5 research outputs found

    Tuning the aggressive TCP behavior for highly concurrent HTTP connections in intra-datacenter

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.IEEE Modern data centers host diverse hyper text transfer protocol (HTTP)-based services, which employ persistent transmission control protocol (TCP) connections to send HTTP requests and responses. However, the ON/OFF pattern of HTTP traffic disturbs the increase of TCP congestion window, potentially triggering packet loss at the beginning of ON period. Furthermore, the transmission performance becomes worse due to severe congestion in the concurrent transfer of HTTP response. In this paper, we provide the first extensive study to investigate the root cause of performance degradation of highly concurrent HTTP connections in data center network. We further present the design and implementation of TCP-TRIM, which employs probe packets to smooth the aggressive increase of congestion window in persistent TCP connection and leverages congestion detection and control at end-host to limit the growth of switch queue length under highly concurrent TCP connections. The experimental results of at-scale simulations and real implementations demonstrate that TCP-TRIM reduces the completion time of HTTP response by up to 80 & #x0025;, while introducing little deployment overhead only at the end hosts.This work is supported by the National Natural Science Foundation of China (61572530, 61502539, 61402541, 61462007 and 61420106009)

    Taming TCP incast throughput collapse in data center networks

    No full text

    Enhancing programmability for adaptive resource management in next generation data centre networks

    Get PDF
    Recently, Data Centre (DC) infrastructures have been growing rapidly to support a wide range of emerging services, and provide the underlying connectivity and compute resources that facilitate the "*-as-a-Service" model. This has led to the deployment of a multitude of services multiplexed over few, very large-scale centralised infrastructures. In order to cope with the ebb and flow of users, services and traffic, infrastructures have been provisioned for peak-demand resulting in the average utilisation of resources to be low. This overprovisionning has been further motivated by the complexity in predicting traffic demands over diverse timescales and the stringent economic impact of outages. At the same time, the emergence of Software Defined Networking (SDN), is offering new means to monitor and manage the network infrastructure to address this underutilisation. This dissertation aims to show how measurement-based resource management can improve performance and resource utilisation by adaptively tuning the infrastructure to the changing operating conditions. To achieve this dynamicity, the infrastructure must be able to centrally monitor, notify and react based on the current operating state, from per-packet dynamics to longstanding traffic trends and topological changes. However, the management and orchestration abilities of current SDN realisations is too limiting and must evolve for next generation networks. The current focus has been on logically centralising the routing and forwarding decisions. However, in order to achieve the necessary fine-grained insight, the data plane of the individual device must be programmable to collect and disseminate the metrics of interest. The results of this work demonstrates that a logically centralised controller can dynamically collect and measure network operating metrics to subsequently compute and disseminate fine-tuned environment-specific settings. They show how this approach can prevent TCP throughput incast collapse and improve TCP performance by an order of magnitude for partition-aggregate traffic patterns. Futhermore, the paradigm is generalised to show the benefits for other services widely used in DCs such as, e.g, routing, telemetry, and security
    corecore