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Abstract
We establish a connection between tangles, a concept from structural graph theory that plays a
central role in Robertson and Seymour’s graph minor project, and hierarchical clustering. Tangles
cannot only be defined for graphs, but in fact for arbitrary connectivity functions, which are functions
defined on the subsets of some finite universe, which in typical clustering applications consists of
points in some metric space.

Connectivity functions are usually required to be submodular. It is our first contribution to
show that the central duality theorem connecting tangles with hierarchical decompositions (so-called
branch decompositions) also holds if submodularity is replaced by a different property that we call
maximum-submodular.

We then define a natural, though somewhat unusual connectivity function on finite data sets
in an arbitrary metric space and prove that its tangles are in one-to-one correspondence with the
clusters obtained by applying the well-known single linkage clustering algorithms to the same data
set.

The idea of viewing tangles as clusters has first been proposed by Diestel and Whittle [5] as an
approach to image segmentation. To the best of our knowledge, our result is the first that establishes
a precise technical connection between tangles and clusters.
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1 Introduction

Connectivity in graphs and connectivity systems is a widely studied topic in theoretical
computer science, e.g. [11, 8, 6, 7, 5]. On the other hand similarity, especially clustering,
is an important and well studied topic in Data Science, e.g. [2, 4, 3, 10, 12]. We study the
connection between both concepts by interpreting similarity as connectivity, thus two points
are highly connected if their data is very similar and two sets are highly connected if they
contain similar data points. Both communities will benefit from such a connection, as it
opens up a basis for a wide range of new results. For example connectivity systems provide
us with witnesses for the absence of highly connected regions, which is not yet established for
clusters, as well as tree like representations of all those highly connected regions. Additionally
there is large variety of efficient algorithms to compute or approximate different kind of
clusters, which can possibly be used to find algorithms for computing highly connected
regions in connectivity systems.

The concept of connectivity systems is based on the notion of connectivity in graphs.
Such systems consist of a universe U of usually finitely many elements and some set function
on subsets of U describing the connectivity between a set and its complement. These so called
connectivity functions are symmetric and submodular. In this context two complementary
questions are of interest [9]:
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38:2 Tangles and Single Linkage Hierarchical Clustering

1. What are the highly connected regions of the universe?
2. How can we decompose the universe along low order separations?

An answer to the first question can be given by tangles, which describe highly connected
regions in a non-rigorous way. For every low order separation the tangle describes on which
side of the separation the large part of the region can be found. Nevertheless, a separation
may cut off small parts of the region. In this way, for any single point it is not clearly
defined whether it is part of the region or not. On the other hand, the orientation has to be
consistent, meaning that all orientations have to point towards the same region.

The second question is addressed by branch decompositions. They contain a ternary
tree and a mapping of the elements to the leafs of the tree. Then, the edges of the tree
represent separations of the universe. The width of such a decomposition is the largest value
of any separation induced by the tree. Both concepts have been introduced on graphs by
Robertson and Seymour [11]. An overview on both branch decompositions and tangles for
integer-valued functions, as well as their connection can be found in a survey of Grohe [9],
which can be translated to real-valued functions. Branch decompositions and tangles address
contrary questions, but they are dual. There is a tangle of a certain value if and only if
there is no branch decomposition of smaller value. This duality result has first been shown
on graphs in [11]. There have been other set functions, that are not submodular, for which
duality has been shown. For example Adler et al. [1] have shown duality up to a constant
factor for so called hypertangle number and hyperbranch width in hypergraphs. Diestel and
Oum [6] developed a general duality theorem in combinatorial structures.

Besides tangles, there is another approach to identify highly similar (connected) regions,
called clustering (e.g. [2, 4, 3, 10, 12]). Clustering is the umbrella term for different techniques
to define sets of data points that are very similar to each other and not so similar to the data
points contained in other sets. Thus, a question arises: How do clustering and tangles relate?
A first approach towards this question was done by Diestel and Whittle [5], where they
analyzed tangles in digital images as a way to describe the meaningful parts of the image.
We consider hierarchical clustering algorithms as introduced by Carlson and Mémoli [2]. The
basis of such an algorithm is a function that describes the distance between two sets. Single
linkage clustering for example considers the distance of two sets to be the smallest distance
between any element from one set to any element from the other set. The hierarchical
clustering algorithm then merges the sets with the smallest distance, assigning the resulting
partition said value. We allow more than one merge at once, if the distances are equal. The
resulting sequence of partitions is represented by a so called dendogram.

1.1 Results
To find a correspondence between tangles and clustering one of the main goals is to find
connectivity functions, or functions with similar properties, that represent the different
clustering methods. Our main result is, that we are able to specify a function that is
correspondent to hierarchical clustering using single linkage. For an arbitrary metric d: U ×
U → R, the set function corresponding to single linkage is the minimum distance function
δd : 2U → R, defined by

δd(X) = max
x∈X,y /∈X

exp(−d(x, y)),

for all X ∈ 2U \ {∅, U} and δd(∅) = δd(U) = 0. An introduction of this function is given in
Section 3.
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We show that this function is not a classical connectivity function, since it is not
submodular. Therefore we define a different property, that we call maximum-submodularity.
Our first theorem proves duality between branch decompositions and tangles of functions
with this property.

I Theorem 1. Let U be a finite set and let φ be a maximum-submodular connectivity function.
The maximum order of a tangle of φ equals the minimum order of a branch decomposition of
φ. The existence of one is witness to the non-existence of the other.

A formal version of this theorem and its proof are shown in Section 4. This duality is a key
result in the theory of tangles of connectivity systems and suggests that the chosen property
on the functions results in a similarly deep theory. It allows us to use maximum-submodular
connectivity functions to establish a connection between tangles and clustering.

Our second main result says that the tangles of the minimum distance function are
in one-to-one correspondence with the resulting dendogram of single linkage hierarchical
clustering. The technical notions appearing in the statement of the theorem will be explained
later in this paper.

I Theorem 2. Let (U,d) be a metric space.
1. For every r ∈ R and every cluster B of the dendogram resulting from single linkage with
|B| > 1,

T := {X ⊆ U | δd(X) < exp(−r), B ⊆ X}

is a δd-tangle of U of order exp(−r).
2. For every δd-tangle T of U of order k we can identify a cluster B of the dendogram

resulting from single linkage with |B| > 1 such that

T = {X ⊆ U | δd(X) < k, B ⊆ X}.

For every non-singular set contained in a partition of the dendogram we find a distinct
δd-tangle and vice versa. This is to the best of our knowledge the first precise technical
connection between tangles and clusters.

2 Preliminaries and Definitions

In our definitions we follow [9]. Our goal is to describe connectivity within some data set
U . Therefore we define set functions κ, that aim to describe how strong the connection is
between a set and its complement. We say κ is normalized if κ(∅) = 0, κ is symmetric if
κ(X) = κ(X), for all X ⊆ U and κ is submodular if κ(X) + κ(Y ) ≥ κ(X ∩ Y ) + κ(X ∪ Y ),
for all X,Y ⊆ U . A set function that is normalized, symmetric and submodular is called
submodular connectivity function.

I Example 3 (see [9]). Let G = (V,E) be a graph with edge weights wE : E → R. The
weighted edge-connectivity function ν : 2V → R, defined as

ν(X) :=
∑

u∈X,v∈V \X,(u,v)∈E

wE(u, v),

is a submodular connectivity function.
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38:4 Tangles and Single Linkage Hierarchical Clustering

We introduce a different type of function, that also describes connectivity. To show
that this type has similar properties, we first take a look at basic concepts from the theory
of connectivity systems. Most of these concepts have only been studied for integer-valued
functions, but for our needs all properties are translatable to real-valued functions. We start
with a formal definition of tangles, which are a way to describe highly connected regions.

I Definition 4. Let κ be a symmetric set function on the universe U . A κ-tangle of order
ord(T ) = k ≥ 0 is a set T ⊆ 2U such that:
T.0 κ(X) < k for all X ∈ T ,
T.1 for all X ⊆ U with κ(X) < k, either X ∈ T or X ∈ T holds,
T.2 X1 ∩X2 ∩X3 6= ∅ for all X1, X2, X3 ∈ T and
T.3 {x} /∈ T for all x ∈ U .

We define the tangle number tn(κ) of a symmetric set function κ to be the largest possible
order for which we can still define a κ-tangle.

We use the following well-known lemma, which states that tangles are in a way closed
under intersection and supersets.

I Lemma 5 (see [9]). Let T be a κ-tangle of order k. Then it holds that
1. for all X ∈ T and all Y ⊇ X, if κ(Y ) < k then Y ∈ T and
2. for all X,Y ∈ T , if κ(X ∩ Y ) < k then X ∩ Y ∈ T .

A different way to describe connectivity in a universe is given by branch decompositions.
Here we do not look for highly connected regions, but ask ourselves how we can separate the
universe into its single elements, using only separations of small value.

I Definition 6. Let U be a finite set.
A pre-decomposition of U is a pair (T, γ) consisting of a ternary (undirected) tree T and
a mapping γ : −→E (T )→ 2U , from the directed edges of T to subsets of U , such that
γ(t, u) = γ(u, t), for all (t, u) ∈ −→E (T ), and
γ(s, u1) ∪ γ(s, u2) ∪ γ(s, u3) = U , for all internal nodes s ∈ V (T ) with N(s) =
{u1, u2, u3}.

For leaves ` ∈ L(T ) with neighbor N(`) = {u}, we write γ(`) instead of γ(u, `). We call
the γ(`) atoms and define At(T, γ) := {γ(`) | ` ∈ L(T )}.
A pre-decomposition is complete if |γ(`)| = 1, for all leaves ` ∈ L(T ).
A pre-decomposition is exact at an internal node t ∈ V (T ) with N(t) = {u1, u2, u3} if all
γ(t, ui) are mutually disjoint.
A decomposition is a pre-decomposition that is exact at all internal nodes.
A branch decomposition is a complete decomposition.
Let κ be a set function on U . The width of a pre-decomposition (T, γ) is

wd(T, γ) := max{κ(γ(t, u)) | (t, u) ∈ −→E (T )}.

We define the branch width bw(κ) of a symmetric set function κ to be the smallest possible
width wd(T, γ) of any branch decomposition (T, γ) on U . For submodular connectivity
functions duality between branch decompositions and tangles has been proven. The first
to find this duality in graphs were Robertson and Seymour [11]. Duality between branch
decompositions and tangles states that a branch decomposition of a certain width is a witness
for the non-existence of a tangle of any larger order and vice versa. It follows that for any
submodular connectivity function κ it holds that

tn(κ) = bw(κ).
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3 The Minimum Distance Function

I Definition 7 (Minimum Distance). Let d: U × U → R be an arbitrary metric. For a finite
data set U , the minimum distance function δd : 2U → R, is defined as follows:

δd(X) :=
{

0 if X = ∅ or X = ∅,
maxx∈X,x′∈X exp(−d(x, x′)) otherwise.

This definition yields that X has a high value if there is a point outside of X very close
to a point in X. The transformation exp(−c · f(x, y)), for some constant c and some function
f, is often used in clustering applications to transform a dissimilarity function f like a metric
into a similarity function. The minimum distance function is in general not submodular, as
can be seen with a small example. For an arbitrary x ∈ R+ define a one-dimensional universe
containing only the following four points a1 = x, a2 = x+ 1, a3 = −x and a4 = −x− 1. Let
X = {a1, a2}, Y = {a1, a3} and the metric d(u, v) = |u− v| is the absolute of the difference.
Then δd(X) = exp(−2x) < δd(Y ) = δd(X ∩ Y ) = δd(X ∪ Y ) = exp(−1), for all x > 1

2
We define a new property, that is similar to submodularity, which allows us to develop

similar theories as for submodular connectivity functions.

I Definition 8. A set function κ on a finite set U is maximum-submodular if, for all
X,Y ⊆ U ,

max(κ(X), κ(Y )) ≥ max(κ(X ∩ Y ), κ(X ∪ Y )).

This property is neither a generalization of submodularity nor a specialization. For
instance ν as in Example 3 is submodular but not maximum-submodular and in the next
lemma we see that the minimum distance function, which in general is not submodular, is
maximum-submodular. We call a normalized, symmetric and maximum-submodular set
function maximum-submodular connectivity function.

I Lemma 9. The minimum distance function is a maximum-submodular connectivity func-
tion.

Proof. The minimum distance function is normalized by definition and symmetric since
metrics are symmetric. If X or Y are equal to ∅ or U , maximum-submodularity trivially
holds as {X,Y } = {X ∪ Y,X ∩ Y } in these cases. Otherwise, we choose u ∈ X ∩ Y and
v ∈ X ∩ Y such that d(u, v) = δd(X ∩ Y ). Analogously we choose u′ ∈ X ∪ Y = X ∩ Y and
v′ ∈ X ∪ Y . Then w.l.o.g. we distinguish four cases, depending on v and v′.
Case 1: v ∈ X ∩ Y and v′ ∈ X ∩ Y hold: Then w.l.o.g. v = u′ and u = v′ hold. Therefore

δd(X ∩ Y ) = δd(X ∪ Y ) and thus δd(X) ≥ δd(X ∩ Y ) and δd(Y ) ≥ δd(X ∪ Y ) hold.
Case 2: v ∈ X ∩ Y and v′ ∈ X ∩ Y hold: It follows that δd(X) ≥ δd(X ∩ Y ) and δd(Y ) ≥

δd(X ∪ Y ) hold.
Case 3: v, v′ ∈ X ∩ Y holds: It follows that δd(X) ≥ δd(X ∩ Y ) and δd(Y ) ≥ δd(X ∪ Y )

hold.
Case 4: v ∈ X ∩ Y and v′ ∈ X ∩ Y hold: In this case it holds that δd(Y ) ≥ δd(X ∩ Y ) and

δd(Y ) ≥ δd(X ∪ Y ). Therefore we have δd(Y ) ≥ max(δd(X ∩ Y ), δd(X ∪ Y )) and the
inequality holds.

As all other cases are symmetric to the four cases shown above, the inequality holds for all
X,Y ⊆ U . J

MFCS 2019
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Next, we consider tangles of the Minimum Distance Function. Firstly, we give an example
of such a tangle.

I Example 10. Let U ⊂ Rn be a finite set of points. Let x1, x2 ∈ U be two points such that
d(x1, x2) = min{d(x, y) | x, y ∈ U, x 6= y}. Then, for every k ≤ exp(−d(x1, x2)),

T := {X ⊆ U | δd(X) < k, x1, x2 ∈ X}

is a δd-tangle of order k.
T satisfies (T.0), (T.2) and (T.3) by construction. To see that (T.1) is satisfied note that

if x1 ∈ X and x2 ∈ X holds then δd(X) = exp(−d(x1, x2)) ≥ k holds.

Having this example we realize that the tangles described are the only δd-tangles.

I Lemma 11. Every δd-tangle of order k is of the form described as in Example 10. That
is, we can identify two points u, v ∈ U such that exp(−d(u, v)) ≥ k and for all X ∈ T we
have u, v ∈ X.

Proof. To prove this we define the relation δdk := {(u, v) | exp(− d(u, v)) ≥ k} and consider
the graph Gk := (U, δdk). For every set X ⊆ U with δd(X) < k and every connected
component C of Gk, holds either V (C) ⊆ X or V (C) ⊆ X by definition. Thus for every δd-
tangle T of order ≤ k it holds that all X ∈ T are disjoint unions of connected components of
Gk. Additionally, using Lemma 5 (2) every such T is closed under intersection, as for two sets
X,Y ∈ T and all connected components C of Gk either V (C) ⊆ X ∩Y or V (C)∩X ∩Y = ∅
and thus δd(X ∩ Y ) < k. Suppose for contradiction there is a δd-tangle T of order k such
that there is no connected component of Gk, of size at least two, that is contained in all
X ∈ T . Let C0, . . . , Cn be an enumeration of all connected components of Gk with |Ci| ≥ 2.
Then we can identify a sequence X0, . . . , Xn ∈ T such that V (Ci) * Xi, thus V (Ci)∩Xi = ∅.
We set Y1 := X0 ∩X1 and Yi+1 := Yi ∩Xi+1. Since T is closed under intersection, we get
Y1, . . . , Yn ∈ T . As T is a tangle, |Yn| > 1 has to hold. For every subset Y ⊆ Yn we have
κ(Y ) < k as Yn ∩

⋃n
i=0 Ci = ∅. Take an enumeration of all elements y1, . . . , ym ∈ Yn and

construct a series of sets Z1, . . . , Z` ∈ T such that |Z`| = 1. Clearly this contradicts the
existence of T . If {y1} ∈ T set Z1 := {y1}, else set Z1 := Yn\{y1} = Yn ∩ {y1} ∈ T . If
|Zi| = 1 set ` = i and stop the construction. Otherwise if {yi+1} ∈ T set Zi+1 := {yi+1},
else set Zi+1 := Zi\{yi+1} = Zi ∩ {yi+1} ∈ T . As |Zi| > |Zi+1| this construction terminates
and yields the desired contradiction. J

From this lemma an important corollary follows. In Section 5 we use this to identify for
each tangle a cluster resulting from single linkage hierarchical clustering.

I Corollary 12. Let T be a δd-tangle of order k over the universe U . There is a unique
connected component C of the graph G = (U, δdk), with δdk := {(u, v) | exp(−d(u, v)) ≥ k},
such that C ⊆ X, for all X ∈ T .

Proof. We already showed that there exists some component C such that C ⊆ X, for all
X ∈ T . Assume there is some component C ′ 6= C such that C ′ ⊆ X, for all X ∈ T . Then
we have C ′ ∈ T and thus C ⊆ C ′ which contradicts C ′ 6= C. J

4 Duality for Submodular Bounded Functions

Now we prove duality for all maximum-submodular connectivity functions, thus also for
the minimal distance function. We achieve a result similar to the theory for submodular
connectivity functions, first shown in [11]. To formulate the Duality Theorem we first need a
definition.
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I Definition 13. Let κ be a symmetric set function on U and A ⊆ 2U .
A pre-decomposition (T, γ) is over A if At(T, γ) ⊆ A.
A κ-tangle T avoids A if T ∩ A = ∅.

The Duality Theorem states that there can not be any decomposition over a family of
sets, if there is a tangle avoiding this family and vice versa. The proof yields a construction
of such a decomposition. The following theorem is a precise formulation of Theorem 1.

I Theorem 14 (Duality Theorem of Submodular Bounded Functions). Let κ be a maximum-
submodular connectivity function on U . Let A ⊆ 2U such that A is closed under taking
subsets and Sing(U) ⊆ A, where Sing(U) is the set of all singletons from U . Then there is a
decomposition of width less than k over A if and only if there is no κ-tangle of order k that
avoids A.

Assuming the theorem holds, we can directly derive the following corollary using that
every branch decomposition of U is complete, thus is over Sing(U) and every κ-tangle avoids
Sing(U) by definition.

I Corollary 15. Let κ be a maximum-submodular connectivity function on U . It holds that

tn(κ) = bw(κ).

Looking at the proof of duality for submodular connectivity functions as it is presented
in [9], we see that they do not use any properties of the set function, besides symmetry and
a transformation from a pre-decomposition into a decomposition of equal width. Therefore,
we can adapt that proof if we are able to do a similar transformation. The following lemma
shows how to achieve exactness at every node of a pre-decomposition.

I Lemma 16 (Exactness Lemma). Let κ be a maximum-submodular connectivity function on
U and (T, γ) be a pre-decomposition of U . Then there is a mapping γ′ : −→E (T ) → 2U such
that (T, γ′) is a decomposition of U satisfying

wd(T, γ′) ≤ wd(T, γ) and
γ′(`) ⊆ γ(`), for all leaves ` ∈ L(T ).

Proof. We iteratively construct γ′ from γ, keeping the invariants
wd(T, γ′) ≤ wd(T, γ) and
γ′(`) ⊆ γ(`), for all leaves ` ∈ L(T ).

We pick an arbitrary leaf `start ∈ L(T ) and set γ′(`start, s) := γ(`start, s) and γ′(s, `start) :=
γ(s, `start) for s ∈ N(`start). If T only consists of at most two nodes we are done, since
(T, γ′) is already a decomposition. Otherwise, we traverse the tree with breadth-first search
starting at `start. If we reach a node s ∈ V (T )\L(T ) with predecessor t ∈ V (T ), we do the
following. Let u1, u2 ∈ N(s) be the successors of s and define X := γ′(s, t) and Yi := γ(s, ui),
for i = 1, 2.

If X ∩ (Y1 ∪ Y2) 6= ∅ we update Yi to Yi ∩X, for i = 1, 2. This step is consistent with the
invariants as κ(Yi ∩X) ≤ max(κ(Yi ∩X), κ(Yi ∪X)) ≤ max(κ(Yi), κ(X)), where the second
inequality holds due to maximum-submodularity, and Yi ∩X ⊆ γ(s, ui), for i = 1, 2.

If Y1 ∩ Y2 6= ∅, update Y1 to Y1 ∩ Y2. This step is again consistent with the invariants as
κ(Y1 ∩ Y2) ≤ max(κ(Y1 ∩ Y2), κ(Y1 ∪ Y2)) ≤ max(κ(Y1), κ(Y2)), where the second inequality
holds due to maximum-submodularity, and Y1 ∩ Y2 ⊆ γ(s, u1).

Set γ′(s, ui) := Yi and γ′(ui, s) := γ′(s, ui), for i = 1, 2. After these steps we know that
γ′ is exact at s and we do not change γ′ for any predecessor of s.

MFCS 2019
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When we reach a leaf ` ∈ L(T ), we do not change γ′ and continue with the next node in
the breadth-first search.

This construction yields the desired mapping. J

The construction above may result in a tree with empty leafs. But such a leaf can be
easily removed by deleting it and its neighbor, connecting the resulting open edges.

Now, we are ready to prove the Duality Theorem for Submodular Bounded Functions.

Proof of Theorem 14, see [9]. For the forward direction, we let (T, γ) be a decomposition
of U over A of width less than k. Suppose, for contradiction, T is a κ-tangle of order k
that avoids A. We orient the edges E(T ) such that they point in the direction of the set
that is contained in the tangle. Such a set always exists as the width is less then k. Thus,
formally we orient (s, t) ∈ E(T ) towards t if γ(s, t) ∈ T , and towards s if γ(t, s) = γ(s, t) ∈ T .
As in every oriented tree, there is at least one node t ∈ V (T ) such that all edges incident
to t are oriented towards t. If t ∈ L(T ) then γ(t) ∈ A and γ(t) ∈ T which contradicts
the assumption that T avoids A. Thus, t is an internal node with N(t) = {u1, u2, u3}.
But since all γ(t, ui) are mutually disjoint and all γ(u1, t) ∈ T this contradicts (T.2) as
γ(t, u1) ∪ γ(t, u2) ∪ γ(t, u3) = U and thus γ(u1, t) ∩ γ(u2, t) ∩ γ(u3, t) = ∅. It follows that
such a κ-tangle can not exist and the forward direction holds.

For the backward direction assume there is no κ-tangle of order k that avoids A. We will
construct a pre-decomposition (T, γ) of U over A of width less than k. Using the Exactness
Lemma and since A is closed under taking subsets it follows that a decomposition of U over
A exists.

We construct such a pre-decomposition (T, γ) inductively on the number of sets X ⊆ U
with κ(X) < k and neither X ∈ A nor X ∈ A.

In the base case, for all X ⊆ U with κ(X) < k, holds X ∈ A or X ∈ A. We define
Y := {X | X ∈ A with κ(X) < k}. We know that Y can not be a tangle, as we assumed
that there is no tangle of order k. Since (T.0) and (T.1) hold by assumption on A, either
(T.2) or (T.3) have to be false. If Y violates (T.2) there are three sets Y1, Y2, Y3 ∈ Y
such that Y1 ∩ Y2 ∩ Y3 = ∅. Then Y1, Y2, Y3 ∈ A and Y1 ∪ Y2 ∪ Y3 = U . We set T :=
({`1, `2, `3, t}, {(`i, t) | i = 1, 2, 3}), γ(t, `i) := Yi ∈ A and γ(`i, t) := Yi. Then, (T, γ) is a
pre-decomposition of U over A. If Y violates (T.3) there is some x ∈ U such that {x} ∈ Y
and thus {x} ∈ A. Since Sing(U) ⊆ A we have {x} ∈ A. We take T := ({s, t}, {(s, t)}) and
γ(s, t) := {x}, γ(t, s) := {x}. Then (T, γ) is a pre-decomposition of U over A.

In the inductive step, we have some X ⊆ U with κ(X) < k and neither X ∈ A nor
X ∈ A. We chose X ′ such that |X ′| is minimal with respect to the conditions above. We set
A1 := A∪ 2X′ and A2 := A∪ 2X′ . By the induction hypothesis there are pre-decompositions
(T 1, γ1) over A1 and (T 2, γ2) over A2. If At(Ti, γi) ⊆ A than (Ti, γi) is a pre-decomposition
over A and we are done. Otherwise, we can assume that (T 1, γ1) is a decomposition, due
to the Exactness Lemma 16, thus the γ1(`) for all ` ∈ L(T 1) are unique. There is some
`1 ∈ L(T 1) such that γ1(`1) /∈ A. As the width of (T 1, γ1) is less than k and no true subset
X ′′ ⊂ X ′ fulfills κ(X ′′) < k and neither X ′′ ∈ A nor X ′′ ∈ A, we know that γ1(`1) = X ′

and that it is the only leaf with this condition. We denote its neighbor by s1. Let us
now consider all `21, . . . , `2m ∈ L(T 2) with γ2(`2i ) /∈ A. We know that, for all `2i , we have
γ2(`2i ) ⊆ X ′. We consider all s2

i with N(`2i ) = {s2
i }. We modify γ2 by setting γ2(s2

i , `
2
i ) := X ′

and γ2(`2i , s2
i ) := X ′. The result will still be a pre-decomposition. Then, we construct a

pre-decomposition (T, γ) of U over A. We take m disjoint copies (T 1
i , γ

1
i ) of (T 1, γ1). We
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a b c d e f g

1
2
3
4
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(a) The dendogram corresponding to the data points
using single linkage.

a b

c

d e

f g

(b) Data points used to compute the dendogram.

Figure 1 An example of a dendogram. The distance function used is `SL(X, Y ) :=
minx∈X,y∈Y ‖x − y‖, where ‖ · ‖ is the Euclidean norm. This distance function is used in single
linkage.

define

V (T ) :=
⋃

1≤i≤m

V (T 1
i )\{`1i } ∪ V (T 2)\{`21, . . . , `2m}

and take the union of all edge sets where `1i is replaced by s2
i and `2i is replaced by s1

i . Then,
we define γ : E(T )→ 2U by

γ(s, t) :=


X ′ if (s, t) = (s1

i , s
2
i ) for some 1 ≤ i ≤ m,

X ′ if (s, t) = (s2
i , s

1
i ) for some 1 ≤ i ≤ m,

γ1(s, t) if s, t ∈ V (T 1
i ) for some 1 ≤ i ≤ m,

γ2(s, t) if s, t ∈ V (T 2).

Then, (T, γ) is a pre-decomposition of U over A of width less than k. J

5 Minimum Distance Function and Hierarchical Clustering

To establish the connection between the δd-tangles and hierarchical clustering, we use Ag-
glomerative Hierarchical Clustering via single linkage on dissimilarity inputs. A dissimilarity
input is an instance, where a small function value describes a large similarity between the
points. The result of a hierarchical clustering algorithm is a dendogram. For an arbitrary set
U , P(U) denotes the set of all partitions of U .

I Definition 17 ([2]). A dendogram over a finite set U = {x1, . . . , xn} is a function
θ : [0,∞)→ P(U), satisfying the following conditions:
1. θ(0) = {{x1}, . . . , {xn}},
2. there exists t0 such that θ(t) = {U} for all t ≥ t0,
3. if r ≤ s then θ(r) is a refinement of θ(s), that is for every B ∈ θ(r) there is some B′ ∈ θ(s)

such that B ⊆ B′, and
4. for all r there exists ε > 0 such that θ(r) = θ(t) for all t ∈ [r, r + ε].

The first and second condition ensure that the trivial partitions are part of the dendogram,
with the single elements having the smallest possible value and the whole set giving an upper
bound. The third condition states that every partition results from a merge of sets contained

MFCS 2019
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in a more refined partition. The last condition is a bit technical, and ensures that θ is right
continuous. An example of a dendogram can be seen in Figure 1. We allow more than one
cluster to merge in one step, as introduced and analyzed by Carlson and Mémoli [2]. The
single linkage clustering in this framework works as follows.

I Definition 18 ([2]). Let (U,d) be a metric space and let `SL : 2U × 2U → R be the single
linkage function on U defined by

`SL(A,B) := min
a∈A,b∈B

d(a, b).

Define a sequence of distances R0, R1, R2, . . . ∈ [0,∞) and a corresponding sequence of
partitions Θ0,Θ1,Θ2, . . . ∈ P(U) by:

R0 = 0 and Θ0 = {{x1}, . . . , {xn}}, with U = {x1, . . . , xn},
Ri+1 := minB,B′∈Θi

`SL(B,B′)
Θi+1 := Θi/ ∼Ri+1 , where B ∼Ri+1 B′ if there exists a sequence of blocks of distance
at most Ri+1, thus B = B1, . . . ,Bs = B′ ∈ Θi with `SL(Bk,Bk+1) ≤ Ri+1, for k =
1, . . . , s− 1.

Then the dendogram for single linkage is defined by

θ`SL(r) := Θi(r),

where i(r) := max{i | Ri ≤ r}.

A less technical way to describe this is, that we start with distance R0 = 0 and the
partition into single elements. Then we inductively compute the smallest pairwise distance
of any two points separated by the partition Θi, store this as the next distance value Ri+1
and merge the corresponding sets to achieve a new partition Θi+1. We repeat this step until
all sets are merged. The resulting dendogram can be interpreted as a decomposition of the
universe into its δd-tangles, where the non-singular blocks of the dendogram correspond to
the tangles. The following theorem is a precise formulation of Theorem 2.

I Theorem 19. Let (U,d) be a metric space.
1. For every r ∈ R and every block B ∈ θ`SL(r) with |B| > 1,

T := {X ⊆ U | δd(X) < exp(−r), B ⊆ X}

is a δd-tangle of U of order exp(−r).
2. For every δd-tangle T of U of order k we can identify a block B ∈ θ`SL(− log(k)) with
|B| > 1 such that

T = {X ⊆ U | δd(X) < k, B ⊆ X}.

Proof. Using the same arguments as in Example 10 the first statement holds. For the second
statement one needs the equivalence relation ∼r on U , where x ∼r y if and only if there is a
sequence of elements x = x1, . . . , xs = y ∈ U such that d(xi, xi+1) ≤ r. Carlson and Mémoli
[2] have shown that the blocks of θ`SL(r) are exactly the equivalence classes U/∼r.

Let T be a δd-tangle of order k. Using Corollary 12 we can find a connected component
C in the graph G = (U, δdk) such that C ⊆ X, for all X ∈ T . Looking at the definition
δd

k := {(u, v) | exp(−d(u, v)) ≥ k} we see that two elements u, v ∈ U are connected in G if
and only if for their distance holds d(u, v) ≤ − log(k), thus u ∼− log(k) v. It follows that the
equivalence classes of U/∼− log(k) are exactly the same as the connected components of G.
Thus, there is a block C = B ∈ θ`SL(− log(k)) that fulfills the requirement. J
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I Remark 20. Let us consider two popular hierarchical clustering algorithms, average linkage
and complete linkage. The algorithm is the same as in Definition 18, but the linkage function
` changes. The distance of two sets for complete linkage equals the maximum distance of any
point from one set to any point from the other set, thus `CL(X,Y ) := maxx∈X,y∈Y d(x, y).
Using the same trick as for single linkage, a natural related connectivity function is κd(X) :=
minx∈X,y∈X exp(−d(x, y)), for X ∈ 2U\{∅, U}, and κd = 0, otherwise. This function is
maximum-submodular and using the Manhattan distance it is even submodular. But in
general, for an arbitrary partition P , it holds that

min
X,Y ∈P

max
x∈X ,y∈Y

d(x, y) 6= − log(max
X∈P

min
x∈X,x′∈X

exp(−d(x, x′))),

as `CL(X,X) = maxY ∈P `CL(X,Y ), for arbitrary X ∈ P . This is different for single linkage.
It holds that for any partition P of the universe we have

min
X,Y ∈P

`SL(X,Y ) = − log(max
X∈P

δd(X)),

as `SL(X,X) = minY ∈P `SL(X,Y ), for arbitrary X ∈ P . Thus in contrast to single linkage,
the optimum of complete linkage `CL used to compute Ri+1 does not correspond to the
optimum according to the connectivity function κd. For average linkage (`AL(X,Y ) :=∑

x∈X,y∈Y
d(x,y)
|X||Y | ), a corresponding set function could be ϕd(X) :=

∑
x∈X,y∈X

exp(− d(x,y))
|X||X|

,
for X ∈ 2U\{∅, U}, and ϕd = 0, otherwise. It is neither submodular nor maximum-
submodular. Additionally in general `AL(X,X) is not directly computable from `AL(X,Y ),
for X,Y ∈ P with P an arbitrary partition. To compute `AL(X,X), also the size of all
Y ∈ P is needed. We have

`AL(X,X) =
∑

Y ∈P,X 6=Y |Y |`AL(X,Y )∑
Y ∈P,X 6=Y |Y |

.

This makes it even harder to find a suitable connectivity function.

6 Conclusion

We establish a precise technical connection between tangles and hierarchical clustering. We
can specify this connection for the minimum distance function and single linkage clustering.
It is still an open question if there are other clustering algorithms for which we can find
corresponding set functions. One of the main obstacles here is, that tangles and the
corresponding set functions only look at global connectivity of some set to its converse
whereas hierarchical clustering looks at local connectivity between two sets. For single
linkage these two notions turned out to be the same.

Our second contribution is to show duality between tangles and branch decompositions
for a new class of functions. In our view, the key transformation in the proof of the Duality
Theorem is the Exactness Lemma (related to „shifting“ in [6]); this is where submodularity or
maximum-submodularity comes in. To broaden the theory, it will be essential to understand
under which general conditions such a transformation is possible.
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