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1. Introduction

The localization of radiant sources based on a spatial distribution of sensors has been an 
important research topic for the past two decades, particularly in the area of space–time audio 
processing. Among the many solutions that are available in the literature, those based on the 
time differences of arrival (TDOA) between distinct sensors of a signal emitted by the source 
are the most widespread and popular. Such solutions, in fact, are characterized by a certain 
flexibility, a reasonably modest computational cost with respect to other solutions and a certain 
robustness against noise. Popular TDOA-based solutions are found in [2, 7, 10, 24, 26, 27, 
31–33, 40, 43, 45, 47, 48, 51, 53, 54].

Let us consider the problem of planar source localization in a homogeneous medium with 
negligible reverberation. From elementary geometry, the locus of putative source locations 
that are compatible with a TDOA measurement between two sensors in positions mi and m j is 
one branch of a hyperbola of foci mi and m j, whose aperture depends on the range difference 
(TDOA × speed of sound). A single TDOA measurement is, therefore, not sufficient for 
localizing a source, but narrows down the set of locations that are compatible with that 
measurement by reducing its dimensionality.

Multiple measurements do enable localization but measurement errors cause the 
corresponding hyperbola branches to not meet at a single point, thus ruling out simple 
geometric intersection as a solution to the localization problem [14]. This is why research has 
focused on techniques that are aimed at overcoming this problem while achieving robustness. 
Examples are maximum likelihood (ML) [16, 26, 52]; least squares [2]; and constrained least 
squares [47], which offer accurate results for the most common configurations of sensors.



There are many situations, however, in which it is necessary to minimize the number of 
sensors in use, due to specific sensor placement constraints, or cost limitations. In these cases 
it becomes important to assess how the solutions to the localization problem ‘behave’ (and 
how many there are) as the measurements or the sensor geometry vary. This problem has 
been partially addressed in the case of the localization of a radio-beacon receiver in LORAN 
navigation systems [48] and in the context of the global positioning system (GPS), where 
measurements are of time of arrivals (TOAs) instead of TDOAs (see [1, 8, 9, 15, 18, 19, 28, 
30, 36, 37]). In particular, these studies provide the solution for the case of planar (2D) source 
localization with three receivers (i.e. with two TDOAs) and they recognize the possibility of 
dual solutions in some instances, as two different source positions could correspond to the 
same pair of TDOA measurements.

Recently, in [50] the author focused on the assessment of the ill-posedness of the 
localization problem in the case of 2D minimal sensor configurations, i.e. to quantify how 
changes in the measurements propagate onto changes in the estimated source location. In 
particular, in the same quoted paper the space of TDOA measurements has been introduced 
and it has been shown that in this space there exist small regions associated with dual solutions 
corresponding to large regions in physical space. This assessment, however, is performed in a 
simulative fashion and for one specific sensor geometry, and it would be important to extend 
its generality further.

What we propose in this paper is a generalization of the discussion contained in [50] based 
on a fully analytical and mathematically rigorous approach. We encode the TDOA localization 
problem into a map, called the TDOA map, from the space of source locations to the space 
of TDOA measurements and we offer a complete characterization of such a map. Not only 
is it our goal to analytically derive results shown in [50] (irrespective of the geometry of the 
acquisition system), but also to complete the characterization of the TDOA map by analyzing 
the properties of its image and preimage, finding closed-form expressions for the boundaries 
of the regions of interest. We observe that this approach to the problem fits into the research of 
structural identifiability of complex systems (see for example [11, 39]), where one is interested 
in studying whether the parameters of a model (in our case, the coordinates of the source) can 
be fully retrieved from the experimental data. A similar analysis of the source localization 
problem has also been proposed and investigated very recently in [5, 17], the latter in the 
context of the TOA-based target tracking.

We believe that characterizing the TDOA map to its fullest extent, even in the simplest 
case of three calibrated and synchronous sensors, is a necessary step for developing new 
mathematical tools for a wide range of more general problems. One immediate consequence 
of this gained knowledge is the possibility to study how to optimize sensor placement in 
terms of robustness against noise or measuring errors. More importantly, this study paves 
the way to new areas of research. For example, it enables the statistical analysis of error 
propagation in TDOA-based localization problems; and it allows us to approach more complex 
scenarios where the uncertainty lies with sensor synchronization or spatial sensor placement. 
This prospective investigation, in fact, is in line with the recently revamped interest of the 
research community in self-calibrating and self-synchronizing spatial distributions of sensors 
[16, 44, 46].

Our analysis starts from [20], where a different perspective on the localization problem is 
offered through the adoption of the space–range differences (SRDs) reference frame, where 
the wavefront propagation is described by a (propagation) cone whose vertex lies on the source 
location. As range difference measurements (TDOA × propagation speed) are bound to lie 
on the surface of the propagation cone, localizing a source in the SRD space corresponds to 
finding the vertex of the cone that best fits the measured data. The SRD reference frame is 
also
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Figure 1. Organization of the paper.

used in [12] to offer geometric interpretations to the underlying principles behind the most 
common TDOA-based localization solutions. Although not explicitly claimed, the localization 
problem is described in [12, 20] in terms of null surfaces and planes in the 3D Minkowski 
space. This suggests to us that exterior algebra can give us powerful tools for approaching our 
problem as well. We therefore begin our analysis by showing how the SRD reference frame can 
be better represented within the framework of exterior algebra, and we show how the newly 
gained tools allow us to derive a global analytical characterization of the TDOA map. Working 
with exterior algebra in the Minkowski space is not unheard of in the literature of space–time 
signal processing. In [18, 19], for example, this representation is used for approaching source 
localization in the GPS context.

The paper is organized as shown in figure 1. Section 2 introduces the concept of a TDOA 
map. Two TDOA maps are defined: τ2, where the TDOAs are referred to a common reference
microphone; and τ2

∗, which considers the TDOAs between all the pairs of microphones. The 
two maps are, in fact, equivalent in the absence of measurement errors. This is why most of
the techniques in the literature work with τ2. However, in the presence of measurement noise,
adopting τ2

∗ helps gain robustness. For this reason we decided to consider both τ2 and τ2
∗. 

In order to introduce our mathematical formalisms with some progression, in the first part of
the paper our analysis will concern τ2. Section 3 focuses on the local analysis of the TDOA 
map τ2. In practice, we show what can be accomplished using ‘conventional’ analysis tools 
(analysis of the Jacobian matrix). This analysis represents the first step toward the study of 
the invertibility of τ2. In section 4 we move forward with our representation by defining the 
TDOA mapping in the SRD reference frame. This is where we show that the Minkowski 
space is the most natural representation for a mapping that ‘lives’ in the SRD reference frame. 
Section 5 describes the early properties of τ2, with particular emphasis on the fact that its
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image is contained in a compact polygonal region. Section 6 offers a complete description of
the mapping τ2 for the case of non-aligned microphones. In particular, subsection 6.1 shows
that the preimage (inverse image) of τ2 can be described in terms of the non-negative roots of
a degree-2 equation, while 6.3 describes Im(τ) and the cardinality of the preimage. Finally,
subsection 6.4 shows the preimage regions in τ2 and the bifurcation curve Ẽ that divides the
region of cardinality 1 from the regions of cardinality 0 or 2. Similar results are derived for
the case of aligned microphones in section 7. In section 8 we use the previous results on τ2 to
describes the image and the preimages of the map τ∗

2 . Section 9 discusses the impact of this
work and offers an example aimed at showing that the global analysis on τ2 (or τ∗

2 ) gives new
insight on the localization problem, which could not be derived with a local approach. Finally,
section 10 draws some conclusions and describes possible future research directions that can
take advantage of the analysis presented in this paper.

In order to keep the paper as self-contained as possible, in appendix A we give an overview
on exterior algebra on a vector space. For similar reasons, we have also included an introduction
to plane algebraic geometry in appendix B. These two sections, of course, can be skipped by
readers who are already familiar with these topics. Finally, in appendix C we have included
the code for computing the Cartesian equation of the bifurcation curve Ẽ.

2. From the physical model to its mathematical description

As mentioned above, we focus on the case of a coplanar source and receivers, with synchronized
receivers in known locations and with anechoic and homogenous propagation. The physical
world can therefore be identified as the Euclidean plane, here referred to as the x-plane.
This choice [12, 20] allows us to approach the problem with more effective progression and
visualization.

After choosing an orthogonal Cartesian co-ordinate system, the Euclidean x-plane can be
identified as R2. On this plane, mi = (xi, yi), i = 0, 1, 2 are the positions of the microphones
and x = (x, y) is the position of the source S. The corresponding displacement vectors are

di(x) = x − mi, dji = mj − mi, i, j = 0, 1, 2, (1)

whose moduli are di(x) and d ji, respectively. Generally speaking, given a vector v, we denote
its norm ||v|| with v and with ṽ = v

v
the corresponding unit vector.



Without loss of generality, we assume the speed of propagation in the medium to be equal
to 1. For each pair of different microphones, the measured TDOA τ̂ ji(x) turns out to be equal
to the pseudorange (i.e. the range difference)

τ ji(x) = d j(x) − di(x), i, j = 0, 1, 2, (2)

plus a measurement error ε ji :

τ̂ ji(x) = τ ji(x) + ε ji, i, j = 0, 1, 2. (3)

A wavefront originating from a source in x will produce a set of measurements
(τ̂10(x), τ̂20(x), τ̂21(x)). As the measurement noise is a random variable, we are concerned
with a stochastic model.

Definition 2.1. The complete TDOA model is

τ̂∗
2 (x) = (τ̂10(x), τ̂20(x), τ̂21(x)). (4)

The deterministic part of this model is obtained by setting ε ji = 0 in τ̂∗
2 (x), which gives us the

complete TDOA map:

τ∗
2 : R2 → R3

x → (τ10(x), τ20(x), τ21(x)).
(5)

The target set is referred to as the τ ∗-space.

In this paper we approach the deterministic problem, therefore we only consider the
complete TDOA map. Using the above definition, localization problems can be readily
formulated in terms of τ∗

2 . For example, given a set of measurements, we are interested
to know if there exists a source that has produced them, if such a source is unique, and where
it is. In a mathematical setting, these questions are equivalent to:

• given τ∗
2 ∈ R3, does there exist a source in the x-plane such that τ∗

2 (x) = τ∗, i.e.
τ∗ ∈ Im(τ∗

2 )?
• If x exists, is it unique, i.e. |τ∗

2
−1(τ)| = 1?

• If so, is it possible to find the coordinates of x? I.e. given τ∗, can we find the only x that
solves the equation τ∗

2 (x) = τ∗?

With these problems in mind, we focus on the study of the image of the TDOA map τ∗
2

and of its global properties. In particular, we are interested in finding the locus of points where
the map becomes 1-to-1. Moreover, as solving the localization problem consists of finding the
inverse image of τ∗ ∈ Im(τ∗

2 ), we aim at giving an explicit description of the preimages, also
called the fibers, of τ∗

2 .
The complete model τ̂∗

2 (x) takes into account each one of the three TDOA that can be
defined between the sensors. This, in fact, becomes necessary when working in a realistic
(noisy) situation [49]. We should keep in mind, however, that there is a linear relationship
between the pseudoranges (3), which allows us to simplify the deterministic problem.

Definition 2.2. Let (τ10, τ20, τ21) be the coordinates of the τ ∗-space. Then, H is the plane of
equation τ10 − τ20 + τ21 = 0.

Lemma 2.3. The image Im(τ∗
2) is contained in H.

Proof. For each x ∈ R2 we have

τ10(x) − τ20(x) + τ21(x) = 0 (6)

from the definition (2) of pseudoranges. �



In the literature, lemma 2.3 is usually presented by saying that there are only two linearly
independent pseudoranges and (τ10(x), τ20(x)), for example, are sufficient for completely
encoding the deterministic TDOA model. This suggests to us to define a reduced version of
the above definition:

Definition 2.4. The map from the position of the source in the x-plane to the linearly
independent pseudoranges

τ2 : R2 −→ R2

x −→ (τ10(x), τ20(x))
(7)

is called the TDOA map. The target set is referred to as the τ -plane.

In τ2 we consider only the pseudoranges involving receiver m0, which we call the reference
microphone. If pi : H → R2 is the projection that takes care of forgetting the ith coordinate,
we have that τ∗

2 is related to τ2 by τ2 = p3 ◦ τ∗
2 . As pi is clearly 1-to-1, it follows that

all the previous questions about the deterministic localization problem can be equivalently
formulated in terms of τ2 and its image Im(τ2) (see figure 12 in section 8 for an example of
Im(τ∗

2 ) and its projection Im(τ2) via p3). Analogous considerations can be done if we consider
p1 ◦ τ∗

2 or p2 ◦ τ∗
2 , that is equivalent to choosing m2 or m1 as the reference point, respectively.

In sections 3–7, we will focus on the study of τ2 and we will complete the analysis of τ∗
2

in section 8. For reasons of notational simplicity, when we study the map τ2 we will drop the
second subscript and simply write τh(x) = τh0(x), h = 1, 2. Moreover, as we focus on the
deterministic model, in the rest of the paper we will interchangeably use the terms pseudorange
and TDOA.

3. Local analysis of τ2

In this section, we present a local analysis of the TDOA map τ2. From a mathematical
standpoint, this is the first natural step toward studying the invertibility of τ2. In fact, as stated
with the inverse function theorem, if the Jacobian matrix J(x) of τ2 is invertible in x, then τ2

is invertible in a neighborhood of x. Studying the invertibility of a map through linearization
(i.e. studying its Jacobian matrix) is a classical choice when investigating the properties of a
complex (nonlinear) model. In the case of acoustic source localization, for example, [20, 44]
adopt this method to study the accuracy of various statistical estimators for the TDOA model.
As a byproduct of our study, at the end of the section we will discuss how the accuracy in a
noisy scenario is strictly related to the existence of the so-called degeneracy locus, which is
the locus where the rank of J(x) drops.

The component functions τi(x) of τ2 are differentiable in R2 \ {m0, m1, m2}, therefore so
is τ2. The ith row of J(x) is the gradient ∇τi(x), i.e.

∇τi(x) =
(

x − xi

di(x)
− x − x0

d0(x)
,

y − yi

di(x)
− y − y0

d0(x)

)
= d̃i(x) − d̃0(x). (8)

Definition 3.1. Let us assume that m0, m1, m2 are not collinear (see the left-hand side of
figure 2). Let r0, r1, r2 be the lines that pass through two of three such points, in compliance
with the notation mi /∈ ri, i = 0, 1, 2. Let us split each line in three parts as r0 = r−

0 ∪ r0
0 ∪ r+

0 ,
where r0

0 is the segment with endpoints m1 and m2, r−
0 is the half-line originating from m2 and

not containing m1, and r+
0 is the half-line originating from m1 and not containing m2. Similar

splittings are done for r1, r2, with r+
1 , r+

2 having m0 as the endpoint.
Let us now assume that m0, m1, m2 belong to the line r (see the right-hand side of figure 

2). Then, r0 is the smallest segment containing all three points and rc is its complement in r.



Theorem 3.2. Let J(x) be the Jacobian matrix of τ2 at x �= m0, m1, m2. Then,

(i) if m0, m1, m2 are not collinear, then

rank(J(x)) =
{

1 if x ∈ ( ∪2
i=0 (r−

i ∪ r+
i )

)
,

2 otherwise;
(ii) if m0, m1, m2 are collinear, then

rank(J(x)) =
⎧⎨⎩

0 if x ∈ rc,

1 if x ∈ r0,

2 otherwise.

Proof. Assume x �= mi, for i = 0, 1, 2. As explained in section 2, the x-plane is equipped with
the Euclidean inner product, therefore we can use the machinery of appendix A. As claimed
in proposition A.3, ∗(det(J(x))) = ∇τ1(x) ∧ ∇τ2(x). Hence, we work in the exterior algebra
of the 2-forms. From equation (8) and the general properties of 2-forms, we obtain

∇τ1(x) ∧ ∇τ2(x) = (d̃1(x) − d̃0(x)) ∧ (d̃2(x) − d̃0(x))

= d̃1(x) ∧ d̃2(x) − d̃0(x) ∧ d̃2(x) − d̃1(x) ∧ d̃0(x). (9)

Let us first assume that d̃1(x), d̃2(x) are linearly independent or, equivalently, that x /∈ r0.

In this case there exist a1, a2 ∈ R such that

d̃0(x) = a1d̃1(x) + a2d̃2(x).

After simplifying equation (9), we get

det(J(x)) = ∇τ1(x) ∧ ∇τ2(x) = (−a1 − a2 + 1) d̃1(x) ∧ d̃2(x), (10)

therefore det(J(x)) = 0 if, and only if, a1 + a2 = 1, because the linear independence of
d̃1(x), d̃2(x) implies d̃1(x) ∧ d̃2(x) �= 0. Furthermore, from d̃0(x) = a1d̃1(x) + a2d̃2(x), we
obtain

1 = ‖d̃0(x)‖2 = a2
1 + a2

2 + 2a1a2 d̃1(x) · d̃2(x).

After simple calculations, the previous equality becomes

2a1a2(d̃1(x) · d̃2(x) − 1) = 0,

therefore either a1 = 0 or a2 = 0, because the third factor is different from zero. If a1 = 0,
then a2 = 1 and d̃0(x) = d̃2(x), i.e. x ∈ r+

1 ∪ r−
1 . Otherwise, if a2 = 0, then a2 = 1 and

d̃0(x) = d̃1(x), i.e. x ∈ r+
2 ∪ r−

2 .

On the other hand, if x ∈ r0, then d̃1(x) = d̃2(x) if x ∈ r+
0 ∪ r−

0 , and d̃1(x) = −d̃2(x) if
x ∈ r0

0. Therefore, the equality (9) becomes

∇τ1(x) ∧ ∇τ2(x) =
{

0 if x ∈ r+
0 ∪ r−

0 ,

−2 d̃0(x) ∧ d̃2(x) if x ∈ r0
0.

In conclusion, if m0, m1, m2 are not collinear, then det(J(x)) = 0 for each x ∈ ∪2
i=0(r

+
i ∪ r−

i ),

proving the first claim. If, on the other hand, m0, m1, m2 lie on the line r, then det(J(x)) = 0
for all x ∈ r. Furthermore, d̃0(x) = d̃1(x) = d̃2(x) if and only if x ∈ rc, therefore
∇τ1(x) = ∇τ2(x) = (0, 0), i.e. J(x) is the null matrix. �

Theorem 3.2 has an interesting geometric interpretation.
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Definition 3.3. Let τ ∈ R. The set

Ai(τ ) = {x ∈ R2| τi(x) = τ } (11)

is the level set of τi(x) in the x-plane.

Lemma 3.4. If |τ | > di0, then Ai(τ ) = ∅. Moreover, if 0 < |τ | < di0, then Ai(τ ) is the branch
of the hyperbola with foci m0, mi and parameter τ, while

Ai(τ ) =
⎧⎨⎩

r+
j i f τ = di0,

r−
j i f τ = −di0,

aj i f τ = 0,

where j �= i, {i, j} = {1, 2}, and aj is the line that bisects the line segment r0
j .

Proof. By definition, we have τi(x) = di(x)− d0(x), therefore the first claim follows from the
classical inequalities between the sides of the triangle of vertices x, mi, m0. The second claim
follows from a classical result: given any hyperbola with foci mi, m0 and parameter c ∈ R+,

the two branches are defined by either one of the two equations

di(x) − d0(x) = c and di(x) − d0(x) = −c.

The last claim is a straightforward computation. �
Figure 3(a) shows the hyperbola branches with foci m0, mi. By the definition of a level

set, each point in the domain of τi lies on exactly one branch Ai(τ ) for some τ ∈ [−di0, di0] (by
abuse of notation, we consider Ai(0), Ai(±di0) as branches of hyperbolas as well). This means
that, given τ = (τ1, τ2), the source is identified as the intersection points A1(τ1)∩A2(τ2). As a
direct consequence, the quality of the localization depends on the type of intersection: in a noisy
scenario, an error on the measurements τ changes the shape of the related hyperbolas, therefore
the localization accuracy is strictly related to the incidence angle between the hyperbola
branches (see [12] for a similar analysis of the localization problem).

Notation.We denote the tangent line to a curve C at a smooth point x ∈ C as Tx,C.

Remark 3.5. (1) ∇τi(x) = 0 if, and only if, x ∈ r+
j ∪ r−

j , with j �= 0, i. In fact, ∇τi(x) = 0 is
equivalent to d̃i(x) = d̃0(x), i.e. x ∈ r+

j ∪ r−
j . Hence Ai(±di0) is not smooth anywhere.

(2) Assume that x /∈ r+
j ∪ r−

j . Then, it is well-known that ∇τi(x) is orthogonal to the line
Tx,Ai (τi ) and that it bisects the angle m0̂xmi, where m0, mi are the foci of the hyperbola.
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Consequently, the tangent line is parallel to the vector d̃i(x) + d̃0(x) and, quite clearly,
∇τi(x) = d̃i(x) − d̃0(x) is orthogonal to the previous vector (as we can see in figure 3(b), if
we draw the unit vectors d̃i(x) and d̃0(x), their sum lies on the tangent line Tx,Ai(τi) while their
difference is the gradient ∇τi(x)).

Proposition 3.6. Let x ∈ A1(τ1) ∩ A2(τ2). Then,

(i) if m0, m1, m2 are not collinear, then Tx,A1(τ1) �= Tx,A2(τ2), or equivalently, A1(τ1) and
A2(τ2) meet transversally at x if, and only if, x ∈ R2 \ {∪2

i=0(r
+
i ∪ r−

i )};
(ii) if m0, m1, m2 lie on r, then A1(τ1)∩A2(τ2) is finite if, and only if, x ∈ R2\rc. Furthermore

A1(τ1) and A2(τ2) meet transversally at x if, and only if, x ∈ R2 \ r.

Proof. The loci A1(τ1 ) and A2(τ2 ) meet transversally at x, i.e. Tx,A1 (τ1 ) �= Tx,A2 (τ2 ) if, and only if, 
∇τ1(x) and ∇τ2(x) are linearly independent. That last condition is equivalent to det(J(x)) �= 0. 
The claim concerning transversal intersection is therefore equivalent to theorem 3.2. Finally, 
if x ∈ rc, then either A1(τ1 ) ⊂ A2(τ2 ) or A2(τ2 ) ⊂ A1(τ1 ). �

In figure 4 we showed the case of the tangential intersection of A1(τ1 ) and A2(τ2 ). From
proposition 3.6, we gather new insight on source localization in realistic scenarios. The above 
discussion, in fact, allows us to predict the existence of unavoidable poor localization regions 
centered on each half-line forming the degeneracy locus. We will return to this topic in 
section 9.

4. The three-dimensional Minkowski space

As discussed in section 3, TDOA-based localization is mathematically equivalent to computing 
the intersection points of some hyperbola branches. This can be treated as an algebraic problem 
in the x-plane by simply considering the full hyperbolas. In this case, however, it is not easy 
to manipulate the system of two quadratic equations and remain in full control of all the 
intersection points. In particular, there could appear extra (both real and complex) intersection 
points with no meaning for the problem, and there is no systematic way to select the ones that 
are actually related to the localization.



In order to overcome such difficulties, we manipulate the equations that define the level
sets Ai(τi) (see definition 3.3), to obtain an equivalent, partially linear, problem in a 3D space
(see [12] for an introduction on the topic). In order to find the points in A1(τ1) ∩ A2(τ2), we
need to solve the system{

τ1 = d1(x) − d0(x),

τ2 = d2(x) − d0(x).

We introduce a third auxiliary variable τ , and rewrite it as⎧⎨⎩
τ1 − τ = d1(x),

τ2 − τ = d2(x),

τ = −d0(x).

Again, this is not an algebraic problem, because of the presence of Euclidean distances.
However, by squaring both sides of the equations, we obtain the polynomial system⎧⎨⎩

(τ1 − τ )2 = d1(x)2,

(τ2 − τ )2 = d2(x)2,

τ 2 = d0(x)2.

In geometric terms, this corresponds to studying the intersection of three cones in the 3D space
described by the triplets (x, y, τ ). As described in [12, 20] this problem representation is given
in the space–range reference frame. For the given TDOA measurements (τ1, τ2), a solution
(x̄, ȳ, τ̄ ) of the system gives an admissible position (x̄, ȳ) of the source in the x-plane and
the corresponding time of emission τ̄ of the signal, with respect to the TOA at the reference
microphone m0. We are actually only interested in the solutions with τ̄ � min(τ1, τ2, 0), i.e.
in the points that lie on the three negative half-cones. Then, we can use the third equation to
simplify the others, to obtain⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

d10 · d0(x) − τ1 τ = d2
10 − τ 2

1

2
,

d20 · d0(x) − τ2 τ = d2
20 − τ 2

2

2
,

d0(x)2 − τ 2 = 0,

τ � min(τ1, τ2, 0).

(12)

We conclude that, from a mathematical standpoint, that of TDOA-based localization is a semi-
algebraic and partially linear problem, given by the intersection of two planes (a line) and a 
half-cone. This is shown in figure 5. Notice that the equations in system (12) involve expressions 
that are very similar to the standard 3D scalar products and norms, up to a minus sign in each 
monomial involving the variable τ or (τ1, τ2 ). This suggests that, in order to describe and 
handle all the previous geometrical objects, an appropriate mathematical framework is the 3D 
Minkowski space. In the rest of the paper, we will explore this approach and, in particular, we 
will carry out our analysis using the exterior algebra formalism (see also [18, 19] for a similar 
analysis). We refer to appendix A for a concise illustration of the mathematical tools we are 
going to use.

Let e1, e2 and e3 be the unit vectors of the axes x, y and τ , respectively. Given the 
pair τ = (τ1, τ2 ) on the τ -plane, we define the points Mi(τ) = (xi, yi, τi ), i = 1, 2 and 
M0 = (x0, y0, 0). Given a generic point X = (x, y, τ )  in 3D space, the displacement vectors 
are defined as Di(X, τ) = X − Mi(τ). Furthermore, we set Dji(τ) = Mj(τ) − Mi(τ), for
0 � i < j � 2. Notice that, in order to render the notation more uniform, we left all points 
and vectors as functions of τ, although many of them actually depend on a single TDOA.



Figure 5. The intersection of the two negative half-cones C0(τ)− and C1(τ)− is a curve
contained in the plane �1(τ). The curve projects onto the hyperbola branch A1(τ) in
the x-plane.

Definition 4.1. For i = 0, 1, 2, we set

(i) Ci(τ) = {X ∈ R2,1| ‖ Di(X, τ) ‖2= 0};
(ii) Ci(τ)− = {X ∈ Ci(τ)|〈Di(X, τ), e3〉 � 0}.

Moreover, for i = 1, 2, we set

�i(τ) = {
X ∈ R2,1|〈Di0(τ), D0(X, τ)〉 = 1

2 ‖ Di0(τ) ‖2
}

and L21(τ) = �1(τ) ∩ �2(τ).

Ci(τ) is a right circular cone with Mi(τ) as vertex, and Ci(τ)− is a half-cone, while �i(τ)

is a plane through (M0(τ) + Mi(τ))/2. Using the exterior algebra formalism (see equation
(A.3) and the preceding discussion in appendix A), �i is given by

iD0(X)(Di0(τ)�) = 1
2 ‖ Di0(τ) ‖2 . (13)

Finally, if D10(τ) and D20(τ) are linearly independent, then L21(τ) is the line of equation

iD0(X)(D10(τ)� ∧ D20(τ)�) = 1
2 ‖ D10(τ) ‖2 D20(τ)� − 1

2 ‖ D20(τ) ‖2 D10(τ)�. (14)

We are now ready to discuss the link that exists between the geometry of the Minkowski space
and the TDOA-based localization. As above, we set Ai(τ) = Ai(τi).

Theorem 4.2. Let π : R2,1 → R2 be the projection onto the x-plane. Then

(i) π(C−
0 ∩ Ci(τ)−) = Ai(τ) if 0 � |τi| � di0, for i = 1, 2;

(ii) π(C−
0 ∩ �i(τ)) =

{
Ai(τ) if − di0 < τi � di0

Ai(τ) ∪ r0
j if τi = −di0

with i �= j.

Proof. Let x = π(X). We therefore have X = (x, τ ). According to definition 4.1, we obtain
X ∈ C−

0 if, and only if, ‖ D0(X, τ) ‖2= 0 and 〈D0(X, τ), e3〉 > 0, which means that
d0(x)2 − τ 2 = 0, −τ > 0, therefore we finally obtain d0(x) = −τ, τ < 0. Similarly,
X ∈ Ci(τ)− is equivalent to di(x) = −(τ − τi), τ < τi. As a consequence, X ∈ C−

0 ∩ Ci(τ)−

if, and only if, di(x) − d0(x) = τi, τ < min(0, τi), i.e. x ∈ Ai(τ), therefore the first claim
follows.

Then, we remark that Di(X, τ) = D0(X, τ) + Di0(τ), that implies

‖ Di(X, τ) ‖2=‖ D0(X, τ) ‖2 +2〈D0(X, τ), Di0(τ)〉+ ‖ Di0(τ) ‖2 .



Hence, X ∈ C0 ∩ �(τ) if, and only if, X ∈ C0 ∩ Ci(τ), and, using the first claim, we
get π(C−

0 ∩ �i(τ)) ⊇ Ai(τ).C−
0 ∩ �i(τ) is degenerate, precisely a half-line, if, and only

if, M0 ∈ �i(τ), i.e. 0 = 〈Di0(τ), 0〉 = 1
2 ‖ Di0(τ) ‖2 . The last condition is equivalent

toMi(τ) ∈ C0, or τ 2
i = di0. Hence, if τ 2

i �= d2
i0, π(C−

0 ∩ �i(τ)) is a hyperbola branch and
the first equality follows. Otherwise, ifτ 2

i = d2
i0, then π(C0 ∩ �(τ)) = r j. It is easy to check

that(mi,−di0) ∈ C−
0 and that (mi, di0) ∈ C0 \C−

0 . So,π(C0 ∩�(τ)) = Ai(τ)∪ r0
j if τi = −di0.

�

5. First properties of the image of τ2

We now study the set of admissible pseudoranges, i.e. the image Im(τ2) of the TDOA map,
in the τ -plane. In particular, in this section we begin by focusing on the dimension of the
image and then we prove that Im(τ2) is contained within a bounded convex set in the τ -plane.
These preliminary results are quite similar for both cases of generic and collinear microphone
configurations, which is the reason why we collect them together in this section. For the
definition and properties of convex polytopes, see [38] among the many available references.

Theorem 5.1. Im(τ2) is locally the τ -plane.

Proof. Let us assume that x̄ is a point where τ2 is regular, i.e. where the Jacobian matrix J(x̄)

has rank 2 (see theorem 3.2). The map τ2 can be written as{
d1(x) − d0(x) = τ1

d2(x) − d0(x) = τ2

and τ̄ = τ2(x̄) is a solution of the system. The implicit function theorem guarantees that there
exist functions x = x(τ) and y = y(τ), which are defined in a neighborhood of τ̄ and take on
values in a neighborhood of x̄ so that the given system will be equivalent to{

x = x(τ)

y = y(τ)
,

therefore the claim follows. �

In lemma 3.4 we showed that the TDOAs are constrained by the triangular inequalities.
In the rest of this section we will show that, as a consequence of these inequalities, τ2 maps
the x-plane onto a specific bounded region in the τ -plane.

Definition 5.2. Let

P2 = {τ ∈ R2|‖Dji(τ)‖2 � 0, 0 � i < j � 2},
and k ∈ {0, 1, 2} be different from i, j, for 0 � i < j � 2. We define

F+
k = {τ ∈ P2|‖Dji(τ)‖2 = 0, 〈Dji(τ), e3〉 < 0},

F−
k = {τ ∈ P2|‖Dji(τ)‖2 = 0, 〈Dji(τ), e3〉 > 0},

R0 = F+
1 ∩ F+

2 , R1 = F+
0 ∩ F−

2 , R2 = F−
0 ∩ F−

1 .

Before we proceed with studying the relation between P2 and Im(τ2 ), let us describe 
the geometric properties of this set. In figure 6, we show some examples of P2 (in gray), for 
different positions of the points m0, m1 and m2.
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Figure 6. Left-hand side: polygon P2 (shaded gray) under the assumption that the points
m0, m1 and m2 are not collinear. Center: polygon P2 (shaded gray) in the case of three
collinear points with m0 between m1 and m2. Right-hand side: polygon P2 (shaded
gray) when the sensors lie on a line, but with m1 between m0 and m2. The case with m2

between m0 and m1 can be obtained from the image on the right by swapping the role
of τ1 and τ2.

Theorem 5.3. P2 is a polygon (a two-dimensional convex polytope). Moreover, if the points
m0, m1 and m2 are not collinear, then P2 has exactly 6 facets F±

k , which drop to 4 if the points
are collinear.

Proof. As a first step we notice that

‖Dji(τ)‖2 = d2
ji − (τ j − τi)

2,

therefore

‖Dji(τ)‖2 � 0 ⇔ dji � |τ j − τi|. (15)

The set P2 is a two-dimensional convex polytope because, according to (15), it is the
intersection of half-planes and it contains an open neighborhood of 0 = (0, 0) ∈ R2. In fact,
the coordinates of 0 satisfy all the finite number of strict inequalities defining P2, which implies
that also a sufficiently small open disc centered at 0 belongs to P2.

In order to prove the rest of the statement, we need to show that the inequalities defining
P2 are redundant if, and only if, m0, m1, m2 are collinear. Let us consider⎧⎪⎨⎪⎩

−d10 � τ1 � d10

−d20 � τ2 � d20

−d21 � τ2 − τ1 � d21

.

The first two inequalities define a rectangle whose sides are parallel to the τi axes. The lines 
τ2 − τ1 = d21 and τ2 = d20 meet at (d20 − d21, d20 ), which lies between (−d10, d20 ) and 
(d10, d20 ) if, and only if, |d20 − d21| < d10, i.e. when the points m0, m1, m2 are not collinear. 
Through a similar reasoning we can show that, if the three points mi are not collinear, the 
line τ2 − τ1 = d21 meets τ1 = −d10 at (−d10, d21 − d10 ), while τ2 − τ1 = −d21 meets 
τ1 = d10 at (d10, −d21 + d10 ) and τ2 = −d20 at (d21 − d20, −d20 ). An easy check proves that 
P2 is a hexagon of vertices (d10, d20 ), (d20 −d21, d20 ), (−d10, d21 −d10 ), (−d10, −d20 ), (d21 − 
d20, −d20 ), (d10, −d21 + d10 ).

On the other hand, if m0, m1, m2 are collinear, P2 ends up having four sides. There 
are three possible configurations: (i) m0 lies between m1 and m2; (ii) m1 lies between 
m0 and m2; (iii) m2 lies between m0 and m1. In case (i) we have that d21 = d10 + d20, 
therefore −d21 � τ2 − τ1 � d21 are redundant. In case (ii) we have that d20 = d10 + d21



and −d20 � τ2 � d20 give no restrictions to the others. In case (iii), −d10 � τ1 � d10 are
redundant as it follows from d10 = d20 + d21. �

For further reference, we name the vertices of the rectangle −d10 � τ1 � d10,−d20 �
τ2 � d20, recalling that R0 = (d10, d20) (see definition 5.2).

Definition 5.4. Let R∗ = (−d10, d20), R0
1 = (−d10,−d20) and R∗

1 = (d10,−d20).

We are now ready to present the main result of this section.

Proposition 5.5. Im(τ2) � P2. Moreover, τ2
−1(F±

k ) = r±
k , k = 0, 1, 2, and, if m0, m1, m2 are

not collinear, then τ2
−1(Rk) = mk, k = 0, 1, 2.

Proof. The first statement is a direct consequence of definition 5.2, relation (15) and lemma 3.4.
Let us now consider x such that ±dji = τ j(x)−τi(x) = d j(x)−di(x). Using lemma 3.4 we get
x ∈ r±

k , as claimed. As the preimage of the intersection of two sets is equal to the intersection of
the respective preimages, the last statement follows from definition 3.1. Finally, the vertices of
P2 that are different from R0, R1 and R2 are not in Im(τ2), because the corresponding half-lines
do not meet, as it is easy to verify in all the possible cases. For example, if m0, m1 and m2 are
not collinear, then r+

1 and r+
0 do not meet, which implies (d20 − d21, d20) ∈ P2 \ Im(τ2). �

6. The localization problem in the general case

In this section we offer further insight on the TDOA map under the assumption that m0, m1, m2

are not collinear. Subsections 6.1 and 6.2 contain some preliminary mathematical results. In
subsection 6.1 we show how the preimages of the τ2 map are strictly related to the non-positive
real roots of a degree-2 equation, whose coefficients are polynomials in τ (see equation (18)
and the proof of theorem 6.16). In order to use Descartes’ rule of signs for the characterization
of the roots, in subsection 6.2 we give the necessary background on the zero sets of such
coefficients and on the sign that the polynomials take on in the τ -plane. The main results
of this section are offered in subsections 6.3 and 6.4. In the former we completely describe
Im(τ2) and the cardinality of each fiber, while in the latter we derive a visual representation of
the different preimage regions of τ2 in the x-plane, and find the locus where τ2 is 1-to-1. The
two subsections 6.3 and 6.4 also offer an interpretation of such results from the perspective of
the localization problem.

This section is, in fact, quite central for the paper, and the results included here are mainly
proven using techniques from algebraic geometry. A brief presentation of the tools of algebraic
geometry that are needed for this purpose is included in appendix B. In order to improve the
readability of this section, we have collected some of the proofs in subsection 6.5.

6.1. The quadratic equation

As discussed in the previous sections, τ ∈ Im(τ2) if, and only if, A1(τ) ∩ A2(τ) �= ∅.
According to theorem 4.2, we have A1(τ) ∩ A2(τ) ⊆ π(C−

0 ∩ L21(τ)), therefore the analysis
of the intersection C−

0 ∩L21(τ) plays a crucial role in characterizing the TDOA map. We begin
with studying the line L21(τ) of defining equation (14).

Assuming that the microphones are not aligned, we have

D1(X, τ) ∧ D2(X, τ) = (d1(x) + τ1e3) ∧ (d2(x) + τ2e3)

= d1(x) ∧ d2(x) + (τ2d1(x) − τ1d2(x)) ∧ e3 �= 0 (16)



because d1(x) and d2(x) are linearly independent. Consequently D1(X, τ) and D2(X, τ) are
linearly independent as well for every τ ∈ R2. Let

� = D10(τ) ∧ D20(τ) ∧ e3 = d10 ∧ d20 ∧ e3 �= 0, (17)

which is a 3-form (see section A.2 in appendix A). With no loss of generality, we can assume
that � is positively oriented, i.e. � = kω with k > 0, therefore 〈�,ω〉 = −k < 0.

Lemma 6.1. For any τ ∈ R2, L21(τ) = �1(τ) ∩ �2(τ) is a line. A parametric representation
of L21(τ) is X(λ; τ) = L0(τ) + λv(τ), where

v(τ) = ∗(D10(τ) ∧ D20(τ)) = ∗((d10 ∧ d20) + (τ2d10 − τ1d20) ∧ e3)

and the displacement vector of L0(τ) is

D0(L0(τ)) = 1

2 ∗ �
∗ ((‖D10(τ)‖2D20(τ) − ‖D20(τ)‖2D10(τ)) ∧ e3)

= −∗((‖D10(τ)‖2d20 − ‖D20(τ)‖2d10) ∧ e3)

2‖d10 ∧ d20‖ .

Proof. See subsection 6.5. �

Remark 6.2. The point L0(τ) is the intersection between L21(τ) and the x-plane. In fact, from
the properties of the Hodge ∗ operator, we know that the component of D0(L0(τ)) along e3 is
zero.

We can turn our attention to the study of C−
0 ∩ L21(τ). From the definition of C0

and lemma 6.1 follows that a point X(λ; τ) of the line L21(τ) lies on C0 if the vector
D0(L0(τ)) + λv(τ) is isotropic with respect to the bilinear form b. This means that
‖D0(L0(τ)) + λv(τ)‖2 = 0 or, more explicitly,

‖v(τ)‖2λ2 + 2λ〈D0(L0(τ)), v(τ)〉 + ‖D0(L0(τ))‖2 = 0. (18)

This equation in λ ∈ R has a degree that does not exceed 2, and coefficients that depend on τ.

Definition 6.3. Let

(i) a(τ) = ‖v(τ)‖2 = ‖τ2d10 − τ1d20‖2 − ‖d10 ∧ d20‖2;

(ii) b(τ) = 〈D0(L0(τ)), v(τ)〉 = 〈τ2d10 − τ1d20, ‖D20(τ)‖2d10 − ‖D10(τ)‖2d20〉
2‖d10 ∧ d20‖ ;

(iii) c(τ) = ‖D0(L0(τ))‖2 = ‖‖D10(τ)‖2d20 − ‖D20(τ)‖2d10‖2

4‖d10 ∧ d20‖2
.

Equation (18) can be rewritten as

a(τ)λ2 + 2b(τ)λ + c(τ) = 0. (19)

The explicit solution of equation (18) will be derived in subsection 6.4.

6.2. The study of the coefficients

In order to study the solutions of the quadratic equation (18), we need to use Descartes’ rule 
of signs. To apply it, we first describe the zero set of the coefficients a(τ), b(τ) and c(τ); 
then we study the sign of these coefficients wherever they do not vanish. As stated above,
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Figure 7. The ellipse E (in blue) is tangent to each side of the hexagon P2 (in gray). We
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the main mathematical tools that are used in this subsection come from algebraic geometry
because a(τ), b(τ) and c(τ) are polynomials with real coefficients (see appendix B for a short
introduction or [13, 22, 29]).

Let us first describe the vanishing locus of c(τ), over both R, where it is particularly
simple, and C.

Proposition 6.4. c(τ) � 0 for every τ ∈ R2. Moreover, c(τ) = 0 if and only if
τ ∈ {R0, R∗, R∗

1, R0
1}. On the complex field C, c(τ) factors as the product of two degree-2

polynomials.

Proof. See subsection 6.5. �

In order to analyze the sign of a(τ), we need to introduce some notation.

Definition 6.5. We define three subsets of the τ -plane, according to the sign of a(τ):

• E = {τ ∈ R2|a(τ) = 0};
• E+ = {τ ∈ R2|a(τ) > 0};
• E− = {τ ∈ R2|a(τ) < 0}.

Proposition 6.6. E ⊂ P2 is an ellipse centered in 0 = (0, 0), and it represents the only conic
that is tangent to all sides of the hexagon P2.

Proof. See subsection 6.5. �

The ellipse E and some specific points on the polytope P2 are shown in figure 7. As the  
tangency points will eventually show up in the study of the vanishing locus of b(τ), we define 
them here for further reference.
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Figure 8. Examples of cubics C: on the left-hand side it is singular. In the center it is an
oval and on the right-hand side are two ovals. The curve E is shown in blue, C in red,
and the hexagon P2 in shaded gray. The 11 distinguished points are marked in the first
two pictures, but not in the last one because four of them are very close to each other
on the upper-right vertex of the rectangle, and similarly for the four which are close to
the opposite vertex. In all the three cases P2 is a hexagon, but it exhibits two very short
sides in the right-hand picture.

Definition 6.7. Let 0 � i, j, k � 2 with k < j and k �= j. Then

T +
i = (〈d10, d̃jk〉, 〈d20, d̃jk〉) and T −

i = (−〈d10, d̃jk〉,−〈d20, d̃jk〉),
where, according to our current notation, d̃jk = djk

d jk
.

Remark 6.8. For every non-collinear choice of m0, m1, m2, E is smooth. In fact, ∇a(τ) =
(0, 0) is the homogeneous linear system{

d2
20τ1 − 〈d10, d20〉τ2 = 0

−〈d10, d20〉τ1 + d2
10τ2 = 0

whose only solution is 0 /∈ E, because the matrix of the coefficients of the variables has the
determinant ‖d10 ∧ d20‖2 �= 0.

We conclude the analysis of the sign of a(τ) by noticing that the set E− contains the origin
0, therefore it is the bounded connected component of R2 \ E. Similarly, R0 ∈ E+ therefore
E+ is the unbounded connected component of R2 \ E.

The analysis of the sign of the last coefficient b(τ) is a bit more involved. Let us define
the notations as done for a(τ).

Definition 6.9. We define three subsets of the τ -plane, according to the sign of b(τ):

• C = {τ ∈ R2|b(τ) = 0};
• C+ = {τ ∈ R2|b(τ) > 0};
• C− = {τ ∈ R2|b(τ) < 0}.

As our aim is to study the relative position of P2 and the sets C, C+ and C−; we need
more of an in-depth understanding of the curve C (see figure 8 for some examples of this 
curve). We will first analyze the role of the 11 distinguished points marked in figure 7 for the 
study of c(τ) = 0 and a(τ) = 0 in connection with b(τ) = 0. We will then look for special 
displacement positions of m0, m1 and m2, which force C to be non-irreducible. In fact, the 
irreducibility of C has an impact on the topological properties of C+ and C−, particularly on 
their connectedness by arcs. We will finally study the connected components of C.



Proposition 6.10. C is a cubic curve with 2-fold rotational symmetry with respect to 0, which
contains T ±

0 , T ±
1 , T ±

2 , R0, R0
1, R∗, R∗

1 and 0. The tangent lines to C at R0, R0
1, R∗, R∗

1 are
orthogonal to F+

0 , therefore C is smooth at the above four points. Finally, C transversally
intersects both E and the lines that support the sides of P2.

Proof. See subsection 6.5. �

Proposition 6.11. C is a smooth curve, unless d10 = d20. In this case C is the union of the line
L : τ1 + τ2 = 0 and the conic E ′ : τ 2

1 − (〈d̃10, d̃20〉 + 1)τ1τ2 + τ 2
2 + d2

10(〈d̃10, d̃20〉 − 1) = 0.

Proof. See subsection 6.5. �

For the sake of completeness, we now investigate the uniqueness of this cubic curve by
showing that C is completely determined by the positions of the points m0, m1, m2.

Proposition 6.12. C is the unique cubic curve that contains the points T ±
0 , T ±

1 , T ±
2 , 0, R0, R0

1,
R∗, R∗

1.

Proof. See subsection 6.5. �

Remark 6.13. Due to the 2-fold rotational symmetry around 0, and the fact that C is smooth
at 0, we can conclude that 0 is an inflectional point for C.

The cubic curve C, where smooth, has genus 1. Therefore, in the τ -plane, it can have
either one or two ovals, in compliance with Harnack’s theorem B.31 (see figure 8). Depending
on the position of m0, m1, m2, both cases are possible. Following standard notation, the two
ovals are called Co, the odd oval, and Ce, the even one (this could be missing), and, at least in
the projective plane P2

R
, they are the connected components of C. The importance of studying

the connected components of C rests on the fact that C divides every neighborhood of a point
P ∈ C in two sets, one in C+, the other in C−. Therefore, we need to locate Co and Ce with
respect to P2.

Proposition 6.14. The points T ±
0 , T ±

1 , T ±
2 , 0, R0, R∗, R0

1, R∗
1 belong to the same connected

component Co of C, which is the only one that intersects P2.

Proof. See subsection 6.5. �

Now we can complete the study of the sign of b(τ) within P2. Let us first assume that C 
is smooth. Due to the rotational symmetry of C, the component Co is connected in the affine 
plane R2 as well, and it divides the τ -plane in two disjoint sets, which we name Co

+ and Co
−. 

Due to proposition 6.14, b(τ) does not change sign on P2 ∩Co
+ and P2 ∩Co

−, therefore we have 
P2 ∩ C+ = P2 ∩ Co

+ and P2 ∩ C− = P2 ∩ Co
− (possibly with Co

+, Co
− swapped). In particular, 

evaluating b(τ) at the vertices of P2, we have that Co
+ is the connected component of R2 \ Co 

containing R1, R2.
Finally, if C is singular we have C = L ∪ E ′ (see figure 8). There are four disjoint regions 

in the τ -plane with different signs. Again by evaluating b(τ) at the vertices of P2, we obtain 
that C+ is the union of the region outside E ′ in the half-plane containing R1, R2 plus the region 
inside E ′ in the complementary half-plane.
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1
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T+
0
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0
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U1

U2

τ1
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Figure 9. The image of τ2 is the gray subset of P2. In the light gray region marked as
E− the map τ2 is 1-to-1, while in the medium gray regions U0 ∪ U1 ∪ U2 the map τ2 is
1-to-2. The continuous part of ∂P2 and E, and the vertices Ri, are in the image, where τ2

is 1-to-1. The dashed part of ∂P2 and E, and the tangency points T ±
i , do not belong to

Im(τ2). We remark that the triangles U0,U1,U2 stay on the same connected component
of R2 \ Co (see figure 8).

6.3. The image of τ2

In this subsection we achieve one of the main goals of the paper, as we derive the complete and
explicit description of Im(τ2), i.e. the set of admissible TDOAs. These results are summarized
in figure 9. In the following, we will denote the closure of a set U as Ū and its interior as Ů .

Definition 6.15. The set P̊2 ∩ E+ ∩ C+ is the union of three disjoint connected components
that we name U0,U1,U2, where Ri ∈ Ūi for i = 0, 1, 2.

Theorem 6.16. Im(τ2) = E− ∪ Ū0 ∪ Ū1 ∪ Ū2 \ {T ±
0 , T ±

1 , T ±
2 }. Moreover,

|τ2
−1(τ)| =

{
2 i f τ ∈ U0 ∪ U1 ∪ U2,

1 i f τ ∈ Im(τ2) \ U0 ∪ U1 ∪ U2.

Proof. Consider the equation (19)

a(τ)λ2 + 2b(τ)λ + c(τ) = 0,

with τ ∈ P2. The reduced discriminant 	(τ)/4 = b(τ)2 − a(τ)c(τ) is a degree-6 polynomial
that vanishes if L21(τ) is tangent to the cone C0. According to theorem 4.2, this condition
is equivalent to A1(τ) and A2(τ) intersecting tangentially. According to proposition 3.6, this
happens exactly if x ∈ r±

0 ∪ r±
1 ∪ r±

2 . Hence, τ ∈ τ2(r
±
0 ∪ r±

1 ∪ r±
2 ) = F±

0 ∪ F±
1 ∪ F±

2 , which
implies 	(τ) = 0 if, and only if, τ ∈ ∂P2. On the other hand, 	(0) = −a(0)c(0) > 0 because
0 ∈ E−, therefore 	(τ) > 0 for τ ∈ P̊2. As a consequence, equation (19) has real solutions
for any τ ∈ P2.

According to theorem 4.2, we are looking for τ that satisfies C−
0 ∩ L21(τ) �= ∅:

0 � 〈D0(L0(τ)) + λv(τ), e3〉 = 〈D0(L0(τ)), e3〉 + λ〈v(τ), e3〉
= λ〈∗(d10 ∧ d20), e3〉 = λ〈∗(d10 ∧ d20), ∗(e1 ∧ e2)〉
= −λ〈d10 ∧ d20, e1 ∧ e2〉 = λ〈d10 ∧ d20 ∧ e3,ω〉 = λ〈�,ω〉,

which narrows down to λ � 0, as 〈�,ω〉 < 0.



Let us first consider the case λ = 0, which is equivalent to c(τ) = 0. From proposition 6.4,
we know that c(τ) � 0 for any τ ∈ P2, and c(τ) = 0 if, and only if, τ ∈ {R0, R∗, R0

1, R∗
1}. At

the four considered points, also b(τ) = 0 and 	(τ) = 0. Hence, λ = 0 is the only solution
with multiplicity 2, if τ = R0 or τ = R0

1, the other two points not being in P2. However, the
half-lines r+

1 and r+
2 meet at x = m0, while r−

1 ∩ r−
2 = ∅. Consequently, τ2

−1(R0) = m0,
while R0

1 /∈ Im(τ2).
Let us now assume λ �= 0, i.e. c(τ) > 0, and consider all the possible cases, one at a time.

The main (and essentially unique) tool is Descartes’ rule of signs for determining the number
of positive roots of a polynomial equation, with real coefficients and real roots.

Case (i): a(τ) = b(τ) = 0. Equation (19) has no solution, therefore E∩C = {T ±
0 , T ±

1 , T ±
2 }

is not in Im(τ2).
Case (ii): a(τ) = 0, b(τ) �= 0. Equation (19) has the only solution λ = −c(τ)/2b(τ) for

each τ ∈ E \ {T ±
0 , T ±

1 , T ±
2 }. Moreover, λ < 0 if, and only if,b(τ) > 0 i.e. τ ∈ E ∩ C+ =

(∂U0 ∪ ∂U1 ∪ ∂U2) ∩ E \ {T ±
0 , T ±

1 , T ±
2 }.

Case (iii): a(τ) < 0. Equation (19) has one negative root and one positive root, thus
E− ⊂ Im(τ2) and |τ2

−1(τ)| = 1 for each τ ∈ E−.

Case (iv): a(τ) > 0, b(τ) < 0. Equation (19) has two positive roots, thus E+ ∩ C− ∩
Im(τ2) = ∅.

Case (v): a(τ) > 0, b(τ) > 0,	(τ) = 0. Equation (19) has one negative root with
multiplicity 2, thus |τ2

−1(τ)| = 1 for each τ ∈ E+ ∩ C+ ∩ ∂P2. In particular, τ2
−1(Rj) = mj

for j = 1, 2.

Case (vi): a(τ) > 0, b(τ) > 0,	(τ) > 0. Equation (19) has two distinct negative roots,
therefore |τ2

−1(τ)| = 2 for any τ ∈ U0 ∪ U1 ∪ U2. �

Remark 6.17. Theorem 6.16 agrees with theorem 4.2. The exact relationship between
A1(τ) ∩ A2(τ) and π(C−

0 ∩ L21(τ)) is the following:

(1) If τ /∈ F−
2 ∪ F−

1 , then π(C−
0 ∩ L21(τ)) = A1(τ) ∩ A2(τ).

(2) If τ ∈ F−
2 \ {R0

1}, then τ1 = −d10 and −d20 < τ2 � d21 − d10. Thus

π(C−
0 ∩ L21(τ)) = (A1(τ) ∩ A2(τ)) ∪ (r0

2 ∩ A2(τ)),

where A1(τ) = r−
2 . If x ∈ r0

2 ∩ A2(τ), then d0(x) = d10 − d1(x) and

τ2(x) = d2(x) − d0(x) = d2(x) + d1(x) − d10 � d21 − d10,

where we have used the triangular inequality. It follows that τ2(x) = d21−d10 and x = m1,
so r0

2 ∩ A2(τ) = A1(τ) ∩ A2(τ) and, again, π(C−
0 ∩ L21(τ)) = A1(τ) ∩ A2(τ). The case

τ ∈ F−
1 \ {R0

1} is similar.
(3) If τ = R0

1 /∈ Im(τ2), then A1(τ) ∩ A2(τ) = ∅ while π(C−
0 ∩ L21(τ)) = r0

1 ∪ r0
2 = m0.

Theorem 6.16 can be nicely interpreted in terms of the two-dimensional and the three-
dimensional intersection problems. Here we use some standard Minkowski and relativistic
conventions used, for example, in [3, 42].

(i) τ ∈ E if, and only if, v(τ) is isotropic, or light-like. In this case, the line L21(τ) is
parallel to a generatrix of the cone, therefore it meets C0 at an ideal point. On the x-
plane this means that the level sets A1(τ) and A2(τ) have one parallel asymptote. With
respect to the localization problem, τ ∈ E means that there could exist a source whose
distance from the microphones is large compared to d10 and d20. Along E, the two TDOAs
are not independent and we are able to recover information only about the direction of
arrival of the signal, and not on the source location. Things are complicated further if
τ ∈ E ∩ Im(τ2), as the level sets A1(τ) and A2(τ) also meet at a point at a finite distance,
corresponding to another admissible source location.



(ii) τ ∈ E− if, and only if v(τ) is time-like, pointing to the interior of the cone C0. In this
case, the line L21(τ) intersects both half-cones and, on the x-plane, the level sets A1(τ)

and A2(τ) meet at a single point. This is the most desirable case for localization purposes:
a τ corresponds to a unique source position x.

(iii) τ ∈ E+ if, and only if, v(τ) is space-like, pointing to the exterior of the cone C0. In this
case, the line L21(τ) intersects only one half-cone, depending on the position of the point
L0(τ) and the direction of v(τ). On the x-plane, the level sets A1(τ), A2(τ) either do not
intersect or intersect at two distinct points. In the last case, for a given τ there are two
admissible source positions. Following the discussion at point (i), a source runs away to
infinity as τ gets close to E, while the other remains at a finite position, which suggests
a possible way to distinguish between them if one has some a priori knowledge on the
source location. Finally, we observe that the two solutions overlap if τ ∈ ∂P2, which
corresponds to x in the degeneracy locus.

If τ ∈ E−, the localization is still possible even in a noisy scenario, but we experience a
loss in precision and stability as τ approaches E (see also the discussion in section 9).

6.4. The inverse image

We are now ready to reverse the analysis. In fact, the description of Im(τ2) allows us to analyze
the dual situation in the physical x-plane. For any given τ ∈ Im(τ2) and a negative solution λ

of equation (18), we have the corresponding preimage in the x-plane

x(τ) = L0(τ) + λ ∗ ((τ2d10 − τ1d20) ∧ e3), (20)

where ∗((τ2d10 − τ1d20) ∧ e3) is the projection of v(τ) on the subspace spanned by e1, e2.
Roughly speaking, we can identify two distinct regions: the preimage of the interior of the
ellipse, where the TDOA map is 1-to-1 and the source localization is possible, and the preimage
of the three triangles Ui, i = 0, 1, 2, where the map is 2-to-1 and there is no way to locate the
source. The region of transition is also known in the literature as the bifurcation region [19].
In this subsection we offer a complete geometric description of the above sets.

Notice that that formula (20) gives the exact solutions x to the localization problem for any
given measurements τ, and it can be used as the starting point and building block for a local
error propagation analysis in the case of noisy measurements or even with sensor calibration
uncertainty.

Definition 6.18. Let E be the ellipse in the τ -plane defined by a(τ) = 0. We call Ẽ its inverse
image contained in the x-plane, and we refer to it as the bifurcation curve.

As we said in the discussion at the end of subsection 6.3, for τ ∈ E we have an admissible
source position at an ideal point of the x-plane and, possibly, one more at a finite distance from
the sensors. In the affine plane, the curve Ẽ is exactly the set of these last points. According
to definition 6.18, Ẽ is the preimage of E, therefore it can be studied using formula (20). We
recall that for τ ∈ E we have a(τ) = 0, therefore equation (18) has a unique solution in
λ(τ) = −c(τ)/2b(τ), which corresponds to the unique preimage

x(τ) = L0(τ) − c(τ)

2b(τ)
∗ ((τ2d10 − τ1d20) ∧ e3). (21)

˜ ˜

˜

In the next theorem, we show that the function (21) restricted on E is a rational parametrization 
of degree 5 of the bifurcation curve E. This means that E admits a characterization as an 
algebraic curve.

Theorem 6.19. E is a rational degree-5 curve, whose ideal points are the ones of the lines 
r0, r1, r2 and the cyclic points of P2

C
.



Figure 10. Two examples of the different localization regions and the quintic Ẽ in
the x-plane. The microphones m0, m1 and m2 are in the points marked with black
dots. Locations of the microphones are m0 = (0, 0), m1 = (2, 0), m2 = (2, 2) and
m2 = (−2, 2) on the left and the right, respectively. Each quintic Ẽ separates the light
gray region Ẽ−, where the map τ2 is 1-to-1 and it is possible to localize the source, and
the dark gray region Ũ0 ∪ Ũ1 ∪ Ũ2, where τ2 is 2-to-1 and the localization is not unique.
The dashed lines represent the degeneracy locus of τ2.

Proof. See subsection 6.5. �
In figure 10 we show two examples of the quintic Ẽ. The real part of Ẽ consists of three

disjoint arcs, one for each arc of E contained in Im(τ2). The points m0, m1, m2 do not belong
to Ẽ, as their images via τ2 are not on E. Notice that no arc is bounded, as Ẽ has genus 0.
In particular, when τ approaches a point T ±

i in E ∩ C the denominator of x(τ) approaches
to zero and Ẽ goes to infinity. As for the smoothness of Ẽ, the curve has no self-intersection
because each point of the x-plane has one image in the τ -plane. Furthermore, it is quite easy
to show that cusps are not allowed on Ẽ either. In fact, E is regularly parameterized and the
Jacobian matrix of τ2 is invertible on Ẽ, which implies the regularity of x(τ). Quite clearly,
the complex plane Ẽ is bound to have singular points, as Ẽ is an algebraic rational quintic
curve. In appendix C we include the source code in singular [23] language for computing the
Cartesian equation (further analysis of the properties of the bifurcation curve is contained in
[21]).

From figures 9 and 10, we immediately recognize what was assessed through simulations
and for a specific sensor configuration in [50]. These results, however, have been here derived in
closed form and for arbitrary sensor geometries, which allows us to characterize the preimage
in an exhaustive fashion.

The curve Ẽ separates the regions of the x-plane where the map τ2 is 1-to-1 or 2-to-1. We
complete the analysis in terms of TDOA-based localization after introducing and analyzing
the preimage of the open subsets E−,U0,U1,U2 of Im(τ2).

Definition 6.20. Let Ũi be the inverse image of Ui via τ2, for i = 0, 1, 2 and Ẽ− be the inverse
image of E−.

The continuity of τ2 implies that Ẽ−, Ũ0, Ũ1, Ũ2 are open subsets of the x-plane, which
are separated by the three arcs of Ẽ. Let F(x, y) = 0 be a Cartesian equation of Ẽ: a point
x ∈ Ẽ− if F(x)F(m0) < 0, while x ∈ Ũ0 ∪ Ũ1 ∪ Ũ2 if F(x)F(m0) > 0. Now, let us focus on
the open sets Ũi. In this case, without loss of generality, we consider i = 0, the other two ones
having the same properties.

Proposition 6.21. Ũ0 has two connected components separated by r+
1 ∪ r+

2 , and τ2 is 1-to-1
on each of them.



Proof. See subsection 6.5. �

Remark 6.22. The previous proposition can be restated by saying that τ2 : Ũi → Ui is a
double cover, for every i = 0, 1, 2. The ramification locus is the union of the two half-lines
through mi, while the branching locus is the union of the two facets of P2 through Ri.

The source localization is possible if τ ∈ E− and, consequently, x ∈ Ẽ−. Otherwise,
assume τ ∈ U0. According to proposition 6.21, there are two admissible sources in the two
disjoint components of Ũ0. As τ comes close to E, one of its inverse images approaches a point
on Ẽ, while the other one goes to infinity. Conversely, if τ approaches ∂P2, the inverse images
of τ come closer to each other and converge to a point on the degeneracy locus r+

1 ∪ r+
2 . As

we said above, in a realistic noisy scenario, we end up with poor localization in the proximity
of Ẽ.

6.5. Proofs of the results

Proof of lemma 6.1. As remarked before equation (14), L21(τ) is a line because D10(τ) and
D20(τ) are linearly independent. Thus, the equation of L21(τ) is (14):

iD0(X)(D10(τ)� ∧ D20(τ)�) = 1
2 ‖ D10(τ) ‖2 D20(τ)� − 1

2 ‖ D20(τ) ‖2 D10(τ)�.

A vector v(τ) is parallel to L21(τ) if it is a solution of

iv(τ)(D10(τ)� ∧ D20(τ)�) = 0.

From corollary A.6, this is equivalent to

v(τ) = t ∗ (D10(τ)� ∧ D20(τ)�)
 = t ∗ (D10(τ) ∧ D20(τ))

for t ∈ R. We prove the first claim of the Lemma by setting t = 1.

Then, let L0(τ) be the intersection point between L21(τ) and the x-plane. This implies
that

iD0(L0(τ))�
� = 1

2 (‖ D10(τ) ‖2 D20(τ)�− ‖ D20(τ) ‖2 D10(τ)�) ∧ e3
�.

Therefore, the second claim follows from lemma appendix A.7. �

Proof of proposition 6.4. As a real function, c(τ) � 0 because ‖D10(τ)‖2d20 −‖D20(τ)‖2d10

is in the subspace spanned by e1, e2, where b is positively-defined, and d10 ∧ d20 is parallel
to e1 ∧ e2, whose module is equal to 1. Furthermore, d10, d20 are linearly independent, thus
c(τ) = 0 if, and only if, ‖D10(τ)‖2 = ‖D20(τ)‖2 = 0, i.e.τ 2

1 = d2
10, τ 2

2 = d2
20, and the claim

follows.
The gradient of c(τ) is

∇c(τ) = 1

‖d10 ∧ d20‖2
(〈−τ1d20, ‖D10(τ)‖2d20 − ‖D20(τ)‖2d10〉,

×〈τ2d10, ‖D10(τ)‖2d20 − ‖D20(τ)‖2d10〉),
therefore it vanishes if ‖D10(τ)‖2 = ‖D20(τ)‖2 = 0. Hence, in A2

C
, c(τ) = 0 is a quartic

algebraic curve with four singular points, thus it cannot be irreducible (see theorem B.22).
After some simple computations, we obtain

c(τ) = (
d20 e−iθ (τ 2

1 − d2
10

) − d10 eiθ(τ 2
2 − d2

20

))(
d20 eiθ(τ 2

1 − d2
10

) − d10 e−iθ (τ 2
2 − d2

20

))
where 2θ ∈ (0, π ) is the angle between d10 and d20. �



Proof of proposition 6.6. The equation that defines E, i.e.

a(τ) = −‖d10 ∧ d20‖2 + ‖τ2d10 − τ1d20‖2 = 0,

has degree 2, therefore E is a conic in the τ -space. Considering the assumption of non-
collinearity, ‖τ2d10 − τ1d20‖2 is a positively-defined quadratic form and ‖d10 ∧ d20‖2 > 0. E
is therefore a non-degenerate ellipse containing real points, whose center is at 0. Moreover, it
is a simple matter of computation to verify that the intersection between E and F+

i is the point
T +

i with multiplicity 2, for i = 0, 1, 2, and analogously for F−
i and T −

i . E is therefore tangent
to each side of P2. This implies also that E ⊂ P2. In order to prove the uniqueness of E, we
embed the τ -plane R2 into a projective plane P2

R
, and take the dual projective plane P̌2

R
(see

definition B.24). In P̌2
R

there exists one conic through the 6 points corresponding to the sides of
P2 and it is the dual conic Ě (see definition B.25 and proposition B.26). Moreover, Ě is unique
by corollary B.29. We conclude that the uniqueness of Ě is equivalent to the uniqueness of E.�

Proof of proposition 6.10. C is defined by the degree-3 polynomial equation

b̄(τ) = 〈τ2d10 − τ1d20, ‖D20(τ)‖2d10 − ‖D10(τ)‖2d20〉 = 0,

therefore it is a cubic curve. It is easy to verify that

• the equation does not change if we replace τi with −τi, i = 1, 2, therefore C has a 2-fold
rotational symmetry with respect to 0;

• C contains all the 11 points of the statement.

The partial derivatives of b̄ are

∂ b̄

∂τ1
= − 〈d20, ‖D20(τ)‖2d10 − ‖D10(τ)‖2d20〉 + 〈τ2d10 − τ1d20, 2τ1d20〉,

∂ b̄

∂τ2
= 〈d10, ‖D20(τ)‖2d10 − ‖D10(τ)‖2d20〉 − 〈τ2d10 − τ1d20, 2τ2d10〉.

After simple calculations, we obtain ∇b̄(R0) = 2d10d20 (d10d20 − 〈d10, d20〉) (1, 1) and
∇b̄(R∗) = −2d10d20 (d10d20 + 〈d10, d20〉) (1, 1). The gradient of b̄ is therefore non-zero at
both R0 and R∗, i.e. R0 and R∗ are smooth on C. Moreover, the tangent lines to C at R0 and R∗

are orthogonal to (1, 1) therefore they are orthogonal to F+
0 . For symmetry, the same holds at

R0
1 and R∗

1.

In compliance with Bézout’s theorem B.16, C and E meet at six points after embedding
the τ -plane into P2

C
, but C∩E = {T ±

0 , T ±
1 , T ±

2 }, thus C and E intersect transversally. Moreover,
we use Bézout’s theorem also to prove that C is not tangent to any line among F±

2 , and F±
1 ,

because the points where the curve C meets each line are known.
Finally, the line containing F+

0 meets C at T +
0 plus two other points whose coordinates

solve τ2 = τ1 + d21, (d21τ1 − 〈d21, d10〉)2 + ‖d10 ∧ d20‖2 = 0, therefore they cannot be real.
As a consequence, according to Bézout’s theorem, we obtain that C and F+

0 are not tangent.
By symmetry, F−

0 is not tangent to C either. �

Proof of proposition 6.11. The gradient at 0 is ∇b̄(0) = (−d2
20〈d21, d10〉, d2

10〈d21, d20〉) �=
(0, 0). Hence, if C is not smooth, there are at least two singular points, because of the 2-fold
rotational symmetry, and so C is reducible. As C contains T ±

0 , T ±
1 , T ±

2 , R0, R∗, R0
1, R∗

1, 0, the
only possible splitting of C is E ′ ∪ L, with L the line through R∗, R∗

1, 0, T ±
0 , and E ′ the conic

through T ±
2 , T ±

1 , R0, R0
1. The point T +

0 is collinear with 0 and R∗ if, and only if, there exists
t ∈ R such that

(〈d10, d̃21〉, 〈d20, d̃21〉) = t(−d10, d20),



therefore t = 〈d̃20, d̃21〉 and (d20 − d10)(〈d10, d20〉 + d10d20) = 0. Since m0, m1, m2 are
not collinear, the second factor is non-zero and C is singular if, and only if, d10 = d20. The
equations of L and E ′ are then straightforward. �

Proof of proposition 6.12. If C is not smooth, any cubic curve containing the given points
contains the line L, according to Bézout’s theorem. The remaining points lie on a unique conic
E ′, therefore C = E ′ ∪ L is unique.

Let us now assume that C is smooth. We embed the τ -plane into P2
C
, and let

X = {T ±
0 , T ±

1 , T ±
2 } and Y = {0, R0, R0

1, R∗, R∗
1}. The defining ideal IX of X is generated

by ah(τ), b̄h(τ) obtained by homogenizing a(τ) and b̄(τ), because X = E ∩ C, as proven
earlier (see theorem B.30). The ideal IY of Y is generated by a degree-2 and two degree-3
homogeneous polynomials (see theorem B.30). Let L1 be the line through R0, R0

1, 0, L2 be the
line through R∗, R∗

1 and let Q = L1 ∪L2. Q is a reducible conic that is singular at 0. With abuse
of notation, we also call Q the defining polynomial of Q and so Q ∈ IY by definition B.27.
Moreover, Y ⊂ C, and so b̄h ∈ IY , as well. Finally, let C′ be a further cubic curve, whose
defining polynomial is equal to C′, with abuse of notation, so that IY = 〈Q, b̄h,C′〉.
Claim. C′ is not a combination of Q, ah and b̄h.

If we assume the contrary, we have C′ = q1ah +q2Q+q3b̄h with deg(q1) = deg(q2) = 1,
and deg(q3) = 0. Consequently, we have q1(p) = 0 for every p ∈ Y, because ah(p) �= 0 for
each p ∈ Y . So, q1 ∈ IY therefore q1 = 0 because IY does not contain linear forms. Then, C′

is a combination of Q and b̄h, but this is not possible because C′ is a minimal generator of IY ,

therefore the claim holds true.
Hence, IX + IY is minimally generated by ah, Q, b̄h,C′. Moreover, since two conics meet

at four points, (C[τ0, τ1, τ2]/(ah, Q))3 has dimension 4, and we obtain

dimC

(
C[τ0, τ1, τ2]

IX + IY

)
3

= 10 − 8 = 2.

From the exactness of the short sequence of vector spaces (B.2)

0 →
(

C[τ0, τ1, τ2]

IX ∩ IY

)
3

→
(

C[τ0, τ1, τ2]

IX

)
3

⊕
(

C[τ0, τ1, τ2]

IY

)
3

→
(

C[τ0, τ1, τ2]

IX + IY

)
3

→ 0,

we conclude that the dimension of the first item is 6+5−2 = 9 and, finally, dimC (IX ∩ IY )3 =
dimC (C[τ0, τ1, τ2])3 − dimC

(
C[τ0,τ1,τ2]

IX ∩IY

)
3

= 10 − 9 = 1. �

Proof of proposition 6.14. We embed the τ -plane into P2
R
. The oval Co meets all the lines of the

projective plane either in one or in three points, up to counting the points with their intersection
multiplicity, as discussed after Harnack’s theorem B.31 in appendix B. This implies that Co

contains the inflectional point 0 of C. Moreover, from the proof of proposition 6.10, the lines
supporting F±

0 meet C at one point each, thus T ±
0 ∈ Co.

The possible second oval Ce meets every line at an even number of points (0 is allowed)
and it cannot meet Co. By contradiction, let us assume that R∗ ∈ Ce. Hence, the line F−

2 meets
Ce either at T −

2 or R0
1. This implies that Ce meets the line F+

0 , which is a contradiction. We
conclude that R∗ and, symmetrically, R∗

1 lie on Co.
Again by contradiction, we assume that R0 ∈ Ce. By looking at the intersection points

of Ce with the sides of P2, we obtain T +
1 , T +

2 ∈ Ce and, symmetrically, R0
1, T −

1 , T −
2 ∈ Ce. We

also observe that Ce meets the tangent line to C at R0 exclusively at the point R0 itself, and the
same holds true at R0

1. As Ce does not meet F±
0 , Ce is constrained into the quadrangle formed

by F±
0 and the tangent lines to C at R0, R0

1. This quadrangle contains 0, therefore either Ce is



the union of two disjoint ovals, or Ce meets Co. Both cases are not allowed, thus R0 ∈ Co. This
implies that all the remaining points lie on Co and the first claim is proven.

We finish the proof by noting that Ce does not meet any side of P2 and, on the other hand,
Ce cannot be contained in P2. �

Proof of theorem 6.19 If τ ∈ E, its preimage is given by (21):

x(τ) = L0(τ) − c(τ)

2b(τ)
∗ ((τ2d10 − τ1d20) ∧ e3).

Hence, x(τ) gives a point in the x-plane both if τ ∈ E ∩ Im(τ2) and if τ ∈ E \ (Im(τ2) ∪ C).

Moreover, because of the symmetry properties of the polynomials and vectors involved, we
have x(−τ) = x(τ), which means that x(τ) is a 2-to-1 map from E to Ẽ.

In order to obtain a parametrization of Ẽ, we consider a parametrization of E
via the pencil lines through 0. Let τ1 = μ1t, τ2 = μ2t be a line through 0 in the
τ -plane, with μ = (μ1, μ2) ∈ R2 \ {(0, 0)}. The line intersects the ellipse E at the two
points t = ±‖d10 ∧ d20‖/‖μ2d10 − μ1d20‖, which are symmetrical with respect to0. Let
P0(μ) = ‖μ2d10 − μ1d20‖2. This is a degree-2 homogeneous polynomial that vanishes at the
ideal points of E, therefore it is irreducible over R. By substituting τ = ‖d10∧d20‖√

P0(μ)
μ, all the

functions depend onμ, therefore we obtain

‖D10(μ)‖2 = 1

P0(μ)
〈μ1d20 − μ2d10, d10〉2,

‖D20(μ)‖2 = 1

P0(μ)
〈μ1d20 − μ2d10, d20〉2

which are both ratios of degree-2 homogeneous polynomials. For our convenience, we set
P1(μ) = 〈μ1d20 − μ2d10, d10〉2 and P2(μ) = 〈μ1d20 − μ2d10, d20〉2. As τ depends on μ, the
polynomials b(τ), c(τ) can be computed as depending on μ, obtaining

c(μ) = 1

4‖d10 ∧ d20‖2P0(μ)2
‖P1(μ)d20 − P2(μ)d10‖2,

b(μ) = 1

2
√

P0(μ)3
〈μ2d10 − μ1d20, P2(μ)d10 − P1(μ)d20〉

= 1

2
√

P0(μ)3
〈μ2d10 − μ1d20, d10〉〈μ2d10 − μ1d20, d20〉〈μ2d10 − μ1d20, d21〉.

Moreover,

∗((τ2d10 − τ1d20) ∧ e3) = ‖d10 ∧ d20‖√
P0(μ)

∗ ((μ2d10 − μ1d20) ∧ e3)

and

D0(L0(μ)) = − 1

2‖d10 ∧ d20‖P0(μ)
∗ ((P1(μ)d20 − P2(μ)d10) ∧ e3).

It follows that D0(x(μ)) is a ratio of two degree-5 homogeneous polynomials.
The denominator is, up to a non-zero scalar, P0(μ)〈μ2d10 − μ1d20, d10〉〈μ2d10 − 

μ1d20, d20〉〈μ2d10 −μ1d20, d21〉. It is easy to check that, if μ is such that〈μ2d10 −μ1d20, dij〉 =
0, for 0 � j < i � 2, then c(μ) �= 0 because c is non-zero on E, and ∗ ((μ2d10 − μ1d20 ) ∧ e3 ) 
does not vanish. Hence, the numerator does not vanish at the given μ. We remark that they
give exactly the ideal points of the lines r0, r1, r2. The ideal points of E are the roots of P0(μ),

i.e. μ1 = (d10e−iθ , d20eiθ ) and μ2 = (d10eiθ , d20e−iθ ) (same notation of theorem 6.4). Here



we analyze D0(x(μ1)), being the analogous case. After tedious, though fairly straightforward
computations, the numerators of the coefficients of ∗(d10 ∧ e3) and ∗(d20 ∧ e3) turn out to be

−d6
10d7

20eiθ (eiθd10 − e−iθ d20)
2 sin4(2θ ),

d7
10d6

20e−iθ (eiθd10 − e−iθ d20)
2 sin4(2θ ).

Without loss of generality, we choose a reference system where{
d10 = d10(cos θe1 + sin θe2)

d20 = d20(cos θe1 − sin θe2)
⇒

{∗(d10 ∧ e3) = d10(− sin θe1 + cos θe2)

∗(d20 ∧ e3) = d20(sin θe1 + cos θe2)
.

Therefore, x(μ1) is the ideal point

d7
10d7

20(e
iθd10 − e−iθ d20)

2 sin5(2θ )(1 : i : 0).

It is simple to prove that the coefficient cannot vanish for a value of θ ∈ (0, π/2). We
conclude that x(μ1) (and similarly x(μ2)) is a cyclic point of P2

C
. Furthermore, the parametric

representation of Ẽ is given by ratios of degree-5 polynomials without common factors, and
the claim follows. �

Proof of proposition 6.21. The closure Ũ0 of Ũ0 contains m0, r+
1 ∪ r+

2 , and the arc of the Ẽ
inverse image of the arc of E ∩Im(τ2) with endpoints T +

1 , T +
2 . Furthermore, Ũ0 ∪r+

1 ∪ r+
2 ∪ m0

is connected because it is equal to an oval of Ẽ intersected with the Euclidean x-plane, but
Ẽ ∩ (r+

1 ∪ r+
2 ∪ m0) is the empty set, because their images in the τ -plane do not meet. Hence,

Ũ0 has two connected components, and τ2 : Ũ0 → U0 is a cover.

˜

Ũ ˜

Let us now assume that the two inverse images of τ0 ∈ U0 belong to the same connected 
component of U0. As U0 is path-connected, from the path lifting theorem (see [35]), it follows 
that the inverse images of any other point τ ∈ U0 belong to the same connected component of 

0 as well. Let x′ be a point in the other connected component of U0, with τ′ = τ2(x′ ). Hence, 
τ′ has three inverse images, contradicting theorem 6.16. Thus, τ2 is 1-to-1 on each connected 
component of Ũ0, as claimed. �

7. The localization problem for special configurations

In this section we study the behavior of the TDOA map τ2, particularly of its image, under the 
hypothesis that m0, m1 and m2 lie on a line r. This is equivalent to assuming that d20 = kd10 
for some k ∈ R, k �= 0, 1. If k < 0, then m0 lies between m1 and m2, if 0 < k < 1, then m2 
lies between m0 and m1, and finally, if k > 1, then m1 lies between m0 and m2. As discussed 
in section 5, in this configuration, the polygon P2 has only four sides.

Let us first consider the case in which D10(τ) and D20(τ) are linearly dependent.

Lemma 7.1. The vectors D10(τ) and D20(τ) are linearly dependent if, and only if, 
d10τ2 − sgn(k)d20τ1 = τ2 − kτ1 = 0.

Proof. By definition we have Di0(τ) = di0 + τie3. Under the assumption d20 = kd10 of this 
section, D10(τ) and D20(τ) are linearly dependent if, and only if, τ2 = kτ1 or, equivalently, 
d10τ2 − sgn(k)d20τ1 = 0, as claimed. �

The line d10τ2 − sgn(k)d20τ1 = τ2 − kτ1 = 0 contains the origin 0 of the τ -plane, and 
two opposite vertices of P2 : if k > 0, then it contains (d10, d20 ), while, if k < 0, it contains 
(−d10, d20 ).



Proposition 7.2. Assume D10(τ) and D20(τ) are linearly dependent. Then, either d10 �= ±τ1,

and the intersection of the planes �1(τ) and �2(τ) is empty, or d10 = ±τ1, and
�1(τ) = �2(τ) � M0.

Proof. By assumption, we have τ2 = kτ1, with d20 = kd10, k �= 0, 1. As a consequence
D20(τ) = kD10(τ), therefore both D20(τ)� = kD10(τ)� and ‖D20(τ)‖2 = k2‖D10(τ)‖2. Let
X ∈ �1(τ) ∩ �2(τ). From equation (13) it follows that
1
2 k2‖D10(τ)‖2 = 1

2‖D20(τ)‖2 = iD0(X)(D20(τ)�) = 〈D0(X), D20(τ)〉
= k〈D0(X), D10(τ)〉 = k iD0(X)(D10(τ)�) = 1

2 k‖D10(τ)‖2.

Hence, either k2 = k, which is not allowed because k �= 0, 1, or ‖D10(τ)‖2 = 0. The second
condition implies d10 = ±τ1 and �1(τ) � M0, which completes the proof. �

Proposition 7.2 implies that the points τ on the line τ2 − kτ1 = 0, with τ1 �= ±d10, are
not in Im(τ2). Furthermore, with notation of definition 3.1, we have

Proposition 7.3. τ2(x) = (d10, sgn(k)d20) if, and only if, x ∈ rc, and 〈d0(x), d10〉 < 0, while
τ2(x) = (−d10,−sgn(k)d20) if, and only if, x ∈ rc, and 〈d0(x), d10〉 > 0.

Proof. τ2(x) = ±(d10, sgn(k)d20) if, and only if, x ∈ rc. Moreover, given x ∈ rc, τ1(x) = d10

is equivalent to m0 lying between m1 and x. �
Now, we assume that τ does not belong to the line τ2 − kτ1 = 0.

Lemma 7.4. Assume that D10(τ) and D20(τ) are linearly independent. Then, the parametric
equation of the line L21(τ) = �1(τ) ∩ �2(τ) is L0(τ) + λv(τ), where

v(τ) = ∗(d10 ∧ e3),

D0(L0(τ)) = − 1

2d2
10(kτ1 − τ2)

∗ (v(τ) ∧ (‖D20(τ)‖2D10(τ) − ‖D10(τ)‖2D20(τ))).

Proof. We use the same reasoning as in lemma 6.1. �
The line L21(τ) is parallel to the x-plane, because 〈v(τ), e3〉 = 0, thus it is not possible

for it to intersect both half-cones C+
0 ,C−

0 . As for the general case, the line L21(τ) intersects
the cone C0 if and only if

‖v(τ)‖2λ2 + 2〈v(τ), D0(L0(τ))〉λ + ‖D0(L0(τ))‖2 = 0. (22)

In this case, ‖v(τ)‖2 = −〈d10 ∧ e3, d10 ∧ e3〉 = d2
10 > 0, 〈v(τ), D0(L0(τ))〉 = 0, and

‖D0(L0(τ))‖2 = −
(
d2

10 − τ 2
1

)(
d2

20 − τ 2
2 ]

)(
d2

21 − (τ1 − τ2)
2
)

4d2
10(kτ1 − τ2)2

= −‖D10(τ)‖2‖D20(τ)‖2‖D21(τ)‖2

4d2
10(kτ1 − τ2)2

.

As a consequence, the line L21(τ) intersects the cone C0 if, and only if, c(τ) � 0. Moreover,
the two intersections belong to C−

0 if, and only if, 〈D0(L0(τ)), e3〉 > 0, which means that

kτ 2
1 − τ 2

2 + d2
10(k

2 − k)

2(τ2 − kτ1)
> 0.

Now, we are able to describe the image of τ2. The results of the next theorem are illustrated 
in figure 11, in the subcase with k < 0, i.e. m0 is between m1 and m2 (the other two subcases 
are similar).



R0R1

R2

T

τ1

τ2

Figure 11. The image of τ2 under the assumption that m0 lies on the segment between
m1 and m2. In the gray region T the map τ2 is 2-to-1. Along the horizontal and vertical
sides of T the map is 1-to-1, with the exception of the vertices R1, R2, where the fibers
of τ2 are not finite. Finally, the dashed side of T is not in Im(τ2).

Theorem 7.5. Let us assume that d20 = kd10, k �= 0, 1 and let Ri be the image
of the point mi in the interior of r0. Then, the image of τ2 is the triangle T with
vertices (d10, sgn(k)d20), (−d10,−sgn(k)d20), Ri minus the open segment with endpoints
(d10, sgn(k)d20), (−d10,−sgn(k)d20). Moreover, given τ ∈ Im(τ2), we have

|τ2
−1(τ)| =

⎧⎨⎩
∞ if τ = ±(d10, sgn(k)d20),

2 if τ ∈ T̊ ,

1 otherwise.

Proof. The case τ = ±(d10, sgn(k)d20) has already been studied, as well as the case τ on the
line through them. Let us assume that τ does not lie on the line d10τ2 − sgn(k)d20τ1 = 0.

Equation (22) has two real distinct roots if, and only if, c(τ) < 0. Quite clearly this happens
if, and only if, τ ∈ P̊2. Furthermore, the same equation has a multiplicity-2 root if, and only
if, c(τ) = 0, i.e. τ ∈ ∂P2. Finally, the intersection points of L21(τ) and C0 are in C−

0 if, and

only if, kτ 2
1 −τ 2

2 +d2
10(k

2−k)

2(τ2−kτ1)
> 0.

The equation e(τ) = kτ 2
1 − τ 2

2 + d2
10(k

2 − k) = 0 defines a conic C′ through the four
points (±d10,±d20). If k < 0, C′ is an ellipse with real points, and so P2 is inscribed into C′.
Moreover, e(0) > 0, and so e(τ) > 0 for each τ ∈ P2 except the four points (±d10,±d20).

If k > 0, C′ is a hyperbola. The tangent line to C′ at R0 = (d10, d20) is F+
0 if k > 1, (F−

0 if
0 < k < 1, respectively), while the tangent line to C′ at R2 is F−

0 if k > 1 (F+
0 if 0 < k < 1,

respectively). Finally, if 0 < k < 1 then R0 and (d10,−d20) belong to the same branch of C′

((−d10, d20) if k > 1, respectively). As a consequence, e(τ) does not change sign in P2. More
precisely, e(τ) has the same sign as k2 − k for each τ ∈ P2, except for τ = ±(d10, d20), where
it vanishes.

On the other hand, after a rather straightforward computation we find that the linear
polynomial τ2−kτ1 has the same sign as k2−k at the vertex Ri, therefore the ratio kτ 2

1 −τ 2
2 +d2

10(k
2−k)

2(τ2 kτ1)

is positive at any point in the interior of the triangle T . This proves that each point τ 
−
in T̊ has 

two distinct preimages.



Finally, for τ on the two remaining sides of T , equation (22) has only one root of
multiplicity 2, which implies |τ2

−1(τ)| = 1. �
The preimages of τ ∈ Im(τ2) in the x-plane are

x(τ) = π(L0(τ)) + λv(τ),

where λ = ±‖D10(τ)‖ ‖D20(τ)‖ ‖D21(τ)‖/2d2
10|kτ1 − τ2| and π is the projection onto the

x-plane. Moreover, we have

D0(π(L0(τ))) = ‖D20(τ)‖2τ1 − ‖D10(τ)‖2kτ2

2d2
10(kτ1 − τ2)

d10.

In order to interpret the results, we notice that in the aligned configuration, the foci of
A1(τ), A2(τ) belong to the line r, therefore the two level sets A1(τ), A2(τ) are both symmetrical
with respect to r. We are in the 1-to-1 situation if, and only if, the source x belongs to r0,
corresponding to A1(τ), A2(τ) tangentially intersecting at x. In the general case, when τ ∈ T̊ ,
the level sets meet at two distinct symmetrical points. This agrees with the classical statement
that it is not possible to distinguish between the symmetric configuration of the source, with
respect to r, using a linear array of receivers.

The degenerate situation occurs for x ∈ rc, dual to τ equal both to (d10, sgn(k)d20) and
(−d10,−sgn(k)d20). In this case the localization of the source is totally unavailable, because
the preimages contain infinitely many points of the x-plane. Finally, the points on the interior
of the side τ2 − kτ1 = 0 correspond to A1(τ), A2(τ) with parallel asymptotic lines and an
empty intersection.

8. The image of the complete TDOA map

In section 2 we explained that the relation between τ2 and τ∗
2 is given by the projection p3

from the plane H ⊂ R3 to R2 via the equality τ2 = p3 ◦ τ∗
2 . As p3 is invertible, it holds that

τ∗
2 = p−1

3 ◦ τ2 and consequently we have the following result:

Theorem 8.1. Im(τ∗
2 )=p−1

3 (Im(τ2)). More precisely, let τ∗ ∈ H, then τ∗
2

−1(τ∗) = τ2
−1(τ),

where τ = p3(τ
∗).

Theorem 8.1 allows us to give the explicit description of Im(τ∗
2 ), thus reaching one of the

main objectives we set ourselves in section 2. We start by defining the relevant subsets of H.

Definition 8.2. Assuming 0 � i, j, k � 2 distinct, in the τ ∗-space we set:

• P2 = {τ∗ ∈ H|‖Dji(τ
∗)‖2 � 0 for every i, j};

• F+
k = {τ∗ ∈ P2|‖Dji(τ

∗)‖2 = 0, 〈Dji(τ
∗), e3〉 < 0};

• F−
k = {τ∗ ∈ P2|‖Dji(τ

∗)‖2 = 0, 〈Dji(τ
∗), e3〉 > 0};

• Ek = {τ∗ ∈ P2|‖Dik(τ∗) ∧ Djk(τ∗)‖2 = 0}.

As the above definitions are stated using the exterior algebra formalism, for completeness
we observe that H can also be described in similar terms:

H = {τ∗ ∈ R3|D10(τ
∗) − D20(τ

∗) + D21(τ
∗) = 0}.

In figure 12 we show an example of Im(τ∗
2 ) along with its projection Im(τ2).

As a consequence of theorem 8.1, the structure of Im(τ∗
2 ) turns out to be similar to that of

Im(τ2), thus we can omit the proofs and go over the main facts of τ∗
2 .

• τ∗
2 is a local diffeomorphism between the x-plane and H, with the exception of the

degeneracy locus ∪2
i=0(r

−
i ∪ r+

i ), as described in theorem 3.2.



Figure 12. The image of τ∗
2 is the subset of P2, in green, while the image of τ2 is the

subset of P2, in red. There is a 1-to-1 correspondence between Im(τ∗
2 ) and Im(τ2) via

the projection map p3. In the lightly shaded regions, the TDOA maps are 1-to-1, while
in the more darkly shaded regions the maps are 2-to-1. As explained in section 10,
three noisy TDOAs define a point τ∗ outside P2. The ML estimator computes the
projection τ̄ = pH(τ∗) on P2, then the estimated source position is computed as
x̄ = τ∗

2
−1(τ̄) = τ2

−1(p3(τ̄)).

• P2 is the convex polygon given by p−1
3 (P2), whose facets are F±

k = p−1
3 (F±

k ). The image
of τ∗

2 is a proper subset of P2 and, in particular, the image of the degeneracy locus is a
subset of the facets.

• Ek does not depend on k. If the points m0, m1 and m2 are not aligned, then we have
Ek = p−1

3 (E ). Therefore, Ek is the unique ellipse that is tangent to each facet of the
hexagon P2. The cardinality of each fiber of τ∗

2 is equal to that of the corresponding fiber
of τ2, as described in theorem 6.16 and in proposition 6.21.

• If the points m0, m1, m2 are aligned, then Ek is one of the diagonals of the quadrangle
P2. The cardinality of each fiber of τ∗

2 is equal to that of the corresponding fiber of τ2, as
described in theorem 7.5.

Remark 8.3. In the definition of τ∗
2 we notice a natural symmetry among the points m0, m1

and m2, which is lost in τ2 as we elected m0 to be the reference microphone. As noticed in
section 2, by taking p1 ◦τ∗

2 or p2 ◦τ∗
2 we define different TDOA maps, with different reference

microphones. Quite obviously, their properties are similar to those of τ2 studied in sections 6
and 7, in fact p1 ◦ p−1

3 and p2 ◦ p−1
3 are invertible maps between the images of the TDOA maps,

factorizing on Im(τ2
∗). Although such maps are, in fact, equivalent, some of their properties

could be more or less difficult to check depending on the chosen reference point. For example,
the lines F±

0 become parallel to the reference axes when applying pi ◦ p−1
3 for i = 1 or 2.
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Figure 13. Level sets of the absolute value of the Jacobian determinant | det(J(x))| of τ2

(values are marked next to them). The picture also shows the bifurcation curve Ẽ and the
degeneracy locus det(J(x)) = 0, on the x-plane. Given the microphones in m0 = (0, 0),
m1 = (2, 0) and m2 = (2, 2), the best accuracy of the localization is obtained in the
region that lies closest to the center of the triangle. Notice that, although det(J(x)) is
not affected by Ẽ, in the proximity to this curve the localization fails due to the global
properties of τ2.

Remark 8.4. The previous remark implies that pi ◦ p−1
3 sends the ellipse E onto the ellipse

associated to the TDOA map pi ◦ τ∗
2, but this does not happen for the cubic curve C. In fact,

both the cubics associated to pi ◦ τ∗
2, i = 1, 2 do not contain (the transformations of) 4 of the

11 points characterizing C in proposition 6.12: R0, R∗, R0
1, R∗

1. This, however, is not an issue
for localization purposes, as the image of any TDOA map only depends on C ∩ E = E ∩ P2.

9. Impact assessment

As anticipated in the introduction, a complete characterization of the TDOA map constitutes 
an important building block for tackling a wide range of more general and challenging 
problems. For example, we could optimize sensor placement in terms of robustness against 
noise or measuring errors. More generally, we could embark into a statistical analysis of 
error propagation or consider more complex scenarios where the uncertainty lies with sensor 
synchronization or spatial sensor placement. While these general scenarios will be the topic 
of future contributions, in this section we can already show an example of how to jointly use 
local and global analysis to shed light on the uncertainty in localization problems.

A possible approach to the study of the accuracy of localization is based on the linearization 
of the TDOA model (see [20, 44]). Usually this analysis is pursued in a statistical context, but it 
essentially involves the analysis of the Jacobian matrix J(x) of τ2 and its determinant 
det(J(x)).



In the differential geometry interpretation, the absolute value of the Jacobian determinant is
the ratio between the areas of two corresponding infinitesimal regions in the τ -plane and in
the x-plane, under the action of the map τ2. As a consequence, the quality of the localization
is best in the regions of maximum of |det(J(x))|, where the TDOAs are highly sensitive to
differences of source position. This local analysis is equivalent, up to a constant factor, to
that of the map τ∗

2 . Starting from expression (10), in figure 13 we display the level sets of
|det(J(x))| along with the geometric configuration of sensors and with the curves that we
displayed earlier in figure 10. Figure 13 shows that the local error analysis does not take into
account the global aspects of the localization. In particular, | det(J(x))| becomes quite large
in the proximity of the sensors. In these areas, however, localization is not accurate because of
their proximity to the bifurcation curve Ẽ and the overlapping with the sets Ũi. Having access
to a complete global characterization of the TDOA map allows us to predict this behavior.

10. Conclusions and perspectives

In this paper we have offered an exhaustive mathematical characterization of the TDOA map
in the planar case of three receivers. We began with defining the non-algebraic complete
TDOA map τ∗

2 . We then derived a complete characterization of both Im(τ∗
2 ) ⊂ R3 and the

various preimage regions in the x-plane. We found that Im(τ∗
2 ) is a bounded subset of the

plane H and, in particular, we showed that the image is contained in the convex polygon P2.
We also described the subsets of the image in relation to the cardinality of the fibers, i.e. the
loci where the TDOA map is 1-to-1 or 2-to-1, which provided a complete analysis of the a
priori identifiability problem. On the x-plane, we defined the degeneracy locus, where τ∗

2 is
not a local diffeomorphism, and we described the sets where τ∗

2 is globally invertible and those
where it is not.

We conducted our analysis using various mathematical tools, including multilinear
algebra, the Minkowski space, algebraic and differential geometry. Indeed, these tools may
seem too sophisticated for a problem as ‘simple’ as that of TDOA-based localization. After
all, this is a problem that, in the engineering literature, is commonly treated as consolidated
or even taken for granted. As explained in the Introduction, however, the purpose of this work
was two-fold:

(i) to derive analytically and in the most general sense what was preliminarily shown in
a fully simulative fashion in [50], and to make the analysis valid for arbitrary sensor
geometries;

(ii) to offer a complete characterization of the TDOA map, to be applied to the solution of
more general problems.

The first purpose was amply proven throughout the paper (sections 2–8). What remains to
be shown is how this analysis can pave the way to a deeper understanding of the localization 
problem in more general settings, such as in the presence of noisy measurements (propagation 
of uncertainty) or even in the presence of uncertainty in the sensor calibration and/or in their 
synchronization. An early discussion in this direction was offered in section 9 where we 
described how errors propagate in a three-sensor setup based on local analysis and showed 
that, without a global perspective on the behavior of the TDOA map we could be easily led to 
drawing wrong conclusions.

The authors are currently working on the extension to arbitrary distributions of sensors 
both in the plane and in the 3D Euclidean space, using similar techniques and notations. In
particular, the model can be encoded as well in a TDOA map τn

∗, whose image is a real surface 
and a real three-fold, respectively. We expect the bifurcation locus and the 2-to-1 regions to



become thinner as the number of receivers in the general position increase, although they do
not immediately disappear (for example, in the planar case and n = 3, there are still curves
in the x-plane where the localization is ambiguous). The precise description of τ∗

n is needed
also for the study of the localization with partially synchronized microphones. In fact, in this
scenario not all TDOAs are available and, in our description, this is equivalent to considering
some kind of projection of Im(τ∗

n), just like the relationship between τ∗
2 and τ2, explained in

sections 2 and 8.
In the near future we also want to pursue the study of the nonlinear statistical model,

following a similar gradual approach to the one of this paper. Even in this respect, the
knowledge of the noiseless measurement set Im(τ∗

n ) constitutes the starting point for any further
advances on the study of the stochastic model. Roughly speaking, a vector of measurements τ∗

affected by errors corresponds to a point that lies close to the set Im(τ∗
n) and the localization is

a two-step procedure: we can first estimate τ̄ ∈ Im(τ∗
n ) from τ∗, then we evaluate the inverse

map τ∗
n

−1(τ̄).
We can give a real example of this process in the case of the complete TDOA model defined

through the map τ∗
2 . In a noisy scenario (e.g. with Gaussian errors), a set of three TDOAs

gives a point τ∗ in the three-dimensional τ ∗-space, that with probability 1 is not on the plane
H. A standard approach to obtain an estimation x̄ of the source position is through maximum
likelihood estimator (MLE). With respect to the discussion of the previous paragraph, it is
well known that the estimated τ̄ ∈ Im(τ∗

2 ) given by MLE is the orthogonal projection of τ∗
on the noiseless measurement set, i.e. the projection pH(τ∗) on H (see [6, 41] and figure 12)
therefore x̄ = τ∗

2
−1(pH(τ∗)).

A similar reasoning applies to the more complex case of τ∗
n . In particular, any estimator

has a geometrical interpretation and the relative accuracy depends on the (non-trivial) shape of
Im(τn

∗). Possible techniques to be applied come from information geometry [6, 34], an approach 
that proved successful in similar situations and that is based on the careful description of Im(τn

∗). 
With this in mind, notice that our characterization of the TDOA model in algebraic geometry 
terms becomes instrumental for understanding and computing the MLE. Very recently, novel 
techniques have been developed and applied to similar situations, in cases where scientific and 
engineering models are expressed as sets of real solutions to systems of polynomial equations 
(see, for example, [4, 25, 34]). The somewhat surprising fact that, although the TDOA map is
not polynomial, all the loci involved in the analysis of τ2

∗ are algebraic or semi-algebraic, is a 
promising indicator of the effectiveness of this approach.
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Appendix A. The exterior algebra formalism

In this appendix, we recall the main definitions and some useful results about the exterior 
algebra of a real vector space. At the end, we analyze in full detail the two main examples that 
we use in the paper, namely the two-dimensional Euclidean case and the three-dimensional 
Minkowski one. The literature on the subject is wide and we mention [3] among the many 
possible references.



Let V be a n-dimensional R-vector space. Adopting a standard notation, ∧V is the exterior
algebra ofV (hence, ∧kV = 0 for each k � n+1 while ∧kV has dimension

(n
k

)
for k = 0, . . . , n).

Roughly speaking, the symbol ∧ is skew-commutative and linear with respect to each factor.
Hence, given the basis (e1, . . . , en) of V, the reader can simply think of ∧kV as the R-vector
space spanned by ei1 ∧ . . . ∧ eik for 1 � i1 < . . . < ik � n.

We choose a non-degenerate, symmetric bilinear form b : V ×V → R, and an orthonormal
basis B = (e1, . . . , en) with respect to b, which means

b(ei, ej) =
⎧⎨⎩

1 if i = j = 1, . . . , r,
−1 if i = j = r + 1, . . . , n,

0 if i �= j.

The couple (r, n − r) is the signature of b. By setting 〈u, v〉 = b(u, v) and ‖ u ‖2= b(u, u),

we can easily compute their expression in coordinates with respect toB, and we have〈
n∑

i=1

uiei,

n∑
j=1

viei

〉
= u1v1 + · · · + urvr − ur+1vr+1 − · · · − unvn∥∥∥∥∥

n∑
i=1

uiei

∥∥∥∥∥
2

= u2
1 + · · · + u2

r − u2
r+1 − · · · − u2

n. (A.1)

The inner product in ∧kV is defined by

〈u1 ∧ . . . ∧ uk, v1 ∧ . . . ∧ vk〉 = det

⎛⎜⎝〈u1, v1〉 . . . 〈u1, vk〉
...

...
〈uk, v1〉 . . . 〈uk, vk〉

⎞⎟⎠ (A.2)

and extended by linearity. For example, (e1 ∧ e2, e1 ∧ e3, . . . , en−1 ∧ en) is an orthonormal
basis of ∧2V, while (ω = e1 ∧ . . .∧en) is an orthonormal basis of ∧nV with ‖ ω ‖2= (−1)n−r.

Finally, from the choice of ω as the positive basis of ∧nV, and from the fact that the natural
concatenation of a k-form and an (n − k)-form gives an n-form, one recovers the classical
Hodge ∗ operator R → ∧nV , V → ∧n−1V, . . . ,∧n−1V → V and ∧nV → R, that are all
isomorphisms.

Definition A.1. Given ω ∈ ∧nV,ω �= 0, there exists a unique linear map ∗ : ∧kV → ∧n−kV
that verifies the condition

x ∧ ∗y = 〈x, y〉ω
for every x, y ∈ ∧kV.

Theorem A.2. The map ∗ : ∧kV → ∧n−kV satisfies both ∗ ◦ ∗ = (−1)n−r+k(n−k)id∧kV and
〈∗x, ∗y〉 = (−1)n−r〈x, y〉 for every x, y in ∧kV, and for any k = 0, . . . , n.

We now consider the dual space V ∗ of V , i.e. the R-vector space of the R-linear maps
from V to R. Given the basis (e1, . . . , en) of V, the dual space can be identified with the n × 1
row matrices whose entries are the values that the map takes at ei, i = 1, . . . , n.

We use the form b to construct an isomorphism between V and V ∗. Given u ∈ V , we define
u� ∈ V ∗ by setting u�(v) = 〈u, v〉. It is easy to prove that � : V → V ∗ is an isomorphism,
and so B� = (e1

�, . . . , en
�) is a basis of V ∗. We want V and V ∗ to be isometric. Therefore we

choose the non-degenerate, symmetric, bilinear form b� on V ∗ as

b�(u�, v�) = b(u, v) for every u�, v� ∈ V ∗.

In such a way, B� is orthonormal with the same signature as B. We define 
 : V ∗ → V
to be the inverse isomorphism of �, i.e. (

∑n
i=1 uiei

�)
 = ∑n
i=1 uiei. We can extend � and




 to the associated exterior algebra ∧V ∗, obtaining the isomorphisms ∧kV → ∧kV ∗ and
∧kV ∗ → ∧kV :

(u1 ∧ . . . ∧ uk)� = u1
� ∧ . . . ∧ uk

� and (α1 ∧ . . . ∧ αk)

 = α1


 ∧ . . . ∧ αk

.

As for ∧kV , we follow a similar procedure, and extend b� to ∧kV ∗. Finally, after choosing ω�

as the positive basis of ∧nV ∗, we define the Hodge ∗ operator on ∧kV ∗, as

∗(x) = (∗(x
))� for each x ∈ ∧kV ∗.

As the last general topic, we consider the evaluation of a k-form in ∧kV ∗ on u ∈ V. Such
operation gives rise to the linear map iu : ∧kV ∗ → ∧k−1V ∗ defined as

iu(α1 ∧ . . . ∧ αk) =
k∑

i=1

(−1)i−1αi(u) α1 ∧ . . . ∧ α̂i ∧ . . . ∧ αk (A.3)

where α̂i means that the item is missing.

A.1. The Euclidean vector space of dimension 2

Let V be a two-dimensional vector space on R, let b a non-degenerate bilinear form with
signature (2, 0), and let B = (e1, e2) be an orthonormal basis with respect to b. Then,
∧kV = 0 for k � 3, and ∧2V has dimension 1 with (ω = e1 ∧ e2) as the orthonormal basis.
On the natural bases, the Hodge operator is defined as:

∗(1) = ω, ∗(e1) = e2, ∗(e2) = −e1, ∗(ω) = 1.

Analogously, V ∗ has dimension 2, with basis (e1
�, e2

�), where

ei
�(u1e1 + u2e2) = b(ei, u1e1 + u2e2) = ui for i = 1, 2,

and

∗(1) = ω�, ∗(
e1

�
) = e2

�, ∗(
e2

�
) = −e1

�, ∗(ω�) = 1.

Proposition A.3. Let u = u1e1 + u2e2, v = v1e1 + v2e2 ∈ V and u� = u1e1
� + u2e2

�, v� =
v1e1

� + v2e2
� ∈ V ∗. Then,

∗(u ∧ v) = det

(
u1 v1

u2 v2

)
and ∗ (u� ∧ v�) = det

(
u1 u2

v1 v2

)
.

We adopt the usual convention that the components of a vector in V are written as columns,
while the components of a vector in V ∗ are written as rows. Of course, the images of the two
2-form are equal because of the properties of the determinant of a matrix. The proof is an easy
computation and we do not write the details.

A.2. The Minkowski vector space of dimension 3

Let V be a three-dimensional vector space on R, let b a non-degenerate bilinear form with
signature (2, 1), and let B = (e1, e2, e3) be an orthonormal basis with respect to b. Then,
∧kV = 0 for k � 4 and ∧2V has dimension 3 with (e1 ∧e2, e1 ∧e3, e2 ∧e3) as the orthonormal
basis with signature (1, 2), while ∧3V has dimension 1 and (ω = e1∧e2∧e3) is an orthonormal
basis of this last space. On the natural bases the ∗ operator acts as follows:

∗(1) = ω, ∗(ω) = −1,

∗(e1) = e2 ∧ e3, ∗(e2) = −e1 ∧ e3, ∗(e3) = −e1 ∧ e2,

∗(e1 ∧ e2) = e3, ∗(e1 ∧ e3) = e2, ∗(e2 ∧ e3) = −e1.



As before, we compute the images of the elements of the bases of ∧kV ∗ via the Hodge ∗
operator, and we get:

∗(1) = ω�, ∗(ω�) = −1,(
e1

�
) = e2

� ∧ e3
�, ∗(

e2
�
) = −e1

� ∧ e3
�, ∗(

e3
�
) = −e1

� ∧ e2
�,(

e1
� ∧ e2

�
) = e3

�, ∗(
e1

� ∧ e3
�
) = e2

�, ∗(
e2

� ∧ e3
�
) = −e1

�.

Now we state some results that we use in the body of the paper.

Lemma A.4. Let u, v, w ∈ V be linearly independent, so � = u ∧ v ∧ w �= 0. Then,

∗(u) = − 1

∗(�)
(〈u, w〉u ∧ v + ‖u‖2v ∧ w + 〈u, v〉w ∧ u)

and

∗(u ∧ v) = − 1

∗(�)
(〈u ∧ v, v ∧ w〉u + 〈u ∧ v, w ∧ u〉v + ‖u ∧ v‖2w).

Proof. From the linear independence of u, v and w, it follows that u∧v, v∧w, w∧u is a basis
of ∧2V . Hence, there exist elements in R such that ∗(u) = au∧v+bv∧w+cw∧u. From the
definition of ∗ it follows that u ∧ ∗(u) = ‖u‖2ω. By substituting the expression of ∗(u) and
using the properties of ∧ we obtain b� = ‖u‖2ω or, equivalently,b ∗ (�) = −‖u‖2, which
givesb = −‖u‖2/ ∗ (�). Through a similar computation we can derive a and c, therefore the
first claim follows. The second claim can be proven through the same arguments, therefore we
can skip the details. �

Lemma A.5. Let u, v ∈ V, and γ ∈ V ∗. Then, γ(∗(u ∧ v)) = ∗(u ∧ v ∧ γ
).

Proof. We can verify the equality by using components with respect to B, B�. �

Corollary A.6. Let α,β ∈ V ∗ be linearly independent. Then iu(α ∧ β) = 0 if, and only if,
u ∈ L

(
(∗(α ∧ β))


)
, whereL(. . .) is the subspace generated by the vectors in parentheses.

Proof. Assume u = t (∗(α ∧ β))
 , for some t ∈ R. Then

α(u) = tα
(
(∗(α ∧ β))


) = ∗(α
 ∧ β
 ∧ α
) = 0.

A similar argument proves that β(u) = 0. By definition, iu(α∧β) = α(u)β−β(u)α therefore
the claim follows.

Conversely, assume that α(u)β − β(u)α = 0. Then α(u) = β(u) = 0 because α,β are
linearly independent. Hence, 〈α
, u〉 = 〈β
, u〉 = 0. This implies that u = t (∗(α ∧ β))
 for
some t ∈ R, which completes the proof. �

Lemma A.7. Let � ∈ ∧3V ∗ be a non-zero 3-form. Then, iu(�) = α ∧ β if, and only if,
u = 1

∗(�)
(∗(α ∧ β))
 .

Proof. There exists t ∈ R, t �= 0, such that � = tω�, therefore,

iu(�) = t
(
e1

�(u)e2
� ∧ e3

� − e2
�(u)e1

� ∧ e3
� + e3

�(u)e1
� ∧ e2

�
) = α ∧ β.

This implies

∗(α ∧ β) = t
( − 〈e1, u〉e1

� − 〈e2, u〉e2
� + 〈e3, u〉e3

�
) = −tu�

and u = − 1
t ∗ (α ∧ β)
. Moreover, ∗(�) = t ∗ (ω�) = −t, therefore one side of the claim

follows. The converse is proven through a straightforward computation. �



Appendix B. A brief introduction to plane algebraic geometry

In this appendix, we recall the main definitions and results concerning curves in the affine or
projective plane.

B.1. Affine spaces and algebraic subsets

Definition B.1. Let K be a field and let V be a K-vector space. Let � be a non-empty set. A
map φ : � × � → V that verifies

(i) φ(A, B) + φ(B,C) = φ(A,C) for every A, B,C ∈ �

(ii) φA : � → V defined as φA(X ) = φ(A, X ) is 1-to-1 for every A ∈ �

is an affine structure on �, and the couple (�, φ) is called affine space and named A(V ).

¯

¯

¯

The main example we use is the following: let � = V and define φ(u, v) = v − u. φ  is an 
affine structure on V and so we get the affine space A(V ). If dim(V ) = n, we say that A(V ) 
has dimension n, as well. The advantage of having an affine structure on a set of points is that 
we can easily define the coordinates of the points.

Definition B.2. Let A(V ) be an affine space of dimension n. A reference frame is a couple 
R = (O, B), where O is a point and B = (v1, . . . , vn ) is a basis of V. Given P ∈ A(V ), its 
coordinates in the frame R are the components of φ(O, P) with respect to B.

Thanks to the properties of the affine structure, once R is given, there is a 1-to-1 
correspondence between points in A(V ) and elements in Kn. So, usually, the two spaces 
are identified. When this happens, one denotes Kn as An

K
. We remark that the identification 

implies the choice of the reference frame, and so some care has to be taken if one works with 
more than one reference frame.

If K = R, and V is an Euclidean vector space, then A(V ) is referred to as Euclidean 
space, and indicated with E(V ), or En emphasizing just the dimension of V. In this setting, 
the set-theoretical equality between En and An

R is evident. However, if one switches from En 

to An
R
, then one is not allowed to use distances and angles.

Another standard construction is the following. Given the real vector space V, one can 
consider the complex vector space V = C ⊗R V. Roughly speaking, we allow complex 
numbers to multiply the vectors of V. As an example of the previous construction, we remark 
that Cn = C ⊗R Rn. It holds dimC V̄ = dimR V, and dimR V̄ = 2 dimR V. Of course, we have 
a set-theoretical inclusion V ⊂ V , that is not a linear map. The inclusion of vector spaces 
provides an inclusion of the corresponding affine spaces, that can be written as An

R ⊂ An
C
, up 

to the choice of a reference frame with the same origin O ∈ An
R
, and the same basis B ⊂ V 

both for V and for V .
In the paper, we mainly use the affine space with n = 2, namely the affine plane. The 

geometrical objects in A2
K that are studied in the algebraic geometry framework are (algebraic) 

curves and their intersections. We recall the definition of an algebraic curve.

Definition B.3. Let f1, . . . ,  fr ∈ K[x, y] be polynomials. The vanishing locus V ( f1, . . . ,  fr ) of 
the given polynomials is

V ( f1, . . . ,  fr ) = {P ∈ A2
K | fi(P) = 0 for every i = 1, . . . , r}.

The evaluation of a polynomial f at P, f (P), simply consists of substituting the coordinates 
of P in the expression of f .



Definition B.4. A non-empty subset C ⊂ A2
K

is an algebraic curve if there exists a polynomial
f ∈ K[x, y] of degree � 1 such that C = V ( f ).

We get a line when the degree of f is 1, a conic when the degree of f is 2. From degree
3 on, a curve is named according to the degree of f , e.g. there are cubic curves, quartic ones,
and so on.

The advantage of considering curves in A2
C

is that some unpleasant phenomena do not
happen: the vanishing locus of x2 + y2 is a single point in A2

R
and a couple of lines in A2

C
, the

vanishing locus of x2 + y2 + 1 is empty in A2
R
, and a conic in A2

C
.

In greater generality, we can consider algebraic subsets.

Definition B.5. A subset X ⊂ A2
K

is algebraic if there exist f1, . . . , fr ∈ K[x, y] such that
X = V ( f1, . . . , fr).

For example, the intersection of the curves Ci = V ( fi), i = 1, . . . , r, is the algebraic set
X = V ( f1, . . . , fr). It is possible to prove that algebraic sets are the closed sets of a topology,
the Zariski topology, on A2

K
.

B.2. Projective spaces and algebraic subsets

Roughly speaking, the points of a projective space are the one-dimensional subspaces of a
vector space. Hence, we have to identify all the vectors belonging to the same subspace. The
mathematical machinery is the following:

Definition B.6. Let V be a n + 1-dimensional vector space over the ground field K. We define
the relation ∼ in V \ {0} as

u ∼ v if there exists t ∈ K, t �= 0, such that u = tv.

It is easy to check the following.

Proposition B.7. ∼ is an equivalence relation.

Definition B.8. The projective space of dimension n over V is the set of equivalence classes
of V \ {0} modulo ∼, that is to say,

P(V ) = (V \ {0})/ ∼ .

As for the affine space, we define a reference frame in the projective space.

Definition B.9. Let P(V ) be a projective space of dimension n. A reference frame is R = (B),

where B = (v0, . . . , vn) is a basis of V. Given P ∈ P(V ), its homogeneous coordinates with
respect to R are the components ofv ∈ P with respect to B, and we set P = (x0 : . . . : xn).

The homogeneous coordinates of a point P ∈ P(V ) are not unique. In fact, if v ∈ P, then
P contains also tv for every t ∈ K, t �= 0. The components of tv are those of v times t, and so
the homogeneous coordinates of a point are unique up to a scalar factor, i.e. if (x0 : . . . : xn)

are the homogeneous coordinates of P, then also (tx0 : . . . : txn) are so, for every t �= 0.

An initial property is the following:

Proposition B.10. Let V be a real vector space of dimension n + 1. Then

P2(V ) ⊂ P2(V̄ = C ⊗R V ).



Proof. From the definition of V̄ , it follows that vectors that are proportional in V are
proportional also in V̄ , and so there is a natural way to identify a point P ∈ P(V ) with a
point in P(V̄ ). This identification gives an inclusion. We remark that the two spaces are not
equal for n � 1. �

Hence, we restrict to P(V ) where V is a vector space over the complex field and we stress
the properties that behave differently in a projective space over a real vector space. Moreover,
once a reference frame is given, we identify the points with their homogeneous coordinates.
In this case, we simply write Pn

C
or Pn

R
to stress the dimension and the ground field. Motivated

again by the case considered in the paper, we focus on the projective space of dimension 2,

i.e. on the projective plane P2
C
.

In the projective setting, the polynomials to be considered are the homogeneous ones. In
fact, due to the construction of the homogeneous coordinates, the evaluation of a polynomial at
a point is in general a meaningless concept. However, it is meaningful to check if a polynomial
vanishes at a projective point P.

Proposition B.11. Let f ∈ K[x0, x1, x2] be equal to f = f0 + f1 + · · · + fd where fi is
homogeneous of degree i. Let P ∈ P2

K
be the point with homogeneous coordinates (x0 : x1 : x2).

Then, f (P) = 0 if, and only if, fi(P) = 0 for each i.

Proof. We have f (P) = f (x0 : x1 : x2) = f0(x0 : x1 : x2)+ f1(x0 : x1 : x2)+· · ·+ fd(x0 : x1 :
x2). The point P, however, is represented also from the coordinates (tx0 : tx1 : tx2) for every
t �= 0, and so we have f (tx0 : tx1 : tx2) = f0(tx0 : tx1 : tx2)+ f1(tx0 : tx1 : tx2)+· · ·+ fd(tx0 :
tx1 : tx2) = f0(x0 : x1 : x2) + t f1(x0 : x1 : x2) + · · · + td fd(x0 : x1 : x2). So, if K contains
infinitely many elements, then fi(x0 : x1 : x2) = 0 for every i = 0, . . . , d. �

This proposition justifies the fact that we restrict to homogeneous polynomials.

Definition B.12. Let f1, . . . , fr ∈ K[x0, x1, x2] be homogeneous polynomials. Then, their
vanishing locus is

V ( f1, . . . , fr) = {P ∈ P2
K

| fi(P) = 0 for every i = 1, . . . , r}.

We are now ready to define the projective algebraic sets, and projective curves in particular.

Definition B.13. A non-empty subset C ⊂ P2
K is a projective plane curve if there exists a 

homogeneous polynomial f such that C = V ( f ).
A subset X ⊆ P2

K is a projective algebraic set if there exist homogeneous polynomials 
f1, . . . ,  fr such that X = V ( f1, . . . ,  fr ).

As in the case of the affine plane, it is possible to prove that the projective algebraic sets 
are the closed sets of a topology, the Zariski topology, on the projective plane. A line in P2

K is 
the vanishing locus of a degree 1 homogeneous polynomial, a conic is the vanishing locus of 
a degree 2 homogeneous polynomial, and so on.

As a further step, we show that it is possible to include the affine plane in the projective 
one, as an open subset.

Proposition B.14. Let H0 = V (x0 ) ⊂ P2
K be a line, and let U0 be the open complement of H0. 

Then, U0 can be identified with the affine plane, and the identification preserves the algebraic 
sets.



Proof. Let P = (x0 : x1 : x2) ∈ U0. From the definition of U0, it follows that x0 �= 0,

and so we can take (1 : x1/x0 : x2/x0) as the homogeneous coordinates of P. If we set
x = x1/x0, y = x2/x0, then we can identify P with the point Q ∈ A2

K
whose coordinates are

(x, y). Conversely, each point Q(x, y) ∈ A2
K

can be identified with the point P ∈ U0 whose
homogeneous coordinates are (1 : x : y). Hence, there is a 1-to-1 correspondence between
U0 and A2

K
. To prove the remaining part of the statement, we start considering curves. So, let

C ⊂ P2
K

be a curve different from H0, and let f (x0, x1, x2) ∈ K[x0, x1, x2] be a homogeneous
polynomial such that C = V ( f ). Let g(x, y) = f (1, x, y) ∈ K[x, y], and let D ⊂ A2

K
be the

affine curve it defines. Then, the previous correspondence maps the points in C ∩ U0 to points
in D, and conversely. So a curve in the projective plane is transformed in a curve in the affine
plane. Conversely, let D = V (g) be a curve in A2

K
, with g ∈ K[x, y]. Let d be the degree of g,

and let f (x0, x1, x2) = xd
0g(x1/x0, x2/x0). It is easy to check that f ∈ K[x0, x1, x2] is a degree

d homogeneous polynomial. Let C = V ( f ) be the corresponding curve in the projective plane.
Then, it is straightforward to prove that the points of D are mapped to points in C ∩U0. As the
algebraic sets are the union of finitely many curves or the intersection of curves, the proof is
complete, because it holds on curves. �

Notice that a consequence of the previous proof is that the complement of whatever line
in P2

K
is an affine plane. Conversely, the projective plane is the union of an affine plane and a

projective line. The points of the projective line are called ideal points of the affine plane and
are thought of as directions of the lines in the affine plane.

From now on, we deal with the geometry of algebraic sets in the projective plane P2
C

because we have the chains of inclusions

E2 = A2
R

⊂ A2
C

⊂ P2
C

and E2 = A2
R

⊂ P2
R

⊂ P2
C
,

and we underline the problems when restricting to smaller ambient spaces.

B.3. Intersection of curves and singular points

A line L in P2
C

is the vanishing locus of a linear homogeneous equation a0x0 +a1x1 +a2x2 = 0,

and so it has parametric equation xi = bis+cit, s, t ∈ C, i = 0, 1, 2. Given a curve C = V ( f ),
the intersection L ∩ C is given by solving the equation f (b0s + c0t, . . . , b2s + c2t) = F(s, t)
homogeneous of the same degree of f . Hence, we have proved

Proposition B.15. A line L intersects a degree d curve C at exactly d points, up to counting
each point with its multiplicity.

Proof. The fundamental theorem of algebra states that a degree d equation in one variable has
exactly d roots over C, up to count each root with its multiplicity. We can apply it to F(1, t),
after computing the largest power of s that divides F. �

Of course, when restricting to P2
R
, the complex roots do not give a contribution, and 

so a line meets a degree d curve at most d points, up to counting each one of them with 
multiplicity. When considering the intersection in A2

C
, the roots that correspond to ideal points 

give no contribution, and so again a line meets a degree d curve at most d points. When 
restricting to A2

R
, one has to take care of both problems. As an example, we consider the 

conic C = V (x1
2 − x0x2 ) ⊂ P2

C
, and the line L1 = V (x0 + x2 ). They meet at A1(i : 1 :  −i) 

and B1(−i : 1 :  i) where i2 = −1. So, C ∩ L1 is empty, when the intersection is considered 
in P2

R
. If we consider the line L2 = V (x0 − x1 ), the intersection of C and L2 consists of the 

points A2(0 : 0 : 1) and B2(1 : 1 : 1). Let A2
C be identified with U1 complement of the line 

H1 = V (x1 ). Then the conic C (the line L2, respectively) has equation xy − 1 = 0 (x = 1,



respectively). The intersection contains the point (1, 1), only. In fact, A2 is an ideal point for
the identification of the affine plane with U1.

The previous result can be generalized to the intersection of two curves of arbitrary degree.

Theorem B.16 (Bézout’s theorem). Let C,C′ be the projective plane curves of degree d and
d′, respectively. If C and C′ have a finite number of common points, then there are exactly dd′

intersection points, up to counting them with their multiplicity.

The proof of Bézout’s theorem can be found in [29, chapter 1, corollary 7.8], and goes
beyond the scope of this introduction.

Now, we can define a smooth point on a curve.

Definition B.17. Let C ⊂ P2
C

be a curve and let P ∈ C be a point. P is a smooth point of C if
there exists a line L containing P that intersects C at P with multiplicity 1. A curve C whose
points are all smooth is said to be smooth, singular otherwise.

The property is local, so we can reduce to an affine plane, by taking the complement of a
line that does not contain P. Moreover, we choose a reference frame in such an affine plane so
that P is the origin. Hence, C = V ( f ) for a suitable f ∈ K[x, y], with f (0, 0) = 0. The lines
through the origin have the parametric equation x = lt, y = mt, and the intersection between
C and one of such lines is described by f (lt, mt) = 0. By the McLaurin expansion, we have
0 = (l fx(0, 0) + m fy(0, 0))t+ higher degree terms. Hence, P is smooth if there exists l, m
such that l fx(0, 0) + m fy(0, 0) �= 0, or equivalently, the gradient ∇ f (0, 0) is not zero. We
have then proved

Proposition B.18. A point P ∈ C = V ( f ) is smooth for C if ∇ f (P) �= 0, where f is a
homogeneous polynomial that defines C.

Proposition B.18 allows us to prove that the singular locus Sing(C) of C = V ( f )
is algebraic and it holds Sing(C) = V ( f , fx0, fx1 , fx2 ). Thanks to the Euler formula for
homogeneous functions

dF(x0, x1, x2) = x0Fx0 (x0, x1, x2) + x1Fx1 (x0, x1, x2) + x2Fx2 (x0, x1, x2) (B.1)

where d is the degree of F, we have that Sing(C) = V ( fx0 , fx1 , fx2 ). In the affine plane, if 
C = V ( f ), we have Sing(C) = V ( f , fx, fy ).

Also if intuition suggests that the singular points on a curve are finitely many special 
points, there are examples of curves with a subcurve of singular points. For example, consider 
the curve C = V (x0x1

2 ) in the projective plane P2
R
. Then, Sing(C) = V (2x0x1, x1

2 ) = V (x1 ). 
Hence, C has the line V (x1 ) as its singular locus. The curve C is the union of the line V (x0 ) 
and of the conic V (x1

2 ). The conic, however, is a double line (twice the line V (x1 )), and so the 
singular locus of C is equal to the double line. This phenomenon can be easily generalized. 
Before giving the definitions on curves to handle it, we recall some properties of polynomials. 
We state them for polynomials in two variables but they can be extended without effort to 
homogeneous polynomials in three variables.

Definition B.19. A polynomial f ∈ K[x, y] is irreducible if it cannot be written as product of 
two non-constant polynomials.

Theorem B.20. Every polynomial f ∈ K[x, y] can be written as product of powers of 
irreducible polynomials, in a unique way, up to some non-zero constant.

Now, we translate the previous results in geometrical terms.

Definition B.21. A curve C is



(i) reduced and irreducible if C = V ( f ) with f irreducible;
(ii) irreducible and non-reduced if C = V ( f m) with f irreducible and m � 2;

(iii) reduced, non-irreducible if C = V ( f1 · · · fr) with fi irreducible for every i;
(iv) non-reduced and non-irreducible if C = V ( f m1

1 · · · f mr
r ) with fi irreducible and

m1 + · · · + mr � r + 1.

Going back to the study of the singular locus of a curve, we have the following result:

Theorem B.22. The singular points of a curve C are finitely many, or C is smooth if and only
if C is reduced. Moreover, if C is reduced and irreducible (reduced, respectively), there are at
most

(d−1
2

)
(
(d

2

)
, respectively) singular points on C, where d is the degree of C.

For example, a reduced and irreducible conic is smooth, while a reduced non-irreducible
conic has exactly one singular point (the point where the two lines, whose union is the conic,
meet). Furthermore, a reduced and irreducible cubic can have at most one singular point, a
reduced and irreducible quartic curve can have at most three singular points, and so on.

A notion, apparently non-related to the singular locus of a curve, is the rationality of a
curve.

Definition B.23. A curve C = V ( f ) ⊂ P2
C

is rational if there exist g0(s, t), g1(s, t), g2(s, t) ∈
C[s, t], homogeneous of degree equal to the one of f , and without common factors of positive
degree, such that f (g0, g1, g2) is identically zero.

A rational curve is then a curve whose points have coordinates that can be expressed via
the parameter functions gi(s, t), i = 0, 1, 2. It is possible to prove that a reduced irreducible
curve is rational if it has as many singular points as its degree allows. E.g., smooth conic, cubic
with one singular point, quartic with three singular points, quintic with six singular points, are
all examples of rational curves. On one hand, more than the number of singular points, the
rationality depends on the kind of singularities of the curve itself, on the other hand, a deeper
study of the singular points of a curve goes further than the scope of this introduction, and so
we do not go on along these lines.

B.4. Dual projective plane

As explained earlier, a line in the projective plane is the vanishing locus of a non-zero degree-1
homogeneous polynomial a0x0 +a1x1 +a2x2 = 0. The coefficients a0, a1, a2 are defined up to
a scalar. In fact, for each k �= 0, (ka0)x0 + (ka1)x1 + (ka2)x2 = 0 defines the same line as the
previous equation. Hence, the coefficients can be interpreted as points of a projective plane.

Definition B.24. Given the projective plane P(V ), the dual plane is defined as P(V ∗), where
V ∗ is the dual vector space of V. Once a reference frame R = (B) is given in P(V ), the dual
basis B∗ defines the dual reference frame R∗ in P(V ∗). With this in mind, we set P̌2

K
= P(V ∗),

and the points of P̌2
K

are the coefficients of the lines of P2
K
, or the lines of P2

K
, for short.

As (V ∗)∗ ∼= V, the dual of the dual projective plane in the initial one. We can now define
the dual curve.

Definition B.25. Let C ⊂ P2
K

be a reduced and irreducible curve. The dual curve Č ⊂ P̌2
K

is
the unique algebraic curve that contains the tangent lines at the points of C.

Assume that C is smooth of degree d. Then, Č has degree d(d−1). We can assume K = C
because the degree does not depend on the ground field. A line in P̌2

C
is a point in P2

C
. Hence,

we have to compute how many tangent lines to C pass through the same point A(xA
0 : xA

1 : xa
2)



in P2
C
. A tangent line contains A if, and only if, xA

0 fx0 + xA
1 fx1 + xA

2 fx2 = 0. This last curve has
degree d − 1 and is called the polar curve to C with respect to the pole A. The intersection
points of C and the polar curve are d(d − 1) by Bézout theorem, and so the degree of Č is
d(d − 1), as claimed.

Proposition B.26. Let C be a smooth curve. Then, C and Č have the same degree if and only
if C is a conic.

Proof. The solutions of the equation d(d − 1) = d are d = 0 and d = 2, and d = 0 cannot be
accepted. �

B.5. Hilbert function and the geometry of a set of points

Definition B.27. Let X ⊂ P2
K

be an algebraic set. We set

IX = { f ∈ K[x0, x1, x2]| f is homogeneous and f (P) = 0 for every P ∈ X}.
Moreover, we call

S(X ) = K[x0, x1, x2]

IX
the homogeneous coordinate ring of X. The function

HX : t ∈ Z → dimK

(
K[x0, x1, x2]

IX

)
t

∈ Z

is called the Hilbert function of X.

The homogeneous elements of IX can be interpreted as the curves that vanish at all the
points of X. Hence, the homogeneous elements of the quotient ring S(X ) are the curves that
do not vanish at all the points of X. Finally, we fix the degree t, S(X )t as a K-vector space,
whose dimension is equal to dimK (K[x0, x1, x2])t − dimK (IX )t .

To illustrate the importance of the Hilbert function of an algebraic subset, we connect it to
some known results. At first, we recall without proof a general result on the Hilbert function
of a finite set of points.

Theorem B.28. Let X be a finite subset of points, eventually with multiplicities, and assume
that the sum of the multiplicities of all the points of X is d. Then,

(i) HX (t − 1) � HX (t) for each t � 1;
(ii) if HX (t) = HX (t + 1) for a suitable t, then HX (t) = HX (t + j) for every j � 0;

(iii) HX (t) = d for t � d − 1.

Now, we can state the announced results.

Corollary B.29. Given five distinct points, there exists at least a conic that contains them.
Moreover, it is unique if, and only if, no four points of the given five are collinear.

Proof. Let X be a set of five distinct points. From theorem B.28, it follows that HX (t) � 5 for
every t, and so, in particular, HX (2) � 5. Then, dimC(IX )2 = dimC(C[x0, x1, x2])2 −HX (2) �
1, and the first claim is proved. Assume now that there are two different conics C1,C2 through
X. Then, by the Bézout theorem, the intersection C1 ∩ C2 contains infinitely many points, and
so we have C1 = L ∪ L1,C2 = L ∪ L2, with L, L1, L2 lines, and eventually L = L1, or L = L2.

So, at most one point in X is L1 ∩ L2, and then at least four belong to L. Conversely, if four
points in X are contained in a line L, and L1 ∩ L2 is the fifth point, then L ∪ L1 and L ∪ L2 are
two distinct conics containing X. �

Similarly, it is possible to prove also results on the generators of an ideal.



Theorem B.30. Let X be a set of 6 distinct points lying on exactly one conic C = V ( f ). Then,
IX = 〈 f , g〉 where V (g) is a cubic curve, and f , g without common factors.

Let X be a set of five distinct points, lying on exactly one conic C = V ( f ). Then,
IX = 〈 f , g1, g2〉 where g1, g2 are homogeneous polynomials of degree 3, such that g1, g2 are
linearly independent in S(C).

It is possible to prove that IX is ideal in K[x0, x1, x2], and it is easy to prove that, if X and
Y are algebraic sets, then IX∪Y = IX ∩ IY . Moreover, IX + IY ⊆ IX∩Y , and it is possible to prove
that F ∈ IX + IY if, and only if, F ∈ IX∩Y under the assumption that the degree of F is large
enough. The coordinate rings of X,Y, X ∪Y and X ∩Y are related to each other from the short
exact sequence of vector spaces

0 → S(X ∪ Y )t
α−→ S(X )t ⊕ S(Y )t

β−→
(

K[x0, x1, x2]

IX + IY

)
t

→ 0 (B.2)

where the first linear map α is defined as α(F ) = (F, F ), and the second linear map β is
defined as β(F, G) = F − G. A direct consequence of the exactness of (B.2) is that

dimK

(
K[x0, x1, x2]

IX + IY

)
t

= HX (t) + HY (t) − HX∪Y (t).

B.6. Topology of real algebraic curves

The study of the topological properties of algebraic curves in the real projective plane in full 
generality is outside the scope of this appendix, so we consider only the cases of smooth conic 
and cubic curves. In particular we focus on the problem of connected components of a curve 
with respect to the Euclidean topology. The main result is by Harnack, that found a bound on 
the number of such connected components.

Theorem B.31 (Harnack’s theorem). Let C ⊂ P2
R be a smooth algebraic curve. If C is a conic, 

then either C is empty, or C is a closed connected curve. If C is a cubic curve, then either C is 
connected, or C is the disjoint union of two connected components.

Let H be a line in P2
R
, and let A2

R be the complement of H. Moreover, let C ⊂ P2
R be a 

smooth conic with a real point, so that C is a connected curve. If H meets C at two non-real 
points (H is tangent to C or H ∩ C consists of two real distinct points, respectively), then C is 
an ellipse (a parabola or an hyperbola, respectively).

For cubic curves, the picture is as follows. We call it oval each connected component of 
C. Then, C has either one oval or two. In both cases, one of the two ovals, the only one if C is 
connected, meets all the lines of P2

R at one or three points, counted with their multiplicities, 
and so it is called the odd oval Co. The second oval, if it exists, meets all the lines at an 
even number of points, eventually the intersection with a line is empty, and so it is called the 
even oval Ce. The oval Co, when we restrict to A2

R
, is either connected and unbounded (if 

the ideal line meets Co at one point), or the union of three unbounded arcs (if the ideal line 
meets Co at three distinct points). The even oval Ce does not contain real inflectional points, 
i.e. smooth points P ∈ C with the property that the tangent line at P to C meets C at P with 
multiplicity 3. So, it behaves like conics: if the ideal line meets Ce at two non-real points, then 
Ce is topologically like an ellipse, if the ideal line meets Ce at two real distinct points, then 
Ce is topologically like a hyperbola, and finally, if the ideal line is tangential to Ce, then Ce is 
topologically like a parabola (we remind ourselves that two curves behave topologically the 
same if the first one can be deformed with continuity to the second one).



Appendix C. An algorithm for the bifurcation curve

This appendix lists the source code in singular language [23] for computing the Cartesian
equation of the bifurcation curve Ẽ (see definition 6.18 and theorem 6.19). It requires
specification of the location of the sensors and assignment of the components of the
displacement vectors d10 and d20.

ring r=0,(x,y,z,m1,m2),dp;
LIB’’linalg.lib’’;
matrix d1[2][1];
matrix d2[2][1];
poly p0=(m2*m2*transpose(d1)*d1-2*m1*m2*transpose(d1)*d2+m1*m1*transpose(d2)
*d2)[1,1];

poly q1=(m1*transpose(d2)*d1-m2*transpose(d1)*d1)[1,1];
poly p1=q1*q1;
poly q2=(m1*transpose(d2)*d2-m2*transpose(d1)*d2)[1,1];
poly p2=q2*q2;
poly pv=det(concat(d1,d2));
poly p3=(p1*p1*transpose(d2)*d2-2*p1*p2*transpose(d1)*d2+p2*p2*transpose(d1)
*d1)[1,1];

poly den=4*pv*p0*q1*q2*(q1-q2);
poly numx=2*q1*q2*(q1-q2)*(p1*d2[2,1]-p2*d1[2,1])+p3*(m2*d1[2,1]-m1*d2[2,1]);
poly numy=2*q1*q2*(q1-q2)*(-p1*d2[1,1]+p2*d1[1,1])-p3*(m2*d1[1,1]-m1*d2[1,1]);
ideal ii=x-numx, y-numy, z-den;
ideal jj=elim(ii,m1*m2);
jj=reduce(jj,std(z-1));
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