3,659 research outputs found

    Automatic facial expression tracking for 4D range scans

    Get PDF
    This paper presents a fully automatic approach of spatio-temporal facial expression tracking for 4D range scans without any manual interventions (such as specifying landmarks). The approach consists of three steps: rigid registration, facial model reconstruction, and facial expression tracking. A Scaling Iterative Closest Points (SICP) algorithm is introduced to compute the optimal rigid registration between a template facial model and a range scan with consideration of the scale problem. A deformable model, physically based on thin shells, is proposed to faithfully reconstruct the facial surface and texture from that range data. And then the reconstructed facial model is used to track facial expressions presented in a sequence of range scans by the deformable model

    A comprehensive analysis of the geometry of TDOA maps in localisation problems

    Get PDF
    In this manuscript we consider the well-established problem of TDOA-based source localization and propose a comprehensive analysis of its solutions for arbitrary sensor measurements and placements. More specifically, we define the TDOA map from the physical space of source locations to the space of range measurements (TDOAs), in the specific case of three receivers in 2D space. We then study the identifiability of the model, giving a complete analytical characterization of the image of this map and its invertibility. This analysis has been conducted in a completely mathematical fashion, using many different tools which make it valid for every sensor configuration. These results are the first step towards the solution of more general problems involving, for example, a larger number of sensors, uncertainty in their placement, or lack of synchronization.Comment: 51 pages (3 appendices of 12 pages), 12 figure

    Metrological characterization of a vision-based system for relative pose measurements with fiducial marker mapping for spacecrafts

    Get PDF
    An improved approach for the measurement of the relative pose between a target and a chaser spacecraft is presented. The selected method is based on a single camera, which can be mounted on the chaser, and a plurality of fiducial markers, which can be mounted on the external surface of the target. The measurement procedure comprises of a closed-form solution of the Perspective from n Points (PnP) problem, a RANdom SAmple Consensus (RANSAC) procedure, a non-linear local optimization and a global Bundle Adjustment refinement of the marker map and relative poses. A metrological characterization of the measurement system is performed using an experimental set-up that can impose rotations combined with a linear translation and can measure them. The rotation and position measurement errors are calculated with reference instrumentations and their uncertainties are evaluated by the Monte Carlo method. The experimental laboratory tests highlight the significant improvements provided by the Bundle Adjustment refinement. Moreover, a set of possible influencing physical parameters are defined and their correlations with the rotation and position errors and uncertainties are analyzed. Using both numerical quantitative correlation coefficients and qualitative graphical representations, the most significant parameters for the final measurement errors and uncertainties are determined. The obtained results give clear indications and advice for the design of future measurement systems and for the selection of the marker positioning on a satellite surface

    A Stereo Vision Framework for 3-D Underwater Mosaicking

    Get PDF

    Spacecraft applications of advanced global positioning system technology

    Get PDF
    The purpose of this study was to evaluate potential uses of Global Positioning System (GPS) in spacecraft applications in the following areas: attitude control and tracking; structural control; traffic control; and time base definition (synchronization). Each of these functions are addressed. Also addressed are the hardware related issues concerning the application of GPS technology and comparisons are provided with alternative instrumentation methods for specific functions required for an advanced low earth orbit spacecraft
    • …
    corecore