Vallez, S. (2012). Passive geoacoustic inversion with a single hydrophone using broadband ship noise. The Journal of the Acoustical Society of America, 131(3), 1999-2010. doi:10.1121/1.3672688Crocker, S. E., Nielsen, P. L., Miller, J. H., & Siderius, M. (2014). Geoacoustic inversion of ship radiated noise in shallow water using data from a single hydrophone. The Journal of the Acoustical Society of America, 136(5), EL362-EL368. doi:10.1121/1.4898739Li, H., Yang, K., Duan, R., & Lei, Z. (2017). Joint Estimation of Source Range and Depth Using a Bottom-Deployed Vertical Line Array in Deep Water. Sensors, 17(6), 1315. doi:10.3390/s17061315Tong, J., Hu, Y.-H., Bao, M., & Xie, W. (2013). Target tracking using acoustic signatures of light-weight aircraft propeller noise. 2013 IEEE China Summit and International Conference on Signal and Information Processing. doi:10.1109/chinasip.2013.6625333Lo, K. W., Perry, S. W., & Ferguson, B. G. (2002). Aircraft flight parameter estimation using acoustical Lloyd’s mirror effect. IEEE Transactions on Aerospace and Electronic Systems, 38(1), 137-151. doi:10.1109/7.993235Miralles, R., Lara, G., Gosalbez, J., Bosch, I., & León, A. (2019). Improved visualization of large temporal series for the evaluation of good environmental status. Applied Acoustics, 148, 55-61. doi:10.1016/j.apacoust.2018.12.00

    Propfan Test Assessment (PTA)

    Get PDF
    The objectives of the Propfan Test Assessment (PTA) Program were to validate in flight the structural integrity of large-scale propfan blades and to measure noise characteristics of the propfan in both near and far fields. All program objectives were met or exceeded, on schedule and under budget. A Gulfstream Aerospace Corporation GII aircraft was modified to provide a testbed for the 2.74m (9 ft) diameter Hamilton Standard SR-7 propfan which was driven by a 4475 kw (600 shp) turboshaft engine mounted on the left-hand wing of the aircraft. Flight research tests were performed for 20 combinations of speed and altitude within a flight envelope that extended to Mach numbers of 0.85 and altitudes of 12,192m (40,000 ft). Propfan blade stress, near-field noise on aircraft surfaces, and cabin noise were recorded. Primary variables were propfan power and tip speed, and the nacelle tilt angle. Extensive low altitude far-field noise tests were made to measure flyover and sideline noise and the lateral attenuation of noise. In coopertion with the FAA, tests were also made of flyover noise for the aircraft at 6100m (20,000 ft) and 10,668m (35,000 ft). A final series of tests were flown to evaluate an advanced cabin wall noise treatment that was produced under a separate program by NASA-Langley Research Center

    Aeronautical engineering: A continuing bibliography with indexes (supplement 210)

    Get PDF
    This bibliography lists 409 reports, articles and other documents introduced into the NASA scientific and technical information system in January 1987

    Aeronautical Engineering: A continuing bibliography with indexes, supplement 163

    Get PDF
    The bibliography lists 387 reports, articles and other documents introduced into the NASA scientific and technical information system in June 1983

    Multi-Band Acoustic Monitoring of Aerial Signatures

    Full text link
    The Galileo Project's acoustic monitoring, omni-directional system (AMOS) aids in the detection and characterization of aerial phenomena. It uses a multi-band microphone suite spanning infrasonic to ultrasonic frequencies, providing an independent signal modality for validation and characterization of detected objects. The system utilizes infrasonic, audible, and ultrasonic systems to cover a wide range of sounds produced by both natural and man-made aerial phenomena. Sound signals from aerial objects can be captured given certain conditions, such as when the sound level is above ambient noise and isn't excessively distorted by its transmission path. Findings suggest that audible sources can be detected up to 1 km away, infrasonic sources can be detected over much longer distances, and ultrasonic at shorter ones. Initial data collected from aircraft recordings with spectral analysis will help develop algorithms and software for quick identification of known aircraft. Future work will involve multi-sensor arrays for sound localization, larger data sets analysis, and incorporation of machine learning and AI for detection and identification of more types of phenomena in all frequency bands

    Aeronautical Engineering: A special bibliography with indexes, supplement 64, December 1975

    Get PDF
    This bibliography lists 288 reports, articles, and other documents introduced into the NASA scientific and technical information system in November 1975
    corecore