3,034 research outputs found

    3D Localisation of Target using Elevation Angle Algorithm with the use of Ground Radars

    Get PDF
    A new novel method based on elevation angle algorithm (EAA) is proposed in this paper, to obtain 3D position of target using range and azimuth measurements of two ground 2D radars. The EAA estimates optimal target elevation angle wrt contributing radar by solving a non-linear optimisation problem using Levenberg-Marquardt method in geo-centric frame such as earth-centred-earth-fixed. The target position in geodetic frame (WGS84) is then obtained using slant range, azimuth and estimated elevation angle. The proposed method is evaluated using simulated but realistic radar data and accuracy of estimated position is found to be comparable with true position (error within acceptable limit). The method is also evaluated with real data from actual ground 2D radars and estimated target position is found to be comparable with reference navigation data (GPS) on-board of target. For each radar, corresponding Extended Kalman filter (EKF) is used to handle noisy, asynchronous measurements and to provide estimated range and azimuth at common reference time for altitude estimation using proposed EAA method. In case of real data, the estimated altitude is found to be comparable GPS altitude with error less than 5 % of true altitude. From the study, it is found that EAA is suitable to estimate target position using measurements from only two contributing asynchronous 2D radars in real-time as compared to some other techniques such triangulation and Trilateration where at-least three radars are required to get the position of target. This method can be useful to utilise network of vintage long range 2D radars to determine target position and to fill the gap wherever/whenever target is out of detection range of 3D radars. In addition, EAA method is compared with commonly used methodology such range only localisation and results are presented

    People tracking by cooperative fusion of RADAR and camera sensors

    Get PDF
    Accurate 3D tracking of objects from monocular camera poses challenges due to the loss of depth during projection. Although ranging by RADAR has proven effective in highway environments, people tracking remains beyond the capability of single sensor systems. In this paper, we propose a cooperative RADAR-camera fusion method for people tracking on the ground plane. Using average person height, joint detection likelihood is calculated by back-projecting detections from the camera onto the RADAR Range-Azimuth data. Peaks in the joint likelihood, representing candidate targets, are fed into a Particle Filter tracker. Depending on the association outcome, particles are updated using the associated detections (Tracking by Detection), or by sampling the raw likelihood itself (Tracking Before Detection). Utilizing the raw likelihood data has the advantage that lost targets are continuously tracked even if the camera or RADAR signal is below the detection threshold. We show that in single target, uncluttered environments, the proposed method entirely outperforms camera-only tracking. Experiments in a real-world urban environment also confirm that the cooperative fusion tracker produces significantly better estimates, even in difficult and ambiguous situations

    The Constant Information Radar

    Get PDF
    abstract: The constant information radar, or CIR, is a tracking radar that modulates target revisit time by maintaining a fixed mutual information measure. For highly dynamic targets that deviate significantly from the path predicted by the tracking motion model, the CIR adjusts by illuminating the target more frequently than it would for well-modeled targets. If SNR is low, the radar delays revisit to the target until the state entropy overcomes noise uncertainty. As a result, we show that the information measure is highly dependent on target entropy and target measurement covariance. A constant information measure maintains a fixed spectral efficiency to support the RF convergence of radar and communications. The result is a radar implementing a novel target scheduling algorithm based on information instead of heuristic or ad hoc methods. The CIR mathematically ensures that spectral use is justified

    Source localization and denoising: a perspective from the TDOA space

    Full text link
    In this manuscript, we formulate the problem of denoising Time Differences of Arrival (TDOAs) in the TDOA space, i.e. the Euclidean space spanned by TDOA measurements. The method consists of pre-processing the TDOAs with the purpose of reducing the measurement noise. The complete set of TDOAs (i.e., TDOAs computed at all microphone pairs) is known to form a redundant set, which lies on a linear subspace in the TDOA space. Noise, however, prevents TDOAs from lying exactly on this subspace. We therefore show that TDOA denoising can be seen as a projection operation that suppresses the component of the noise that is orthogonal to that linear subspace. We then generalize the projection operator also to the cases where the set of TDOAs is incomplete. We analytically show that this operator improves the localization accuracy, and we further confirm that via simulation.Comment: 25 pages, 9 figure

    Decentralized kalman filter approach for multi-sensor multi-target tracking problems

    Get PDF
    06.03.2018 tarihli ve 30352 sayılı Resmi Gazetede yayımlanan “Yükseköğretim Kanunu İle Bazı Kanun Ve Kanun Hükmünde Kararnamelerde Değişiklik Yapılması Hakkında Kanun” ile 18.06.2018 tarihli “Lisansüstü Tezlerin Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge” gereğince tam metin erişime açılmıştır.Doğru pozisyon ve hedeflerin sayısı hava trafik kontrol ve füze savunması için çok önemli bilgilerdir. Bu çalışma, çoklu sensorlü çoklu hedef takibi sistemlerindeki veri füzyonu ve durum tahmini problemlerı için dağıtık Kalman Filtreleme Algoritması sunmaktadır. Problem, radar olarak her biri kendi veri işleme birimine sahip aktif sensörlerin hedef alanını gözlemlemesini esas almaktadır. Bu durumda her bir sistemin iz sayısı olacaktır. Çalışmada önerilen dağıtık Kalman Filtresi, başta füze sistemleri olmak üzere savunma sistemlerinde hareketli hedeflerin farklı sensörlerle izlerini kestirmek ve farklı hedefleri ayrıd etmek için kullanmaktır. Önerilen teknik, çoklu sensör sisteminden gelen verileri işleyen iki aşamalı veri işleme yaklaşımını içermektedir. İlk aşamada, her yerel işlemci kendi verilerini ve standart Kalman filtresi ise en iyi kestirimi yapmak için kullanılmaktadır. Sonraki aşamada bu kestirimler en iyi küresel bir kestirimi yapmak amacıyla dağıtık işlem modunda elde edilir. Bu çalışmada iki radar sistemi iki yerel Kalman filtresi ile uçakların pozisyonunu kestirmek amacıyla kullanılmakta, ardından bu kestirimler merkez işlemciye iletilmektedir. Merkez işlemci doğrulama maksadıyla bu bilgileri birleştirip küresel bir kestirim üretmektedir. Önerilen model uygulama olarak dört senaryo üzerinde test edildi. İlk senaryoda, tek bir hedef iki sensor tarafından izlenirken, ikincisinde, iki hedeften oluşan uzay herhangi bir sensor tarafından izlenmekte, üçüncüsünde, iki hedefin de herhangi bir sensor tarafından aynı anda izlenmesi, son olarak ise iki sensörden her birinin toplam üç hedeften herhangi ikisini izlediği senaryo göz önüne alınmıştır. Önerilen tekniğin performansı hata kovaryans matrisi kullanılarak değerlendirildi ve yüksek doğruluk ve optimal kestirim elde edildi. Uygulama sonuçları önerilen tekniğin yeteneğinin, yerel sensörlerce belirlenen ortak hedeflerin merkezi sistem tarafından ayırd edilebildiğini göstermiştir.For air traffic control and missile defense, the accurate position and the numbers of targets are the most important information needed. This thesis presents a decentralized kalman filtering algorithm (DKF) for data fusion and state estimation problems in multi-sensor multi-target tracking system. The problem arises when several sensors carry out surveillance over a certain area and each sensor has its own data processing system. In this situation, each system has a number of tracks. The DKF is used to estimate and separate the tracks from different sensors represent the targets, when the ability to track targets is essential in missile defense. The proposed technique is a two stage data processing technique which processes data from multi sensor system. In the first stage, each local processor uses its own data to make the best local estimation using standard kalman filter and then these estimations are then obtained in parallel processing mode to make best global estimation. In this work, two radar systems are used as sensors with two local Kalman filters to estimate the position of an aircraft and then they transmit these estimations to a central processor, which combines this information to produce a global estimation. The proposed model is tested on four scenarios, firstly, when there is one target and the two sensors are tracking the same target, secondly, when there are two targets and any sensor is tracking one of them, thirdly, when there are two targets and any sensor is tracking both of them and finally, when two sensors are used to track three targets and any sensor tracks any two of them. The performance of the proposed technique is evaluated using measures such as the error covariance matrix and it gave high accuracy and optimal estimation. The experimental results showed that the proposed method has the ability to separate the joint targets detected by the local sensors
    corecore