586 research outputs found

    Sum Rate and Fairness Analysis for the MU-MIMO Downlink under PSK Signalling: Interference Suppression vs Exploitation

    Get PDF
    In this paper, we analyze the sum rate performance of multi-user multiple-input multiple-output (MU-MIMO) systems, with a finite constellation phase-shift keying (PSK) input alphabet. We analytically calculate and compare the achievable sum rate in three downlink transmission scenarios: 1) without precoding, 2) with zero forcing (ZF) precoding 3) with closed form constructive interference (CI) precoding technique. In light of this, new analytical expressions for the average sum rate are derived in the three cases, and Monte Carlo simulations are provided throughout to validate the analysis. Furthermore, based on the derived expressions, a power allocation scheme that can ensure fairness among the users is also proposed. The results in this work demonstrate that, the CI strictly outperforms the other two schemes, and the performance gap between the considered schemes increases with increase in the MIMO size. In addition, the CI provides higher fairness and the power allocation algorithm proposed in this paper can achieve maximum fairness index

    Power-optimised multi-radio network under varying throughput constraints for rural broadband access

    Get PDF
    The use of complementary radio access technologies within a network allows the advantages of each technology to be combined to overcome individual limitations. In this paper we show how 5~GHz and ``TV White Space'' overlay networks can be combined to provide fixed wireless access coverage within a rural environment. By creating a model of the whole network we derive the optimum assignment of stations between the two overlay networks to maximise the capacity of individual stations given a desired individual station data rate. Through simulation we show how the power consumption of a base station can be minimised by dynamically adjusting station assignments based on network data rate requirements changing over the course of a day

    On the DMT of TDD-SIMO Systems with Channel-Dependent Reverse Channel Training

    Full text link
    This paper investigates the Diversity-Multiplexing gain Trade-off (DMT) of a training based reciprocal Single Input Multiple Output (SIMO) system, with (i) perfect Channel State Information (CSI) at the Receiver (CSIR) and noisy CSI at the Transmitter (CSIT), and (ii) noisy CSIR and noisy CSIT. In both the cases, the CSIT is acquired through Reverse Channel Training (RCT), i.e., by sending a training sequence from the receiver to the transmitter. A channel-dependent fixed-power training scheme is proposed for acquiring CSIT, along with a forward-link data transmit power control scheme. With perfect CSIR, the proposed scheme is shown to achieve a diversity order that is quadratically increasing with the number of receive antennas. This is in contrast with conventional orthogonal RCT schemes, where the diversity order is known to saturate as the number of receive antennas is increased, for a given channel coherence time. Moreover, the proposed scheme can achieve a larger DMT compared to the orthogonal training scheme. With noisy CSIR and noisy CSIT, a three-way training scheme is proposed and its DMT performance is analyzed. It is shown that nearly the same diversity order is achievable as in the perfect CSIR case. The time-overhead in the training schemes is explicitly accounted for in this work, and the results show that the proposed channel-dependent RCT and data power control schemes offer a significant improvement in terms of the DMT, compared to channel-agnostic orthogonal RCT schemes. The outage performance of the proposed scheme is illustrated through Monte-Carlo simulations.Comment: Accepted for publication in IEEE Transactions on Communication

    Multi-Antenna Cooperative Wireless Systems: A Diversity-Multiplexing Tradeoff Perspective

    Full text link
    We consider a general multiple antenna network with multiple sources, multiple destinations and multiple relays in terms of the diversity-multiplexing tradeoff (DMT). We examine several subcases of this most general problem taking into account the processing capability of the relays (half-duplex or full-duplex), and the network geometry (clustered or non-clustered). We first study the multiple antenna relay channel with a full-duplex relay to understand the effect of increased degrees of freedom in the direct link. We find DMT upper bounds and investigate the achievable performance of decode-and-forward (DF), and compress-and-forward (CF) protocols. Our results suggest that while DF is DMT optimal when all terminals have one antenna each, it may not maintain its good performance when the degrees of freedom in the direct link is increased, whereas CF continues to perform optimally. We also study the multiple antenna relay channel with a half-duplex relay. We show that the half-duplex DMT behavior can significantly be different from the full-duplex case. We find that CF is DMT optimal for half-duplex relaying as well, and is the first protocol known to achieve the half-duplex relay DMT. We next study the multiple-access relay channel (MARC) DMT. Finally, we investigate a system with a single source-destination pair and multiple relays, each node with a single antenna, and show that even under the idealistic assumption of full-duplex relays and a clustered network, this virtual multi-input multi-output (MIMO) system can never fully mimic a real MIMO DMT. For cooperative systems with multiple sources and multiple destinations the same limitation remains to be in effect.Comment: version 1: 58 pages, 15 figures, Submitted to IEEE Transactions on Information Theory, version 2: Final version, to appear IEEE IT, title changed, extra figures adde

    A cost sensitiviy analysis for carrier grade wireless mesh networks with tabu optimization

    Get PDF
    Proceedings of: CARMEN 2010: 2nd International Workshop on CARrier-grade wireless MEsh Networks in conjunction with IEEE INFOCOM 2010: IEEE Conference on Computer Communications Workshops: 15-19 March 2010, San Diego, CaliforniaWe present an insight on the sensitivity of total cost (CAPEX+OPEX) towards various key input parameters for CARrier Grade Wireless MEsh Networks (CARMEN) deployment These input parameters span across three main categories namely the network design options, environment conditions and cost. Various boundary conditions are imposed to allow network operator to understand the impacts of parameters'changes with the highest level of uncertainty. A simple Tabu optimization method is adopted to optimize the node density against target data rate and range.European Community's Seventh Framework ProgramPublicad
    corecore