11 research outputs found

    Approximate tensor-product preconditioners for very high order discontinuous Galerkin methods

    Full text link
    In this paper, we develop a new tensor-product based preconditioner for discontinuous Galerkin methods with polynomial degrees higher than those typically employed. This preconditioner uses an automatic, purely algebraic method to approximate the exact block Jacobi preconditioner by Kronecker products of several small, one-dimensional matrices. Traditional matrix-based preconditioners require O(p2d)\mathcal{O}(p^{2d}) storage and O(p3d)\mathcal{O}(p^{3d}) computational work, where pp is the degree of basis polynomials used, and dd is the spatial dimension. Our SVD-based tensor-product preconditioner requires O(pd+1)\mathcal{O}(p^{d+1}) storage, O(pd+1)\mathcal{O}(p^{d+1}) work in two spatial dimensions, and O(pd+2)\mathcal{O}(p^{d+2}) work in three spatial dimensions. Combined with a matrix-free Newton-Krylov solver, these preconditioners allow for the solution of DG systems in linear time in pp per degree of freedom in 2D, and reduce the computational complexity from O(p9)\mathcal{O}(p^9) to O(p5)\mathcal{O}(p^5) in 3D. Numerical results are shown in 2D and 3D for the advection and Euler equations, using polynomials of degree up to p=15p=15. For many test cases, the preconditioner results in similar iteration counts when compared with the exact block Jacobi preconditioner, and performance is significantly improved for high polynomial degrees pp.Comment: 40 pages, 15 figure

    Multi-patch discontinuous Galerkin isogeometric analysis for wave propagation: explicit time-stepping and efficient mass matrix inversion

    Full text link
    We present a class of spline finite element methods for time-domain wave propagation which are particularly amenable to explicit time-stepping. The proposed methods utilize a discontinuous Galerkin discretization to enforce continuity of the solution field across geometric patches in a multi-patch setting, which yields a mass matrix with convenient block diagonal structure. Over each patch, we show how to accurately and efficiently invert mass matrices in the presence of curved geometries by using a weight-adjusted approximation of the mass matrix inverse. This approximation restores a tensor product structure while retaining provable high order accuracy and semi-discrete energy stability. We also estimate the maximum stable timestep for spline-based finite elements and show that the use of spline spaces result in less stringent CFL restrictions than equivalent piecewise continuous or discontinuous finite element spaces. Finally, we explore the use of optimal knot vectors based on L2 n-widths. We show how the use of optimal knot vectors can improve both approximation properties and the maximum stable timestep, and present a simple heuristic method for approximating optimal knot positions. Numerical experiments confirm the accuracy and stability of the proposed methods

    Viscous Shock Capturing in a Time-Explicit Discontinuous Galerkin Method

    Get PDF
    We present a novel, cell-local shock detector for use with discontinuous Galerkin (DG) methods. The output of this detector is a reliably scaled, element-wise smoothness estimate which is suited as a control input to a shock capture mechanism. Using an artificial viscosity in the latter role, we obtain a DG scheme for the numerical solution of nonlinear systems of conservation laws. Building on work by Persson and Peraire, we thoroughly justify the detector's design and analyze its performance on a number of benchmark problems. We further explain the scaling and smoothing steps necessary to turn the output of the detector into a local, artificial viscosity. We close by providing an extensive array of numerical tests of the detector in use.Comment: 26 pages, 21 figure

    Numerical and Analytical Studies of Electromagnetic Waves: Hermite Methods, Supercontinuum Generation, and Multiple Poles in the SEM

    Get PDF
    The dissertation consists of three parts: Hermite methods, scattering from a lossless sphere, and analysis of supercontinuum generation. Hermite methods are a new class of arbitrary order algorithms to solve partial differential equations (PDE). In the first chapter, we discuss the fundamentals of Hermite methods in great detail. Hermite interpolation is discussed as well as the different time evolution schemes including Hermite-Taylor and Hermite-Runge-Kutta schemes. Further, an order adaptive Hermite method for initial value problems is described. Analytical studies and numerical simulations in both 1D and 2D are presented. To handle geometry, a hybrid Hermite discontinuous Galerkin method is introduced. A discontinuous Galerkin method is used next to the boundaries to handle the geometry and the boundary conditions, while a Hermite method is used in the interior of the computation domain to enhance the performance. Numerical simulations of 1D wave propagation and the solutions to 2D Maxwell\u27s TM equations are presented along with performance and accuracy data. In the second chapter, we study the scattering problem concerning the scattering poles from a lossless sphere for both acoustic and electromagnetic waves. We show that in certain cases there exist only first order scattering poles, but in some other cases, arbitrary order scattering poles can be found by imposing certain lossless impedance boundary conditions on the spherical scatterer. A method to construct arbitrary order scattering poles is discussed. The impedance loading function is required to satisfy Foster\u27s theorem so that the scattering problem is lossless. In the last chapter, we analyse the generation of supercontinua in photonic crystal fibers. We depart from the commonly used approach where a Taylor series expansion of the propagation constant is used to model the dispersive properties in a generalized nonlinear Schrodinger equation (gNLSE). Instead, we develop a mathematical model starting from numerically calculated group velocity dispersion (GVD) curves. Then, we construct a certain function over a broad frequency window and integrate the gNLSE in a way so that the spectral dependence of the propagation constant is preserved. We found that the generation of broadband supercontinua in air-silica microstructured fibers results from a delicate balance of dispersion and nonlinearity. Numerical simulations show that if the nonlinear self-steepening is strong enough, the model produces a shock that is not arrested by dispersion, whereas for weaker nonlinearity the pulse propagates the full extent of the fiber with the generation of a supercontinuum

    Methods for higher order numerical simulations of complex inviscid fluids with immersed boundaries

    Get PDF
    Within this thesis, we study inviscid compressible flows of fluids modelled by several equations of state. Namely, these are the ideal gas law, the stiffened gas law, Tait's law and the covolume gas law. In their entirety, these equations of state can be used as models for the behaviour of many gases and liquids. After deriving new exact solutions for the corresponding variants of the Euler equations, we use the results as a tool for the verification of a higher-order accurate numerical scheme that has been implemented during the course of this thesis. The scheme is based on a Runge-Kutta Discontinuous Galerkin Method and the presented verification results show that we are able to obtain the expected rates of convergence in both, space and time. In the main part of this thesis, we consider an important building block for the extension of this conventional discretization by means of a treatment for generic immersed boundaries, namely the numerical integration of general functions over domains that are at least partly defined by the zero iso-contour of a level set function defining the domain boundary. Here, we study two new, generally applicable approaches in terms of their robustness and convergence behaviour. The first approach is based on a classical adaptive strategy, while the second approach is based on a hierarchical moment-fitting strategy with variable Ansatz order P. Both methods have been designed such that they are applicable on general element types. Most notably, the results of our numerical experiments suggest that the moment-fitting procedure leads to integration errors that decrease with a rate of O(h^(P+1)), thus allowing for a severe increase of integration accuracy at constant computational effort
    corecore