4 research outputs found

    Tangles and Single Linkage Hierarchical Clustering

    Get PDF
    We establish a connection between tangles, a concept from structural graph theory that plays a central role in Robertson and Seymour\u27s graph minor project, and hierarchical clustering. Tangles cannot only be defined for graphs, but in fact for arbitrary connectivity functions, which are functions defined on the subsets of some finite universe, which in typical clustering applications consists of points in some metric space. Connectivity functions are usually required to be submodular. It is our first contribution to show that the central duality theorem connecting tangles with hierarchical decompositions (so-called branch decompositions) also holds if submodularity is replaced by a different property that we call maximum-submodular. We then define a natural, though somewhat unusual connectivity function on finite data sets in an arbitrary metric space and prove that its tangles are in one-to-one correspondence with the clusters obtained by applying the well-known single linkage clustering algorithms to the same data set. The idea of viewing tangles as clusters has first been proposed by Diestel and Whittle [Reinhard Diestel et al., 2019] as an approach to image segmentation. To the best of our knowledge, our result is the first that establishes a precise technical connection between tangles and clusters

    The Weisfeiler-Leman Dimension of Planar Graphs is at most 3

    Full text link
    We prove that the Weisfeiler-Leman (WL) dimension of the class of all finite planar graphs is at most 3. In particular, every finite planar graph is definable in first-order logic with counting using at most 4 variables. The previously best known upper bounds for the dimension and number of variables were 14 and 15, respectively. First we show that, for dimension 3 and higher, the WL-algorithm correctly tests isomorphism of graphs in a minor-closed class whenever it determines the orbits of the automorphism group of any arc-colored 3-connected graph belonging to this class. Then we prove that, apart from several exceptional graphs (which have WL-dimension at most 2), the individualization of two correctly chosen vertices of a colored 3-connected planar graph followed by the 1-dimensional WL-algorithm produces the discrete vertex partition. This implies that the 3-dimensional WL-algorithm determines the orbits of a colored 3-connected planar graph. As a byproduct of the proof, we get a classification of the 3-connected planar graphs with fixing number 3.Comment: 34 pages, 3 figures, extended version of LICS 2017 pape

    Approximating branchwidth on parametric extensions of planarity

    Full text link
    The \textsl{branchwidth} of a graph has been introduced by Roberson and Seymour as a measure of the tree-decomposability of a graph, alternative to treewidth. Branchwidth is polynomially computable on planar graphs by the celebrated ``Ratcatcher''-algorithm of Seymour and Thomas. We investigate an extension of this algorithm to minor-closed graph classes, further than planar graphs as follows: Let H0H_{0} be a graph embeddedable in the projective plane and H1H_{1} be a graph embeddedable in the torus. We prove that every {H0,H1}\{H_{0},H_{1}\}-minor free graph GG contains a subgraph GG' where the difference between the branchwidth of GG and the branchwidth of GG' is bounded by some constant, depending only on H0H_{0} and H1H_{1}. Moreover, the graph GG' admits a tree decomposition where all torsos are planar. This decomposition can be used for deriving an EPTAS for branchwidth: For {H0,H1}\{H_{0},H_{1}\}-minor free graphs, there is a function f ⁣:NNf\colon\mathbb{N}\to\mathbb{N} and a (1+ϵ)(1+\epsilon)-approximation algorithm for branchwidth, running in time O(n3+f(1ϵ)n),\mathcal{O}(n^3+f(\frac{1}{\epsilon})\cdot n), for every ϵ>0\epsilon>0
    corecore