In this paper, we analyze the sum rate performance of multi-user
multiple-input multiple-output (MU-MIMO) systems, with a finite constellation
phase-shift keying (PSK) input alphabet. We analytically calculate and compare
the achievable sum rate in three downlink transmission scenarios: 1) without
precoding, 2) with zero forcing (ZF) precoding 3) with closed form constructive
interference (CI) precoding technique. In light of this, new analytical
expressions for the average sum rate are derived in the three cases, and Monte
Carlo simulations are provided throughout to validate the analysis.
Furthermore, based on the derived expressions, a power allocation scheme that
can ensure fairness among the users is also proposed. The results in this work
demonstrate that, the CI strictly outperforms the other two schemes, and the
performance gap between the considered schemes increases with increase in the
MIMO size. In addition, the CI provides higher fairness and the power
allocation algorithm proposed in this paper can achieve maximum fairness index