
IEEE/ACM TRANSACTIONS ON NETWORKING 1

Tuning the Aggressive TCP Behavior for Highly
Concurrent HTTP Connections in Intra-datacenter

Tao Zhang, Jianxin Wang, Senior Member, IEEE, Jiawei Huang, Member, IEEE, Jianer Chen, Senior
Member, IEEE, Yi Pan, Senior Member, IEEE, and Geyong Min, Member, IEEE

Abstract—Modern data centers host diverse HTTP-based ser-
vices, which employ persistent TCP connections to send HTTP
requests and responses. However, the ON/OFF pattern of HTTP
traffic disturbs the increase of TCP congestion window, poten-
tially triggering packet loss at the beginning of ON period.
Furthermore, the transmission performance becomes worse due
to severe congestion in the concurrent transfer of HTTP response.
In this work, we provide the first extensive study to investigate
the root cause of performance degradation of highly concurrent
HTTP connections in DCN. We further present the design and
implementation of TCP-TRIM, which employs probe packets to
smooth the aggressive increase of congestion window in persistent
TCP connection, and leverages congestion detection and control
at end-host to limit the growth of switch queue length under
highly concurrent TCP connections. The experimental results of
at-scale simulations and real implementations demonstrate that
TCP-TRIM reduces the completion time of HTTP response by
up to 80%, while introducing little deployment overhead only at
the end hosts.

Index Terms—data center, HTTP, TCP

I. INTRODUCTION

NOWADAYS, a significant number of online service
providers employ the data centers to offer Internet-facing

applications, such as web searching, accessing content, e-
retailing, and advertisement [1], [2]. Since the application per-
formance directly affects the enterprise revenue, the network
operators try their best to shorten the service response time
thus providing end-users with good experiences [3], [4]. For
the consideration of equipment cost, however, network over-
subscription is very common in existing infrastructures, which
do not provide enough network capacity between the servers
[5]. Thus, the network transfer becomes a bottleneck for the
application performance. For example, in cluster computing
applications like MapReduce and Dryad, data transfer accounts
for more than 50% of job completion time [6].

However, due to its wide usage in past 20 years, Hyper
Text Transfer Protocol (HTTP) is foundation of the Internet-
facing applications in modern data center. For example, the

Manuscript received July 6, 2016.
Tao Zhang, Jianxin Wang, Jiawei Huang are with School of Information

Science and Engineering, Central South University, Changsha, China, 410083.
E-mail: jxwang@mail.csu.edu.cn.

Jianer Chen is with Department of Computer Science and Engineer-
ing, Texas A&M University, College Station, Texas 77843, USA. E-mail:
chen@cs.tamu.edu.

Yi Pan is with Department of Computer Science, Georgia State University,
Atlanta, GA 30302-4110, USA. E-mail: yipan@gsu.edu.

Geyong Min is with the College of Engineering, Mathematics and
Physical Sciences, University of Exeter, Exeter, EX4 4QF, U.K. E-mail:
G.Min@exeter.ac.uk.

well-known MapReduce framework adopts HTTP or HTTPS
to fetch the relevant partition of output of all the mappers
in the shuffle phase [8], [9], [10], [11], [12]. After receiving
an HTTP request message from end-user, the Web server in
data center, which provides resources such as HTML files
and other content, or performs other functions on behalf of
the client, returns HTTP response to the end-user [13]. To
achieve fast feedback and high reliability, the Web server
usually utilizes highly concurrent HTTP connections to fetch
the response data across a large number of compute and
storage servers [14]. Previous research has reported that, the
HTTP-based application contributes to nearly 85% and 50%
of traffic in data centers of private enterprise and university
campus, respectively [1].

Naturally, HTTP employs TCP as its underlying transport-
level protocol, and generally maintains persistent TCP connec-
tions on which requests and responses are allowed to multiplex
to reduce the unnecessary overhead caused by frequent three-
way handshakes (SYN and FIN) [15], [16]. However, there are
two key factors that together impair the performance of highly
concurrent HTTP connections on TCP flows in data centers.

First, the nature of HTTP request/response style, coupled
with the unpredictable and uncontrollable user’s behavior,
shapes the ON/OFF traffic pattern on the persistent TCP
connection [16], [17]. This pattern, however, disturbs the
self-clocking mechanism of TCP’s control loop. Specifically,
ON/OFF HTTP traffic makes the data transfer on the persistent
TCP connection become non-successive. When waiting for the
user request or server response, the TCP connection becomes
idle, but is kept alive. Once the connection restarts after the
idle time, it begins transmission with the congestion window
(CW) inherited from the previous ON period, resulting in the
aggressive increase in sending rate and potential congestion.

Second, inside the data center, multiple servers and their
unique invoker constitute the many-to-one communication
pattern [14]. For example, in order to respond to a user
request of web search, hundreds, even thousands of web and
database servers are involved in the compute and communi-
cation process across the data center network (DCN) [3], [4].
Such many-to-one traffic patterns, joint with the droptail queue
management of switch buffer, bring about frequent buffer
overflow and packet losses. Furthermore, when incorrectly
inheriting congestion window from the previous ON period,
the concurrent TCP connections which transport the HTTP
traffic get substantially worse performance.

The bursty behavior of TCP on HTTP connection has
already been investigated in the WAN context [18], [19].

IEEE/ACM TRANSACTIONS ON NETWORKING 2

However, due to the huge difference of physical environment,
the existing schemes in WAN fail to resolve the bursty problem
in DCN [3], [4], [20], [21]. Furthermore, although the existing
data center network TCPs also have adopted miscellaneous
schemes to alleviate congestion of concurrent TCP flows,
when transferring HTTP traffic, they share the same feature:
inheriting congestion window from the previous ON period.
Based on our empirical results in Section II, the TCP protocol
cannot cope with the situation of concurrent HTTP connection-
s. Under such a situation, the switch buffer easily suffers from
frequent overflows, resulting in TCP timeout and throughput
collapse.

In this work, based on the typical ON/OFF HTTP workload,
we empirically study the transmission performance of persis-
tent TCP connections. We reveal that the TCP’s aggressive
behavior in increasing congestion window causes TCP time-
out and throughput collapse for the highly concurrent HTTP
traffic. This is because TCP blindly inherits the congestion
window from the previous ON period, even the congestion
state has significantly changed during the OFF period.

Specifically, to solve this problem, we design a novel win-
dow inheritance mechanism, in which the congestion window
size in the pervious ON period is conditionally reused to con-
trol the risk of heavy congestion. To smooth the switch queue
leap caused by the concurrent data transfers, our design also
regulates the congestion window size according to the end-to-
end delay. The contributions of this paper are as follows:
• We present the first extensive study to investigate the root

cause of performance degradation of highly concurrent HTTP
connections in DCN. We reveal the impact of HTTP’s ON/OFF
style on TCP protocol in the scenario of concurrent transfer,
and demonstrate experimentally why the congestion window
of the persistent TCP flow should be elaborately controlled at
the beginning of ON period.
• We propose a new transport protocol, TCP-TRIM, which

employs probe packets to detect congestion state and smooth
the aggressive increase in congestion window at end hosts.
By selectively inheriting the window size and maintaining
the queue delay near a target value, TCP-TRIM avoids the
TCP timeout and throughput collapse. Based on the theoretical
analysis of steady state behavior, we also give a guideline for
choosing the threshold in order to reduce congestion window
in TCP-TRIM.
•We design an asynchronous timer (AT) as a component of

TCP-TRIM to handle the high concurrency scenario. Through
actively regulating the start time of new packet train, AT helps
TCP-TRIM support the much higher concurrent data transfers
in typical Partition/Aggregation communication pattern.
• We evaluate the performance of TCP-TRIM by using

at-scale NS2 [22] simulations, and also on a small-scale
testbed. The results show that, under highly concurrent HTTP
connections, TCP-TRIM effectively avoids the TCP timeout
and yields remarkable performance gain (i.e., up to 80%) in
reducing the average completion time of HTTP response.

The remainder of this paper is organized as follows. The
design motivation of TCP-TRIM is presented in Section II. In
Section III, we describe the details of TCP-TRIM and present
the model analysis. We evaluate the performance of TCP-

TRIM on NS2 and real testbed in Section IV. The related
works are discussed in Section V. Finally, we make conclusion
in Section VI.

II. MOTIVATION

In this section, we present empirical studies to demonstrate
the ON/OFF pattern of HTTP traffic, and show it is very
common in the modern data centers with highly concurrent
HTTP connections. Then, we analyze why the TCP protocol
fails to provide satisfactory performance. Finally, we present
the design objectives.

A. ON/OFF Pattern in HTTP Traffic

To provide high-quality HTTP service, data center hosts
plenty of servers that play different roles in generating objects,
such as images, news, videos, and advertisements. When the
end users send their requests to an assigned server (i.e., front-
end server) [15], it parses the requests and invokes the back-
end servers to generate the responses. Then, these responses
are returned to the front-end server and finally shown in front
of the end user [3], [14].

For comprehensively understanding the characteristic of
HTTP traffic, we recorded the real workload of data center
at Central South University, China. Processing the 2 TB trace
data, we find that the HTTP traffic presents the ON/OFF
pattern, which is exactly consistent with the statements in
[1]. We also analyze a packet trace of a commodity data
center from [7]. This trace involves more than 300,000 TCP
connections, and about half of them have long packet inter-
arrival time. Moreover, the maximum packet inter-arrival time
of some connections even reaches to about 5 minutes, showing
that plenty of connections have experienced OFF periods.

To describe the ON/OFF pattern more clearly, we define a
packet train (PT) as a burst of packets on an HTTP connection
from the identical source to the identical destination. If the
time interval between two packets exceeds an inter-train gap,
they belong to different trains [23].

0.000 0.001 0.002 0.003 0.004 0.005 0.006

0

100

200

300

a long packet train

Pa
ck

et
 s

eq
ue

nc
e

nu
m

be
r

Time (s)

some short packet trains

Fig. 1. Understanding the “Packet Train”

1 4 16 64 256

1 4 16 64 256

0.2
0.4
0.6
0.8
1.0

0.2
0.4
0.6
0.8
1.0

C
D
F

(a) PT size (KB)

10 100 1000 10000

10 100 1000 10000

0.2
0.4
0.6
0.8
1.0

0.2
0.4
0.6
0.8
1.0

C
D
F

(b) PT interval (µs)

Fig. 2. CDFs of PT size and interval

We trace the HTTP traffic data generated by a selected
web server and plot the packet sequence number in Fig. 1.
It is shown that different sizes of packet trains are sent

IEEE/ACM TRANSACTIONS ON NETWORKING 3

by the web server intermittently. Since the packets of long
packet train (LPT) are transferred almost in a stream way,
they contribute much more to the increase of packet sequence
number compared to the packets of short packet train (SPT).
On the contrary, SPT often shows the behaviors of burst and
intermittence. Moreover, the number of packets in each SPT
varies from a few to dozens, while LPT carries nearly one
hundred packets or more. We also measure the data size and
inter-train gap of all PTs in the traffic trace. As shown in
Fig. 2(a), the data size of PT varies from 0.5 KB to 256 KB,
and about 70% is between 4 KB to 128 KB. The proportion
of tiny PTs (i.e., 6 4 KB) is lower than 20%, while 10%
is larger than 128 KB. However, as shown in Fig. 2(b), the
inter-train gap lasts from hundreds of microseconds to several
milliseconds.

B. Performance Impairments

HTTP connection builds up persistent TCP flow to reduce
the overhead from frequent three-way handshakes. However,
this delicate configuration combined with the concurrent data
transfer potentially impairs the transmission performance. The
detail description is given as follows.

1) Congestion Window of Persistent TCP Connection: Con-
sidering the frequent request/response interactions of HTTP,
if it has to build a new TCP connection for each response,
the massive operation for connection setup and teardown will
waste the network bandwidth and system resources. Thus,
the prevalent versions, such as HTTP 1.0 and 1.1, all build
up single persistent TCP flow and enable multiple requests
and responses to share such a single flow [16]. Although the
transfer efficiency is improved, there also comes another issue:
since in HTTP each PT starts with the window size inherited
from the previous PT, once a PT with plenty of packets arrives
with inheriting a large congestion window, massive packets
will be instantaneously injected into the bottleneck link thus
potentially generating heavy congestion.

!
"
#
$
%
&'
!
"
()
'"
*
!
)
(+
,
-
.
/
$
&0

1'2$

3

3

3
3
3
33

3
3
3

3
3

3

3
3
3
3

3

45 45466

7

8

9

:

;(<$.$'=$*(,-./$&

;(*<!,,$*(,-./$&

>?@9

>?@A

(a) Only connection 1

!
!
!

!
!

!
!
!
!

"#$%&%'(%)#*+&,%-

"#)$.**%)#*+&,%-

/'0%12 12133

4

5

6

7
.
8
9
%
:
-'
.
8
#;
'8
)
.
;
#<
*
+
&
,
%
-=

>?@5

>?@A

(b) Two concurrent connections

Fig. 3. Transferring PTs on persistent TCP connections.

This issue is visually described in Fig. 3. Wherein “ON”
means HTTP connection is active, while there is no traffic
during OFF period. AB (measured in packets) indicates the
current available bandwidth. If the total number of flying
packets is larger than AB, packet loss will happen. Fig. 3(a)
shows the window evolution of connection 1 on the bot-
tleneck link. During the first ON period of connection 1,
no congestion happens because its congestion window, w1,
is never more than AB. Thus, at the end of the first ON
period, w1 expands from 5 to 6 and is maintained until the

second ON period starts. However, during the OFF period of
connection 1, some incoming traffic from other connections
takes up some available bandwidth so that AB decreases to 3.
Unfortunately, this situation is not perceived by connection 1,
thereby at the beginning of its second ON period, 3 packets
are dropped. When it comes to the case of multiple concurrent
connections, this impairment becomes much severer. As shown
in Fig. 3(b), two coexisting connections cause all the packets
in the congestion window of connection 2 to be dropped,
resulting in TCP timeout [24].

For further elaborating this impairment, we install the
synthetic traffic derived from our real trace data on a many-to-
one scenario built on NS2. Specifically, five servers connect to
a front-end server via a switch with 100 packet buffer through
five 1 Gbps links with 50 µs latency. The front-end server
sends requests to each server. Each server immediately returns
a response after receiving a request. This request/response
style is very common in the HTTP applications. In this
scenario, each server totally returns 200 responses from 0.1s
sequentially. The data size of each response ranges from 2 KB
to 10 KB, and the interval between two neighboring responses
is randomly generated based on the mean 1 ms. After that,
each server sends a LPT with more than 128 KB data at 0.5
s. All the connections run on TCP Reno, and packet size
is set as 1460 bytes. The retransmission timeout (RTO) is
200 milliseconds as default. Meanwhile, we keep the 5 TCP
connections throughout the whole transmission.

0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

500
Time-out happens

Th
ro

ug
hp

ut
 (M

bp
s)

Time (s)

(a) Throughput with 200 ms RTO

0.0 0.2 0.4 0.6 0.8 1.0
0

250

500

750

1000

W
in

do
w

 s
iz

e
(p

ac
ke

ts
)

Time (s)

Time-out happens

(b) Window size with 200 ms RTO

0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

500

Th
ro

ug
hp

ut
 (M

bp
s)

Time (s)

(c) Throughput with 1 ms RTO

0.0 0.2 0.4 0.6 0.8 1.0
0

250

500

750

1000

W
in

do
w

 s
iz

e
(p

ac
ke

ts
)

Time (s)

(d) Window size with 1 ms RTO

Fig. 4. Throughput and window size of connection 5 with different RTO.

We trace the test results and find that most of the connec-
tions involve the occurrence of TCP timeouts. To be specific,
except connection 1, the numbers of timeouts in connections
2, 3, 4, and 5 are 1, 2, 2, and 2, respectively. For simplicity,
we just select connection 5 to make a concrete analysis
of throughput and congestion window. From Fig. 4(a), we
observe that two TCP timeouts happen at about 0.5 s and
0.7 s, hence the network efficiency is greatly degraded. To
clarify whether the blind window inheritance is the culprit
of performance degradation, we plot the window evolution of

IEEE/ACM TRANSACTIONS ON NETWORKING 4

connection 5 in Fig. 4(b). Wherein the window size is close
to 900 at 0.3 s, and kept until 0.5 s, which is the start time of
LPT transmission. Meanwhile, the inherited window sizes in
connections 1, 2, 3, and 4 all exceed 850 packets. Obviously,
such huge windows bring heavy congestion to the bottleneck
link, where the allowed number of flight packets is at most 118
(the summation of Bandwidth Delay Product and switch buffer
size) in this scenario. Besides, we also use a small RTO (1
ms) to run the simulation again, while the problem still exists,
and the window size is unacceptable yet, as shown in Fig. 4(c)
and Fig. 4(d).

In essence, the data size of each response is too small to
generate packet losses, so the sender mistakenly believes that
the current congestion window is still small and will not bring
about congestion, thus continuously expanding its congestion
window. Once LPT arrives, the sender spontaneously inherits
the congestion window in the previous ON period and sends
as many packets as possible in one RTT, thereby inducing
heavy congestion. In general, TCP sender immediately sends
a new packet once receiving a desired ACK, however, if this
consecutive process is broken by HTTP ON/OFF pattern, there
is no reason that the sender can still directly send data based
on the congestion window in the previous ON period.

Although some studies on WAN have already investigated
the problem caused by the ON/OFF traffic, their schemes may
not work because the physical environment of DCN is very
different from that of WAN. As described in [18], the existing
idle detection schemes in WAN cannot perceive an idle period
shorter than an RTO, while in DCN plenty of idle periods are
far from reaching the level of RTO (see Fig2(b)). Moreover,
the proposed methods for controlling the packet bursts lack
accurate bandwidth detection, thus fail to guarantee both high
bandwidth and low delay transmission, which is exactly the
crucial requirement for designing the data center transport
protocol [20], [21].

2) Impairments on Concurrent HTTP Connections: In com-
modity data centers, the communication pattern of Parti-
tion/Aggregation is prevalent and plays an important role for
providing HTTP-based services. In this pattern, a user request
is first distributed to hundreds, even thousands of servers to
calculate responses, called Partition. Then these responses are
sent back to the aggregation servers at nearly the same time,
which is the Aggregation [3]. In the aggregation phase, the
response traffic is unpredictable and often bursts in many-to-
one way, potentially leading to abundant packet losses and
TCP timeouts.

A similar problem that also happens in the scenario of
concurrent TCP transfer, namely TCP Incast, has been widely
investigated, and most of the works deal with it from modify-
ing the default settings of TCP [25], [26], [27], preventing the
switch queue buildup [3], and desynchronizing the transfer
[28], etc. However, to the best of our knowledge, none of
them specifically focuses on the impact of ON/OFF traffic on
concurrent HTTP connections [20], [21]. In the following part,
we show how concurrent HTTP connections further impair the
TCP transmission performance in the many-to-one scenario.

We rebuild the previous many-to-one scenario, and increase
the sender number from 2 to 40 step by step with varying link

bandwidth and latency ([1Gbps, 50 µs] and [10Gbps, 25 µs],
respectively). In each case of the number of senders, we vary
the data size of LPT from 32 KB to 256 KB with gradually
expanding the switch buffer (32 KB to 1 MB), and carry out
the “many-to-one” data transfers for a certain number of times
(about 1000 times) to observe if each run has experienced
the TCP timeout. Moreover, our tests are run based on two
situations, with and without the impact of ON/OFF traffic,
respectively. Besides, except the vanilla TCP, also we observe
if the state-of-the-art data center transport protocols, such
as DCTCP and L2DCT, suffer from a severer performance
degradation after introducing the ON/OFF HTTP traffic.

0.0

0.5

1.0

102451225612864

P
ro

ba
bi

lit
y

of
 T

C
P

 ti
m

eo
ut

buffer size (KB)

 TCP TCP-ON/OFF DCTCP DCTCP-ON/OFF
 L2DCT L2DCT-ON/OFF

32

(a) 1Gbps, 50 µs

0.0

0.5

1.0

102451225612864

P
ro

ba
bi

lit
y

of
 T

C
P

 ti
m

eo
ut

buffer size (KB)

 TCP TCP-ON/OFF DCTCP DCTCP-ON/OFF
 L2DCT L2DCT-ON/OFF

32

(b) 10Gbps, 25 µs

Fig. 5. More severer performance degradation.

In Fig. 5, with the impact of ON/OFF traffic, enlarging the
buffer for vanilla TCP does not greatly inhibit the occurrence
of TCP timeout. The probability of TCP timeout still remains
at a high level (more than 60% even with 1 MB buffer size).
Although other protocols perform a little better, the risk of
TCP timeout still exists after introducing the ON/OFF HTTP
traffic.

C. Summary

The above observation leads us to conclude that (i) the
ON/OFF pattern of HTTP traffic disturbs the increasing of
TCP’s congestion window, potentially triggering packet loss
at the beginning of ON period, and (ii) the transmission
performance becomes worse due to severe congestion in the
highly concurrent data transfer. These conclusions motivate us
to investigate a novel approach smoothing the aggressive in-
creasing of congestion window on persistent TCP connection.
In the rest of this paper, we present our TCP-TRIM as well
as a reference implementation in real testbed system.

III. TCP-TRIM

In this section, we firstly describe the design detail of
TCP-TRIM. Then, based on the theoretical analysis of the
steady state behavior, we give a guideline for determining the
threshold that is used for reducing congestion window in TCP-
TRIM. Besides, we present the details of asynchronous time,
which is used to help TCP-TRIM deal with highly concurrent
data transfer.

IEEE/ACM TRANSACTIONS ON NETWORKING 5

A. Design Details

The design goal of TCP-TRIM is to tune the aggressive
TCP behavior for highly concurrent HTTP connections in data
center. To achieve this goal, however, TCP-TRIM faces four
key challenges that (i) TCP-TRIM should obtain the accurate
congestion level when HTTP enters into the ON period, (ii)
TCP-TRIM should smooth the expansion of the congestion
window, while ensuring high utilization of bottleneck link,
(iii) TCP-TRIM should be able to cope with the highly
concurrent HTTP data transfer, and (iv) be easy to be deployed
without hardware refresh on switch, because the current trend
is to use cheap, Commercial Off-the-Shelf (COTS) switches
to construct large-scale data center networks [27]. In the
following, we describe the design details of TCP-TRIM.

1) Detecting inter-train gap: When packet loss does not
happen, the arrival of an ACK immediately triggers the send-
ing of next data packet. Hence the time interval between any
two neighboring packets in a PT is supposed to be less than the
round trip time. Based on this consideration, TCP-TRIM needs
to sense RTT for each packet, and considers the smoothed
RTT, which is calculated in Algorithm 2, as the inter-train gap.
As described in Algorithm 1, before sending a new packet, the
TCP-TRIM sender calculates the time interval ti between the
current time and the sending time of last packet. If ti is larger
than the smoothed RTT, the sender begins to detect congestion
and smooth the sending rate. Specifically, the sender records
the current size of congestion window cwnd and sets it to 2.
Then, only two packets are sent out in the current window and
are used as probe packets. Meanwhile, the sender pauses the
data transfer, waiting for ACKs of the two packets.

Algorithm 1 : Inter-train gap detection
1: Before sending a new packet :

(not a retransmission packet)
2: if ti > smooth RTT then
3: Saving the accumulated window size;
4: cwnd ← 2;
5: Sending the probe packets in current window;
6: Suspending the packet transfer;
7: end if
8: Call Algorithm 2;

Note that we do not claim that our method can identify
whether a packet that will be sent belongs to a new PT. In
effect, TCP-TRIM determines if the probe packets should
be sent from the viewpoint of packet level. The reason is
that larger RTT may occur between two neighboring packets
that belong to one PT. However, if ti exceeds the smoothed
RTT during one packet train’s transfer, it indicates that the
connection is experiencing congestion. Under this situation, it
is still necessary to detect congestion and smooth sending rate.

2) Tuning congestion window: For each arriving ACK,
TCP-TRIM measures the current RTT, and updates three vari-
ables in following three operations: (i) updating min RTT ,
which is the link latency without switch queuing, (ii) deter-
mining the RTT threshold K based on min RTT , and (iii)
calculating smooth RTT , which is a smooth value of the

current RTT. These variables are kept by the TCP connection
hosted by the sender. TCP-TRIM works as the following two
cases, which is shown in Algorithm 2.

Algorithm 2 : Ack action
1: For each arriving ACK (not a duplicated ACK) :
2: smooth RTT ← (1− α)smooth RTT + αRTT ;
3: if RTT < min RTT then
4: min RTT ← RTT ;
5: Update K;
6: end if
7: if the current Ack belongs to the probe packet then
8: if it arrived in a smooth RTT then
9: cwnd ← s cwnd(1− probe RTT−min RTT

min RTT);
10: Resume packet transfer;
11: else
12: cwnd ← 2;
13: Resume packet transfer;
14: end if
15: else
16: if RTT > K then
17: ep ← RTT−K

RTT ;
18: cwnd ← cwnd(1− ep

2);
19: else
20: cwnd ← cwnd+ 1

cwnd ;
21: end if
22: end if

If the current Ack belongs to the probe packet, the sender
begins to smooth the increasing of congestion window. If any
ACK of probe packet does not come back in a smoothed RTT,
the sender immediately sets the window size to 2, which is
the default value of minimum congestion window in TCP.
Otherwise, the sender tunes the current window size by

cwnd = s cwnd(1− probe RTT −min RTT

min RTT
), (1)

where s cwnd is the saved window size and probe RTT is
the average value of the probe packets. After this operation, the
sender restarts the transfer of remained packets based on the
tuned window size. Some previous works, such as [24], just
send the new PT with congestion window size 2 to minimize
the congestion possibility. However, this conservative method
may underutilize the bottleneck link if the network has enough
capacity to accommodate a large window size.

If the arriving ACK does not belong to the probe pack-
ets, the sender enters the queuing control phase. TCP-TRIM
measures the current RTT to monitor the real-time congestion
level. In our design, when the RTT exceeds the predefined
threshold K, it is convinced that packets have been buffered
in the switch queue. The proportion (denoted by ep) of the
exceeded part to the current RTT represents the congestion
level, which is calculated by

ep =
RTT −K

RTT
. (2)

Then we can also approximately deduce that in the current
congestion window there are ep×cwnd packets that should not

IEEE/ACM TRANSACTIONS ON NETWORKING 6

be ejected into the bottleneck link. However, in the high speed
DCN where only a small number of flows share the switch
buffer [3], directly using (1−ep)×cwnd to shrink window may
cause a large mismatch between the input rate to the link and
the available capacity, resulting in buffer underflows and loss
of throughput. Based on this consideration, we borrow the idea
from DCTCP [3] and stipulate that the window reduction of
TCP-TRIM can not be more aggressive than that of the legacy
TCP. Hence, when the sender finds its RTT is larger than a
predefined threshold K, its congestion window is adjusted to

cwnd = cwnd(1− ep

2
). (3)

Note that the Slow-Start, additive increase in Congestion
Avoidance, Fast Retransmit, and Fast Recovery of the con-
ventional TCP remain unchanged in TCP-TRIM.

3) Guideline for choosing K: generally, the traffic on the
HTTP connection can be divided into two states, the ON/OFF
state and the successive ON state. TCP-TRIM employs it-
s “inter-train gap detection” mechanism to deal with the
ON/OFF traffic. As to the successive traffic, TCP-TRIM turns
to control the queue buildup at the switch by sensing RTT in
real time. Once the measured RTT is greater than K, the TCP-
TRIM sender promptly carries on its backoff operation. Hence,
in this part, we analyze how to choose an appropriate K to
deal with the successive traffic for achieving high utilization,
low latency, and transferring data without TCP timeout as
well. Our method is based on the approaches reported in [3]
and [29]. Next, we respectively discuss the lower and upper
bound of K through analyzing the steady state behavior of
TCP-TRIM.

The Lower Bound (LB) of K: Intuitively, if K is set
as a smaller value, the congestion window is decreased in
advance thus avoiding the congestion earlier. However, this
may cause the insufficient use of bottleneck link capacity when
K is too small. Next, we discuss how to choose an appropriate
K guaranteeing the high bottleneck link utilization.

Suppose that N persistent TCP connections are totally
synchronized, and maintained between N servers and a single
front-end server. Each web server sends a single LPT with
infinite packets via the bottleneck link with capacity C (in
packets per second). The round trip time without queueing
between a server and the front-end host is D (measured in
seconds), and K is the RTT threshold for window back-off,
thus K −D represents the allowed queueing latency, then we
get the desired switch queue length Q by

Q = C(K −D). (4)

In the meantime, the number of packets that can be allowed
to stay in the network is CK, and for each synchronized PT
the allowed maximum value of window size is CK/N .

Assume that at time t, the queue length of switch is just
equal to Q, and at the same time each PT is in the ith RTT,
then we get the window size of each PT in the ith RTT by

W(i) =
CK

N
. (5)

Since W(i) does not result in the switch queue length that
exceeds Q, no PT will backoff and the window size of each

PT in the (i+ 1)st RTT is

W(i+1) =
CK

N
+ 1. (6)

However, the window size of each PT in the (i+1)st RTT
will make the queue length exceed Q, hence each connection
will slow down, and then the maximum queue length Qmax

is
Qmax = C(K −D) +N. (7)

In fact, Eq. (7) also indicates that each of N packets belongs
to a corresponding PT, queues one by one behind the allowed
queue part, hence we calculate the current RTT by

RTT(i+1)(j) = K +
j

C
, (8)

wherein j represents the jth PT, and j = 1, 2, 3, ..., N . From
Eqs. (2) and (3), we also get the current congestion level by

ep(i+1)(j) =
j

CK + j
. (9)

Thus the total sum of window decrement ∆cwnd(i+1)(j)

for all the PTs before the (i+ 2)nd round’s transfer is
N∑
j=1

∆cwnd(i+1)(j) =

(
CK +N

2N

) N∑
j=1

j

CK + j
. (10)

For guaranteeing the 100% utilization of bottleneck link,
the switch queue length should never be less than 0, then we
have

Qmax −
N∑
j=1

∆cwnd(i+1)(j) > 0. (11)

By substituting Eq. (7) into Eq. (11), we get

C (K −D) +N −
(
CK +N

2N

) N∑
j=1

j

CK + j
> 0. (12)

wherein
∑N

j=1 j/(CK + j) could be approximately consid-
ered as∫ N

1

j

CK + j
dj =N − 1 + CK ln

CK + 1

CK +N
. (13)

With Eqs. (13) and (12), we get

C (K −D) +N >(
CK +N

2N

)(
N − 1 + CK ln

CK + 1

CK +N

)
.

(14)

Since ln(CK+1)/(CK+N) < 0, Eq. (13) is smaller than
N − 1. Then we just need to let

C (K −D) +N >

(
CK +N

2N

)
(N − 1) . (15)

Meanwhile, we simplify it and get

K >
2ND

N + 1
− N

C
. (16)

By analyzing the right part of Eq. (16), we could create a
function about N (N > 0) by

F (N) =
2ND

N + 1
− N

C
, (17)

IEEE/ACM TRANSACTIONS ON NETWORKING 7

wherein D and C are two constants, and N is the independent
variable. It is intuitively plausible that 2ND/(N +1) has the
function limit 2D and the limit of N/C is +∞, hence F (N)
should have a upper bounder and be a Convex function. Then
we get

dF (N)

dN
=

2D − N2

C −
2N
C −

1
C

(N + 1)
2 . (18)

To judge whether F (N) has a stationary point we also get

N2

C
+

2N

C
+

1

C
− 2D = 0. (19)

Since 8D/C > 0, Eq. (19) has a positive solution and F (N)
has a stationary point. Next, the second derivative of F (N)
can be represented by

d(dF (N))

dN
=

−4D
(N + 1)3

. (20)

Thereby F (N) has a maximum value for the reason that
Eq. (20) is less than 0. Therefore, through solving Eq. (19),
we obtain the maximum value of F (N) and get

F (N) 6

(√
2CD − 1

)2
C

. (21)

Clearly, if 100% bottleneck link utilization is supposed to
be guaranteed at any time, K should be higher than F (N).
Meanwhile, K should also be larger than or equal to D.
Therefore, these limitations lead us to determine the lower
bound of K by

K > max

(√

2CD − 1
)2

C
,D

 . (22)

The Upper Bound (UB) of K: Once TCP timeout hap-
pens, the maintained TCP connection becomes idle so that
TCP throughput collapses, leading to the sharp decline in
transmission performance. Since a very large K potentially
generates packet losses and causes TCP timeouts, we analyze
the upper bound of K that provides efficient transfer without
TCP timeout. In the TCP control loop, the window expansion
in slow-start phase is more aggressive than that in congestion
avoidance phase thus more likely generating packet losses,
hence we focus on the slow-start phase to find out the upper
bound of K.

Consider an extreme situation where N persistent TCP
connections are totally synchronized, and in the slow-start
phase for the data transfer in the ith RTT. Suppose that their
packets in the ith RTT just make the switch queue length grow
at CK. Then we have

N∑
j=1

W(i)(j) = CK. (23)

Since the RTT of each connection is not greater than K, they
all stay in the slow-start phase, and their total number of
packets in the (i + 1)st RTT is 2CK. To avoid the packet
loss in the (i+ 1)st RTT, we just need

2CK ≤ B + CD, (24)

wherein B (measured by packets) is the switch buffer size.
Through solving Eq. (24), we get the upper bound of K by

K ≤ B + CD

2C
. (25)

Discussion: To guarantee both high bottleneck link utiliza-
tion and avoid TCP timeout, from Eqs. (25) and (22) we can
choose K by

K ∈

[
max

(
(
√
2CD − 1)

2

C
, D

)
,

B + CD

2C

]
. (26)

Nonetheless, Eq. (26) needs

B + CD

2C
> max

(
(
√
2CD − 1)

2

C
, D

)
. (27)

That is to say, when the lower bound of K is(√
2CD − 1

)2
/C, the switch buffer size should satisfy

B > 3CD − 4
√
2CD + 2. (28)

At the same time, if the lower bound of K is D, the buffer
size should be

B > CD. (29)

200 400 600 800 1000
0.0

0.4

0.8

1.2
200 400 600 800 1000

0

20

40

Th
ro

ug
hp

ut
 (G

bp
s)

The value of K (microseconds)

 with 2 concurrent flows

LB UB

 #
 o

f d
ro

pp
ed

 p
ac

ke
ts

 with 40 concurrent flows

UBLB

(a) 1Gbps, 50 µs

100 150 200 250 300
0

4

8

12
100 150 200 250 300

0
40
80
120
160

Th
ro

ug
hp

ut
 (G

bp
s)

The value of K (microseconds)

 with 2 concurrent flows

LB UB

 #
 o

f d
ro

pp
ed

 p
ac

ke
ts

 with 40 concurrent flows

UBLB

(b) 10Gbps, 25 µs

Fig. 6. Testing K with different link capacity and latency.

Next, we run NS2 experiments by assigning different link
parameters ([1Gbps, 50 µs] and [10Gbps, 25 µs], respectively)
to test if the threshold K determined from Eq. (26) works
well. To be specific, each sender server sends a long TCP flow
to a single receiver via a switch, and we gradually increase
the number of senders from 2 to 40 so that the many-to-one
scenario scales up. In each case of sender number, we evenly
select many sample values of K from the interval of Eq. (26),
and run test to observe the throughput and the number of
dropped packets.

Intuitively, the bottleneck link is prone to be underutilized
when there are only two senders, and it is more likely to
generate packet losses in large concurrent situation (e.g., 40
to 1 at here). Therefore, we just focus on the problem-prone
points of these two extreme cases, and show the test results
in Fig. 6. Fortunately, in both two extreme cases, packet loss
never happens, and the link utilization always remains at a
high level as well. Besides, in other cases of the number of
senders (are not shown in Fig. 6), the effect is even more
obvious. In TCP-TRIM, since any measured RTT greater than
K promptly triggers a backoff action, it is more sensitive to
network congestion and can control the queue buildup quickly,

IEEE/ACM TRANSACTIONS ON NETWORKING 8

which in turn contributes to the satisfied performance when
transferring the successive traffic.

Nonetheless, sometimes we can not determine K from
Eq. (26) when Eq. (27) can not be satisfied, which means the
switch buffer size is too small to meet Eq. (28) or Eq. (29).
For example, with 1 Gbps links and 200 µs RTT, the switch
buffer size should be no less than 52 KB to satisfy Eq. (27),
while for 10 Gbps links and 100 µs RTT, the swith should
provide 331 KB buffer at least. In fact, the popular productive
data center switch, like Cisco CAT4948, Triumph, etc., often
offers more buffer space for each port [3]. Hence Eq. (27) can
be established in most instances. Even if it can not be satisfied,
we also suggest that K should be determined based on Eq. (25)
since packet loss is the main reason of TCP timeout, which is
just the culprit of throughput collapse.

B. Component for Supporting High Concurrency

For providing HTTP-based service, the responses calculated
by the intra-rack workers are often sent back to the front-
end server in the same rack at nearly the same time, which
brings huge pressure to the switch buffer, especially when
plenty of workers (more than twenty in a rack) involve in this
process. Besides, along with incorrectly inheriting the window
size of previous PT, the transfer performance of concurrent
HTTP connections gets substantially worse as the “many-to-
one” scenario scales up.

To solve this problem, we design a asynchronous timer to
desynchronize the concurrent PT transfer. Specifically, when
a new PT arrives, both its detection packets and the remained
ones are sent out after waiting for a random time duration.
This action lowers the arrival intensity of concurrent packets
to some extent, and in turn leaves more time to transmit the
packets queueing at the switch output port.

In the TCP-TRIM control loop, there are two time points
that should start the asynchronous timer. The first one is the
time for transferring the probe packets, called “asynchronous
detection (AD)”, while the other one is “asynchronous stream
(AS)”, which is the time on receiving the ACKs of probe
packets.

AD Timer: Before a connection starts to send the probe
packets of a new PT, the TCP-TRIM sender actively waits
for a time (tAD) to desynchronize the detection process. In
our method, tAD is randomly selected from the interval [0,
RTTmax], wherein RTTmax is the maximum round trip time
of HTTP connection so far, and obtained by sensing RTT at
sender. Since RTTmax indicates the most heavy congestion
experienced by the connection so far, each connection starts
probing after waiting for RTTmax at most, thus as far as
possible avoids worsening the network congestion.

AS Timer: After the ACKs of probe packets are received,
again the sender waits for a time duration tAS before the
following data transfer. tAS is also randomly selected from
an interval [0, tAS max], wherein tAS max is the maximum
waiting time, and obtained based on the previous probe
packets. Next, we discuss how to determinate tAS max.

Suppose that N persistent TCP connections are maintained
between N web servers and a single front-end server. Each
connection is going to send packets with the congestion

window size of W via a bottleneck link whose capacity is
C (measured in packets/second). The buffer size at the output
port is B (measured in packets), and the link latency is D
(measured in seconds). Since the start time of each connection
belongs to [0, tAS max], the duration that NW packets arrive
at the switch is tAS max+W/C. Then we get the arrival rate
Cλ of the total NW packets by

Cλ =
NW

tAS max+ W
C

. (30)

Additionally, we also get FPAS , the number of flying packets
at tAS max+W/C, by

FPAS = (Cλ − C)

(
tAS max+

W

C

)
. (31)

If no packets are dropped when the NW packets arrive,
we have FPAS ≤ B + C(tAS max+W/C), and then with
Eqs. (30) and (31) we get

tAS max > (N − 2)W −B

2C
. (32)

On the other hand, transfer without queueing means that Cλ

should be less than or equal to C. However, Cλ < C indicates
that the bottleneck link is underutilized and should be avoided,
then with Eq. (30) we get

tAS max 6 (N − 1)W

C
. (33)

Therefore, to guarantee no packet losses and full bottleneck
link utilization as well, tAS max should simultaneously sat-
isfy Eqs. (32) and (33).

Finally, due to the operation of random selection, the
asynchronous timer might still generate some concurrency
even if assigning a larger selective interval. Therefore, in our
scheme we conservatively stipulate that each connection does
not start the remained data transfer until waiting for a time
duration tAS , which is randomly selected from the interval
[0, (N − 1)W/C].

C. Implementation

We implement the design of TCP-TRIM which controls the
congestion window at endpoint through RTT measurement.
There are three key steps in our design. The first one is RTT
measurement, which requires server to provide high-resolution
timer (i.e., up to microsecond level) at high data rate and low-
latency data center network. Fortunately, the option of high-
resolution timer has been provided in the version of 2.6 Linux
kernel and later. We simply use this timer to obtain accurate
RTT.

The second one is that the calculated window size will be
very small or even negative if the measured RTT is very large,
i.e., larger than 2 × min RTT . In TCP-TRIM, we set the
minimum value of congestion window to 2, as the same value
of that in legacy TCP protocols.

The third issue is the newly arrived PT may be very small,
i.e., one or two packets. In our implementation, if the outgoing
PT has only 1 packet or 2 packets, the TCP-TRIM sender will
still send them to detect congestion and make the congestion
window regulation based on Eq. (1).

IEEE/ACM TRANSACTIONS ON NETWORKING 9

In addition, to estimate N in Eq. (33), we give a simple
method as following. In a sense, probe RTT × C indicates
the number of flying packets before the probe packets arrive
at the switch output port. For these flying packets we could
heuristically assume that they are all probe packets coming
from different connections. Hence N could be considered as
probe RTT × C/2 because each connection sends only two
probe packets for each new PT. Note that we do not claim
that this method can reach an accurate and correct N , actually
the calculated N is often larger than the real value. A larger
N does not significantly affect the desynchronization since
Eq. (33) is established for getting an interval to randomly
assign a start time for transferring the remained packets,
instead of determining the precise start time.

IV. PERFORMANCE EVALUATION

In this section, we first run simulation tests to explain how
TCP-TRIM avoids the performance impairments described in
Section II. B. Then we examine the basic properties of the
TCP-TRIM algorithm, such as switch queue length, through-
put, convergence, and fairness. Next, we make performance
comparison between TCP-TRIM and two data center transport
protocols, DCTCP and L2DCT [29] in a fat-tree network
[30]. Finally, the implementations on the real testbed are
given to evaluate the TCP-TRIM performance in the real web
service scenario. Unless otherwise noted, K is set according
to Eq. (26), and α, the weight for the new RTT sample during
the smoothing process, is set to 0.25 throughout all the tests.

A. Impairments Test

In this part, we use TCP-TRIM to run the simulation tests
described in Section II. B, and examine if the problem can be
solved effectively.

In Fig. 7(a), we observe that only one spike appears, and
the total throughput rapidly reaches to about 800 Mbps at 0.5
s. TCP timeout does not happen, and all the data transfers
finish before 0.6 s. The trace also shows the queue length
never exceeds 20 packets, which is much less than the buffer
size (100 packets), thus no packet is dropped. Additionally,
Fig. 7(b) shows that TCP-TRIM strictly limits the window
increase during the 200 response transfers so that the window
size of each connection never exceeds 20 packets before
0.5 s. When the LPT arrives, the data packets for probing
the network congestion are sent out, and each window size
suddenly plummets to a very low value (2 packets). After the
ACKs of probe packets are received, the sender estimates the
current congestion level, and tunes the inherited window size
to an appropriate value. Besides, in Fig. 7(c), the probability
of TCP timeout with TCP-TRIM is much lower than those of
TCP, DCTCP, and L2DCT across all the cases (the results of
other protocols are shown in Fig. 5). TCP timeout does not
happen in most cases, and the data transfer is basically not
influenced by the ON/OFF traffic pattern.

B. TCP-TRIM Properties

For evaluating the particular aspects of TCP-TRIM perfor-
mance, we set up a simulation scenario as follows. Multiple
sender hosts connect to a single receiver server via a switch
with 100 packet buffer. All the links are 1 Gbps with 50 µs

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

Th
ro

ug
hp

ut
 (M

bp
s)

Time (s)

(a) Total throughput

0.490 0.495 0.500 0.505 0.510 0.515 0.520
0

5

10

15

20

25

C
on

ge
st

io
n

w
in

do
w

 (p
ac

ke
t)

Time (s)

 connection 1 connection 2 connection 3
 connection 4 connection 5

(b) Window evolution

0.0

0.2

0.4

0.6
µ

µ
µ

Pr
ob

ab
ili

ty
 o

f T
C

P
tim

eo
ut

buffer size (KB)

 (1 Gbps, 50 s)
 (1 Gbps, 50 s) + ON/OFF
 (10 Gbps, 25 s)
 (10 Gbps, 25 s) + ON/OFF

32 64 128 256 512 1024

µ

(c) Control the “ON/OFF”

Fig. 7. TCP-TRIM’s impairment test.

latency. Each sender host establishes one persistent connection
to the receiver.

Queue length: to find out whether TCP-TRIM can effec-
tively control the switch queue length, five hosts send 5 LPTs
to the receiver from 0.1 s to 0.9 s.

0.2 0.4 0.6 0.8
0

40

80

120

Q
ue

ue
 le

ng
th

 (p
ac

ke
t)

Time (s)

(a) TCP queue with 5 LPTs

0.2 0.4 0.6 0.8
0

40

80

120

Q
ue

ue
 le

ng
th

 (p
ac

ke
t)

Time (s)

(b) DCTCP queue with 5 LPTs

0.2 0.4 0.6 0.8
0

40

80

120

Q
ue

ue
 le

ng
th

 (p
ac

ke
t)

Time (s)

(c) L2DCT queue with 5 LPTs

0.2 0.4 0.6 0.8
0

40

80

120

Q
ue

ue
 le

ng
th

 (p
ac

ke
t)

Time (s)

(d) TCP-TRIM queue with 5 LPTs

0

20

40

60

40353025201510

AQ
L

(p
ac

ke
t)

of concurrent LPTs

 TCP DCTCP L2DCT TCP-TRIM

5

(e) Average queue length

0

1000

2000

3000

40353025201510

of

 d
ro

pp
ed

 p
ac

ke
ts

of concurrent LPTs

 TCP DCTCP L2DCT
 TCP-TRIM

5

(f) Dropped packet number

0

200

400

600

800

1000

40353025201510

G
oo

dp
ut

 (M
bp

s)

of concurrent LPTs

 TCP DCTCP L2DCT TCP-TRIM

5

(g) Goodput of the bottleneck link

Fig. 8. TCP-TRIM properties.

From Fig. 8(a), we observe that the saw-tooth behavior of
queue length is obvious. The TCP queue frequently touches the
upper boundary of switch buffer, which implies some packets
are dropped and TCP timeouts may come together as well.
In Fig. 8(b), the queue of DCTCP is well controlled, and
the switch queue length is kept about 20 packets, which is

IEEE/ACM TRANSACTIONS ON NETWORKING 10

just the preset value of mark threshold in DCTCP. The queue
built in L2DCT also shows the similar situation compared with
DCTCP. Since they all use 20 packets as the mark threshold
used by switch, their switch queue lengths are also almost the
same, just as shown in Fig. 8(c). In contrast, except TCP, the
queue lengths of other protocols are more stable and smaller,
which contributes to the lower packet loss ratio.

Fig. 8(e) shows the average queue length (AQL) under
different number of concurrent LPTs. To avoid the impact of
TCP timeout, we set RTO at 1 ms to reduce the pause time.
From the results, we observe that AQLs of all the protocols
show the gradually rising trend as the number of concurrent
LPTs increases.

However, AQL of TCP is much higher than those of other
protocols throughout all the cases. Overall, TCP-TRIM per-
forms better. We also record the number of dropped packets.
In Fig. 8(f), the dropped packet number of TCP becomes larger
as the number of concurrent LPTs increases, while for other
protocols, no drops and no TCP timeouts happen.

Goodput of the bottleneck link: from Fig. 8(g), we observe
that the goodput of TCP is the lowest across all the cases,
while other protocols have the similar performance. Their
bottleneck link utilizations is nearly 98% as well. Meanwhile,
the nearly full bottleneck link utilization in turn testifies the
analysis of K configuration described in Section III.

0 4 8 12 16 20
0

400

800

1200

Th
ro

ug
hp

ut
 (M

bp
s)

Time (s)

 c1 c2 c3 c4 c5

(a) TCP

0 4 8 12 16 20
0

400

800

1200

Th
ro

ug
hp

ut
 (M

bp
s)

Time (s)

 c1 c2 c3 c4 c5

(b) DCTCP

0 4 8 12 16 20
0

400

800

1200

Th
ro

ug
hp

ut
 (M

bp
s)

Time (s)

 c1 c2 c3 c4 c5

(c) L2DCT

0 4 8 12 16 20
0

400

800

1200

Th
ro

ug
hp

ut
 (M

bp
s)

Time (s)

 c1 c2 c3 c4 c5

(d) TCP-TRIM

Fig. 9. Convergence test (“c1, c2...” means “connection 1, connection 2...”).

Fairness and convergence: in order to test if TCP-TRIM
can quickly converge to the fair share, six servers are linked
to a switch with a buffer of 100 packets. The link between the
receiver (a selected server acts as the front-end) and the switch
is with 1 Gbps capacity and 50 µs latency, while the remained
links are with 1.1 Gbps and the same latency. In addition,
5 TCP connections are set up before the data transmission
happens, and they are kept throughout the whole test. From
0.1 s, we start to send a LPT and then sequentially begin
to send other 4 LPTs with 2 s time interval. From 12.1 s,
we stop these LPTs one by one using the same interval. The
throughputs of connections are depicted in Fig. 9.

From the results, we can observe that TCP-TRIM benefits
a lot from its better queue control. Altering the intensity of
input traffic does not greatly disorganize the bandwidth share
of TCP-TRIM. Consequently, each of the five connections
converges to their fair share quickly. For TCP and DCTCP,
although their throughputs are approximately fair on average,

the convergence process shows large variation throughout the
whole test. Since L2DCT is not a completely fair protocol, it
performs the worst.

Multi-hop networks: to evaluate TCP-TRIM’s performance
in a multi-hop, multi-bottleneck environment, we build up a
simulated network whose topology has been used in [3]. This
topology could also be considered as a part of the leaf-spine
topology, which is very prevalent in the commodity data center
[39], [40], [41], [42]. Although the cloud service providers
often tend to use high speed devices and redundant network
architectures to further expand the network capacity, especially
for the rack-to-rack communication. However, in some DCs,
a significant fraction of core links appear to be persistently
congested, but there is enough spare capacity in the core to
alleviate congestion [1] [43].

As shown in Fig. 10(a), both Groups A and B have
10 senders, and they all send LPTs to a front-end server.
Meanwhile, each sender in Group C also sends a LPT to a
receiver selected from Group D. There are two bottlenecks
in this topology: both the 10 Gbps link between switch 1 and
switch 2 and the 10 Gbps link between switch 2 and the front-
end server are oversubscribed. Except the 2 bottleneck links,
the remained links are with 1 Gbps bandwidth. The PTs from
group A encounter all the bottlenecks.

 !"#$%&#'

(&!)&!

*!"+,-./-

01-(&#'&!(

*!"+,-2/-

01-(&#'&!(

*!"+,-3/-

41-(&#'&!(
*!"+,-5/-

41-!&6&7)&!(

01-*8,(0-*8,(

9
:
7$
6
;
-0 9:7$6;-4

(a) Multi-hop topology

102

103

104

105

Standard Deviation

Total throughput (Mbps)

 TCP
 DCTCP
 L2DCT
 TCP-TRIM

11
15

0 17
67

3.7

16
01

7.3

16
18

7.7

10
5

34
0

23
9

17
8

(b) Performance Comparison

Fig. 10. Multi-hop scenario.

TABLE I
THE AVERAGE THROUGHPUT OF EACH GROUP.

Protocol Group A Group B Group C

TCP 259.6 Mbps 471.2 Mbps 233.9 Mbps

DCTCP 139.27 Mbps 814.24 Mbps 406.93 Mbps

L2DCT 237.93 Mbps 692.52 Mbps 335.64 Mbps

TCP-TRIM 342.7 Mbps 638.39 Mbps 318.84 Mbps

We measure the throughput of each flow and calculate the
average throughput of each group. The results are shown in
Table I. We also calculate the total throughput and the standard
deviation (SD) of the average throughput of each group for
each protocol. The standard deviation describes the gap of the
average throughput between groups. As shown in Fig. 10(b),
since frequent buffer overflows cause plenty of drops and TCP
timeouts, TCP gets the lowest total throughput. DCTCP has
the highest total throughput and standard deviation. Overall,
TCP-TRIM performs slightly better than others.

When dealing with the successive traffic, the fundamen-
tal difference between TCP, DCTCP, and TCP-TRIM is the

IEEE/ACM TRANSACTIONS ON NETWORKING 11

manner of shrinking the congestion window in the congestion
avoidance phase. Specifically, in each RTT, TCP always halves
the congestion window size once perceiving any packet loss,
while DCTCP at most cuts window in half, resulting in
the stronger competitiveness compared to TCP. TCP-TRIM
also cuts window in half at most. However, as a delay-
based scheme, its congestion-sensitivity makes it become more
gentle when grabbing the available bandwidth compared with
DCTCP. In addition, as L2DCT is a variant of DCTCP, it
weakens the competitiveness of long flow, hence it’s also less
competitive than DCTCP in this scenario. For these reasons,
the total throughput of DCTCP is the highest.

On the other hand, in this scenario, group A first shares
bandwidth with group C, then competes with group B, while
both group B and group C only share bandwidth with group
A, hence group A is the weakest. In view that DCTCP has
the strongest competitiveness compared with other protocols,
group A is robbed more bandwidth by other two groups
when running DCTCP, which results in the highest standard
deviation of DCTCP.

C. High Concurrency Test

In this section, we run tests in a high concurrency scenario
in which 40 sender servers altogether send traffic to a single
receiver server via a switch. The links between the senders and
the switch are with 1 Gbps and 50 µs latency, while the link
between the switch and the single receiver is with 10 Gbps
and 25 µs latency. Each sender server establishes multiple
persistent connections, and each connection totally transfers
512 KB data that has been divided into 64 responses. The
semisynthetic traffic of each connection is derived from the
productive workload described in Section II-A. The arrival
order of responses in each test is also randomly generated.
Besides, in view that the number of concurrent flows would be
less than 8000 even for a very heavily loaded leaf switch in a
typical commodity DC [39], we set the number of connections
hosted by each sender in this scenario as 25, 50, 75, and
100, respectively. Therefore, the total number of concurrent
connections is 1000, 2000, 3000, and 4000 accordingly. We
also run tests by varying the switch buffer size, such as 128,
256, 512, 1024, 2048, and 4096 KB.

To evaluate the performance, we trace the total number
of Retransmission Time Out (RTO). Since each connection
discretely transfers 64 responses, and the window size of the
previous response will be retained when the current response
starts, this can be treated as the “normal case” in the scenario
of typical HTTP traffic. However, to make a comprehensive
comparison, we also run tests in the scenario of “base case”,
which means the connection would terminate and the TCP-
SYN handshake would be needed to resume communication
when a response finishes.

In Fig. 11(a) and Fig. 11(b), TCP has the highest number of
RTO both in the “normal case” and in the “base case”. Even
with 4 MB buffer size, TCP still cannot eliminate the RTO
completely in the “normal case”. DCTCP and L2DCT have
the similar performance, and they all perform better in the
“base case”. TCP-TRIM always performs the best. The RTO
never occurs when the buffer size is larger than 512 KB in both

0

1000

2000

3000

409620481024512256128

of

 R
TO

Buffer size (KB)

 TCP DCTCP L2DCT TCP-TRIM

(a) 1000 (normal case)

0

1000

2000

3000

409620481024512256128

of

 R
TO

Buffer size (KB)

 TCP DCTCP L2DCT TCP-TRIM

(b) 1000 (base case)

0

2000

4000

6000

409620481024512256128

of

 R
TO

Buffer size (KB)

 TCP DCTCP L2DCT TCP-TRIM

(c) 2000 (normal case)

0

2000

4000

6000

409620481024512256128

of

 R
TO

Buffer size (KB)

 TCP DCTCP L2DCT TCP-TRIM

(d) 2000 (base case)

0

2000

4000

6000

8000

409620481024512256128

of

 R
TO

Buffer size (KB)

 TCP DCTCP L2DCT TCP-TRIM

(e) 3000 (normal case)

0

2000

4000

6000

8000

409620481024512256128

of

 R
TO

Buffer size (KB)

 TCP DCTCP L2DCT TCP-TRIM

(f) 3000 (base case)

0

4000

8000

12000

409620481024512256128

of

 R
TO

Buffer size (KB)

 TCP DCTCP L2DCT TCP-TRIM

(g) 4000 (normal case)

0

4000

8000

12000

409620481024512256128

of

 R
TO

Buffer size (KB)

 TCP DCTCP L2DCT TCP-TRIM

(h) 4000 (base case)

Fig. 11. The number of RTO in different number of concurrent connections.

cases. As the number of concurrent connections increases, the
performance of each protocol gets worse. TCP-TRIM needs at
least 2 MB buffer size to avoid RTO in the cases of 2000 and
3000 connections, as shown in Figs. 11(c)-11(f). When the
number of connections is further increased, such as the case
of 4000 connections in Fig. 11(g) and Fig. 11(h), TCP-TRIM
can not avoid RTO completely either.

Compared with the “base case”, the “normal case” means
that each connection is long-lived, and the congestion window
in the previous ON period is directly inherited when the
connection enters the ON period again. From the results of
“base case” in Fig. 11, we observe that the number of RTOs
in the “normal case” is lowered to some extent across all pro-
tocols. The reason is, in the “base case” scenario, establishing
connection for each response makes all the protocols enter
the ON period with using the initial window (e.g., 2 packets),
which is the smallest congestion window in the TCP control
loop. Besides, since each protocol in our test has the same ini-
tial window, this operation also narrows the performance gap
between protocols. Nonetheless, the asynchronous component
in our design still helps TCP-TRIM perform a little better
than others, although the performance gap is further shrunk
with increasing the number of concurrent connections.

D. Performance in the “fat-tree” network

To further understand the performance of TCP-TRIM in
typical data center scenario, we set up the popular “fat-tree”
topology network [30] to make a comprehensive performance
comparison. The parameter settings in DCTCP and L2DCT are
in line with [3] and [29] respectively.

IEEE/ACM TRANSACTIONS ON NETWORKING 12

0.5

1

2

4

8

16

pod=10

pod=8pod=6

C
om

pl
et

io
n

tim
e

(s
)

pod=4

 TCP(mean) TCP(maximum)
 DCTCP(mean) DCTCP(maximum)
 L2DCT(mean) L2DCT(maximum)
 TCP-TRIM(mean) TCP-TRIM(maximum)

Fig. 12. Completion times in 10 Gbps fat-tree network.

TABLE II
THE NUMBER OF TIMEOUTS IN EACH PROTOCOL.

Pod number TCP DCTCP L2DCT TCP-TRIM

4 13 9 9 8

6 85 75 71 39

8 452 440 274 141

10 1738 859 493 285

In this scenario, each server totally sends 1 MB data on a
persistent HTTP connection to a randomly selected sink server
which acts as the front-end. The 1 MB data are artificially
divided into some small objectives (from 2 KB to 6 KB) and
a big one (the remained data) in advance. Small objectives start
at 0.1 s, while the big one is sent from 0.5 s. We calculate
the mean of completion times of all the servers and also give
the maximum sample value in different network scale (pod
number is from 4 to 10). The link bandwidth and switch buffer
size are set as 10 Gbps and 350 KB respectively.

Fig. 12 shows that TCP always gets the worst performance
in all cases. As the network scales up and more workload
involves in, the tail completion times of TCP rise sharply.
On the other hand, other schemes perform better, either in
getting small mean completion time or in cutting the tail.
DCTCP employs Explicit Congestion Notification (ECN) to
control the switch queue length thus avoiding packet loss
and TCP timeout. L2DCT still uses ECN, and also weights
flow to further smooth the increase in congestion window.
However, just like TCP, both of the two protocols are unaware
of the problem of window inheritance on persistent HTTP
connection thus failing to actively limit the expansions of
their windows. As a whole, ascribing to the moderate window
inheritance and the timely delay-based queue control, TCP-
TRIM performs the best across all the test cases, and the
advantage is more significant as the number of pod increases.
For further testifying our observations, we also record the total
number of timeouts of each protocol in each test case. In
Table II, TCP still has the most timeouts, and is followed
by DCTCP and L2DCT. TCP-TRIM always gets the least
timeouts, especially when pod number is 10, the improved
ratio compared to TCP is up to 80%.

E. Real Implementation

In this section, we use several DELL OptiPlex 3010 Desktop
machines, which act as the back-end servers, to observe the
performance of TCP-TRIM in the real testbed. These machines
connect to the front-end server (CPU: Intel XEON E5-2650,
MEMORY: 24G) via a switch with 100 Mbps and 1 Gbps

links, respectively. The kernel patches for supporting DCTCP,
L2DCT, and TCP-TRIM are pre-installed into all the servers.

Firstly, we build a 2-to-1 scenario (two back-end servers
send data to the front-end server), and use Iperf [38] to
create multiple processes for generating long-lived traffic.
specifically, each machine sends 2, 4, 8, 16, and 32 LPTs,
respectively, hence the number of concurrent LPTs is 4, 8,
16, 32, and 64 accordingly. We show the switch queue length
when the LPT number is 4, and calculate the Average Queue
Length (AQL) of each test case. We also show the number of
dropped packets and overall goodput of each protocol.

0 5 10 15 20 25 30
0

20

40

60

80

100

Q
ue

ue
 le

ng
th

e
(p

ac
ke

t)

Time (s)

(a) The queue length of Reno

0 5 10 15 20 25 30
0

20

40

60

80

100

Q
ue

ue
 le

ng
th

e
(p

ac
ke

t)

Time (s)

(b) The queue length of CUBIC

0 5 10 15 20 25 30
0

20

40

60

80

100

Q
ue

ue
 le

ng
th

e
(p

ac
ke

t)

Time (s)

(c) The queue length of DCTCP

0 5 10 15 20 25 30
0

20

40

60

80

100

Q
ue

ue
 le

ng
th

e
(p

ac
ke

t)

Time (s)

(d) The queue length of L2DCT

0 5 10 15 20 25 30
0

20

40

60

80

100

Q
ue

ue
 le

ng
th

e
(p

ac
ke

t)

Time (s)

(e) The queue length of TCP-TRIM

0

40

80

120

6432168

AQ
L(

pa
ck

et
)

of concurrent LPTs

 Reno Cubic DCTCP
 L2DCT TCP-TRIM

4

(f) Comparing the AQL

100

1000

10000

6432168

of

 d
ro

pp
ed

 p
ac

ke
ts

of concurrent LPTs

 Reno
 Cubic
 DCTCP
 L2DCT
 TCP-TRIM

4

(g) Comparing the packet loss

0

400

800

1200

6432168

G
oo

dp
ut

 (M
bp

s)

of concurrent LPTs

 Reno Cubic DCTCP
 L2DCT TCP-TRIM

4

(h) Comparing the goodput

Fig. 13. The queue length, packet losses, and overall goodputs on testbed.

In Fig. 13(a) and Fig. 13(b), the queue lengths of Reno
and CUBIC frequently reach the upper bound on the buffer
size, which indicates that many packets are dropped. On the
contrary, as shown in Figs. 13(c)-13(e), the queues of DCTCP,
L2DCT, and TCP-TRIM are well controlled, hence packet loss
does not happen. Moreover, the queue length of TCP-TRIM is
the smallest, which is further testified in Fig. 13(f). Besides,
when running TCP-TRIM, no packets are dropped throughout
the whole test, and its goodput is satisfied as well, as shown
in Fig. 13(g) and Fig. 13(h).

Secondly, we use 100 Mbps links, and let two DELL
machines firstly send 2 large files to the front-end persistently.
After that, the third one sends 100 responses to the front-end.
The data size of each response is randomly generated from the
same mean size with 10% variation. In addition, we change
the mean response size of each test case from 32 KB to 1
MB. In each test case, we record the completion time of each
response and calculate the average response completion time

IEEE/ACM TRANSACTIONS ON NETWORKING 13

(ARCT). From Fig. 14, we observe that the ARCTs in all the
protocols become larger as the mean response size increases.
By contrast, the increasing trend of ARCTs in TCP-TRIM
is more gentle. Since TCP-TRIM is a delay-based scheme,
its high congestion-sensitivity makes the sender start backoff
earlier, hence the switch queue length is maintained at a lower
level, which in turn leads to a smaller queueing delay when
the third server sends responses. Also, effectively tuning the
inherited window size brings further improvement, thus TCP-
TRIM performs better than other schemes.

Next, we set up a simple web service scenario, in which 4
DELL machines establish 4 persistent connections and send
altogether 4000 responses to the front-end server via five 1
Gbps links. The distributions of response size and time interval
are totally in accordance with the description in Fig. 2. We
respectively run the test with using Reno, CUBIC, DCTCP,
L2DCT, and TCP-TRIM, and record the completion time of
each response. In Fig. 14(b), we give the distribution of the
completion times of all the responses for each protocol. In
this scenario, the discrete response transfer forms the ON/OFF
traffic pattern, hence all the protocols must deal with the
impact from the inherited window size. However, except from
TCP-TRIM, others can not perceive this impact, and they
directly use the inherited window size to transfer the newly
arriving responses, resulting in potential heavy congestion,
which in turn impairs their performance to some extent.
Finally, since nearly 99% of the response completion times
is below 25 ms, TCP-TRIM performs the best as a whole.

0.0
0.5
1.0
1.5
2.0
2.5
3.0

102451225612864

AR
C

T
(s

)

Mean response size (KB)

 Reno
 Cubic
 DCTCP
 L2DCT
 TCP-TRIM

32

(a) The average response completion time

0.00 0.05 0.10 0.15 0.20

0.00 0.05 0.10 0.15 0.20

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Response completion time (s)

 Reno
 Cubic
 DCTCP
 L2DCT
 TCP-TRIM

(b) The CDF of response completion time

Fig. 14. Real Implementation.

V. RELATED WORK

In the literature of data center transport mechanism, many
recent schemes aim to handle the highly concurrent communi-
cation. Among them, the protocols based on explicit feedback,
such as [3], [31], and [29], are popular due to their accurate
congestion notification [32], [33], [34], [35].

Data Center TCP (DCTCP) [3] leverages Explicit Con-
gestion Notification (ECN) to keep the switch queue length
around a given threshold thus alleviating the packet losses
and TCP timeouts. D2TCP [31] is proposed based on DCTCP,
while considering both the congestion control and deadline

requirements by elegantly adjusting the extent of window
decreasing. L2DCT [29] still follows the properties of DCTCP
in concurrency control while introducing the Least Attained
Service (LAS) scheduling at the sender. Unfortunately, we
observe that L2DCT fails to distinguish short and long flows
because any flow is long-lived with using the persistent TCP
connections.

As for the up-to-date delay-based schemes in data center
network, both [36] and [37] have experimentally demonstrated
that measuring simple packet delay at host is an effective
way to obtain the real-time congestion level. Hence they all
proposed their own congestion control method that exploits
latency-based congestion feedback to keep the delay low while
delivering high throughput.

These schemes are effective, and to some extent, can
alleviate the network congestion in the scenario of concurrent
data transfer. Nonetheless, when dealing with the ON/OFF
HTTP traffic, their major issue is that they directly use the
expired congestion window (probably does not match the
current network state) to send new traffic when the connection
state changes from idle to active. Since data center traffic
is burst-prone and the network state varies frequently [3],
the sender should measure the network state in real time,
especially when the connection just leaves the OFF period
and enters the ON period. Therefore, perceiving the impacts
from transferring ON/OFF traffic on the persistent connections
can further improve their performances, which significantly
motivates the study reported in this work.

In addition, the studies on the bursty behavior of TCP
over HTTP connection have already been conducted in WAN
context, such as [18] and [19]. However, in view that the
physical environment of DCN is very different from that
of WAN, directly using the existing schemes of WAN to
resolve the problem of DCN may not work. For example,
as described in [18], the existing idle detection schemes in
WAN can not perceive an idle period shorter than a RTO,
while in DCN plenty of idle periods are far from reaching
the level of RTO. Besides, these works do not consider how
to control the large-scale concurrent transfer, which is just
the unique characteristic of data center network. Moreover,
due to a lack of accurate bandwidth detection, the proposed
methods for controlling the packet bursts fail to guarantee
both high bandwidth and low delay transmission, which is
exactly the crucial requirement for designing the data center
transport protocol [20], [21]. For instance, both [18] and [24]
have suggested that the congestion window should be reset
before entering a new ON period. However, we argue that the
bottleneck link would be underutilized if the network actually
had enough capacity to enable the transfer to start with a large
window size.

Overall, to the best of our knowledge, none of the above
works specially focuses on handling the improper congestion
window evolution on concurrent HTTP connections in intra-
data center, which is exactly the goal of our work.

VI. CONCLUSION

We design and implement TCP-TRIM, a transmission con-
trol protocol for HTTP application scenario. By using probe

IEEE/ACM TRANSACTIONS ON NETWORKING 14

packets and delay-based congestion control, TCP-TRIM great-
ly improves the transmission performance of concurrent HTTP
traffic. Besides, TCP-TRIM is able to well control the switch
queue length thus avoiding packet loss and TCP timeout
without any hardware refresh. By using at-scale simulations
and testbed implementations, we show that TCP-TRIM has
better performance (up to 80% reduction in ARCT) than TCP.
Future work is the performance evaluation in a large-scale
testbed.

ACKNOWLEDGMENT

This work is supported by the National Natural Sci-
ence Foundation of China (61572530, 61502539, 61402541,
61462007 and 61420106009).

REFERENCES

[1] T. Benson, A. Akella, and D. Maltz, Network Traffic Characteristics of
Data Centers in the Wild, in Proc. IMC, 2010, pp. 267-280.

[2] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, The
Nature of Datacenter Traffic: Measurements & Analysis, in Proc. IMC,
2009, pp. 202-208.

[3] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Patel, B. Prabhakar, S.
Sengupta, and M. Sridharan, Data Center TCP (DCTCP), in Proc. ACM
SIGCOMM, 2010, pp. 63-74.

[4] s. Bensley, L. Eggert, D. Thaler, and G. Judd, Datacenter tcp (dctcp): Tcp
congestion control for datacenters, IETF Internet-Draft, draft-ietf-tcpm-
dctcp-04, 2017.

[5] A. Greenberg, J.R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D.
A. Maltz, P. Patel, and S. Sengupta, VL2: A Scalable and Flexible Data
Center Network, in Proc. ACM SIGCOMM, 2009, pp. 51-62.

[6] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, Managing
Data Transfers in Computer Clusters with Orchestra, in Proc. ACM
SIGCOMM, 2011, pp. 98-109.

[7] http://pages.cs.wisc.edu/tbenson/IMC10 Data.html, 2017.
[8] http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-

mapreduce-client-core/MapReduceTutorial.html, Jan. 20, 2017.
[9] http://www.bigsynapse.com/mapreduce-internals, 2017.
[10] T. Garry, T. Deshpande, and S. Karanth, Hadoop: Data Processing and

Modelling, Packt Publishing Ltd, 2016, charpter 11, pp. 901.
[11] M. Yu, A. Greenberg, J. Rexford, and L. Yuan, Profiling Network

Performance for Multi-tier Data Center Applications, in Proc. NSDI,
2011, pp. 57-70.

[12] Y. Wang, X. Que, and W. Yu, Hadoop acceleration through network
levitated merge, in Proc. ACM HPCNSA, 2011, pp. 57-66.

[13] C. Joachim, ”HTTP/TCP connection and flow characteristics,” Perfor-
mance Evaluation, vol. 42, no. 2, pp. 149-162, 2000.

[14] D. Ersoz, M. S. Yousif, and C. R. Das, Characterizing network traffic in
a cluster-based, multi-tier data center, in Proc. IEEE ICDCS, 2007, pp.
59-68.

[15] Y. Chen, R. Mahajan, B. Sridharan, and Z. Zhang, A Provider-side View
of Web Search Response Time, in Proc. ACM SIGCOMM, 2013, pp. 243-
254.

[16] J. J. Lee and M. Gupta, A new traffic model for current user web
browsing behavior, in Proc. Intel corporation, 2007.

[17] H. Choi and J. O. Limb, A behavioral model of web traffic, in Proc.
IEEE ICNP, 1999, pp. 327-334.

[18] https://tools.ietf.org/html/draft-hughes-restart-00, Dec. 1, 2001.
[19] M. Handley, J. Padhye, and S. Floyd, RFC 2861: TCP Congestion

Window Validation, June 2000.
[20] J. Zhang, F. Ren, and C. Lin, ”Survey on transport control in data center

networks,” IEEE Network, vol. 27, no. 4, pp. 22-26, Jul. 2013.
[21] S. Prasanthi, and J. Jung, ”Transport protocols for data center networks:

a survey of issues, solutions and challenges,” Photonic Network Commu-
nications, vol. 31, no. 1, pp. 112-128, 2016.

[22] The Network Simulator–ns-2, http://www.isi.edu/nsnam/ns, 2014.
[23] R. Jain and S. Routhier, ”Packet Trains-Measurements and a New

Model for Computer Network Traffic,” IEEE Journal of Selected Areas
in Communications, vol. SAC-4, no. 6, pp. 986-995, Sept. 1986.

[24] J. Zhang, F. Ren, L. Tang and C. Lin, Taming TCP Incast Throughput
Collapse in Data Center Networks, in Proc. IEEE ICNP, 2013, pp. 1-10.

[25] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. Andersen, G.
Ganger, G. Gibson, and B. Mueller, Safe and effective fine-grained TCP
retransmissions for datacenter communication, in Proc. ACM SIGCOMM,
2009, pp. 303-314.

[26] P. Cheng, F. Ren, R. Shu, and C. Lin, Catch the whole lot in an action:
Rapid precise packet loss notification in data centers, in Proc. USENIX
NSDI, 2014, pp. 17-28.

[27] J. Huang, Y. Huang, J. Wang, and T. He, Packet Slicing for Highly
Concurrent TCPs in Data Center Networks with COTS Switches, in Proc.
IEEE ICNP, 2015, pp. 22-31.

[28] J. Huang, T. He, Y. Huang, and J. Wang, ARS: Cross-layer adaptive
request scheduling to mitigate TCP incast in data center networks, in
Proc. IEEE INFOCOM, 2016, pp. 1-9.

[29] A. Munir, I. A. Uzmi, A. Mushtaq, S. N. Ismail, M. S. Iqbal, B.
Khan, Minimizing flow completion time in data centers, in Proc. IEEE
INFOCOM, 2013, pp. 2157-2165.

[30] Y. Zhang, and N. Ansari, On Architecture Design, Congestion Noti-
fication, TCP Incast and Power Consumption in Data Centers, IEEE
Communications Surveys & Tutorials, vol. 15, no. 1, pp. 39-64, First
quarter 2013.

[31] B. Vamanan, J. Hasan, and T. N. Vijaykumar, Deadline-Aware Datacen-
ter TCP (D2TCP), in Proc. ACM SIGCOMM, 2012, pp. 115-126.

[32] J. Wang, P. Dong, J. Chen, J. Huang, S. Zhang, and W. Wang, ”Adaptive
explicit congestion control based on bandwidth estimation for high
bandwidth-delay product networks,” Comput. Commun., vol. 36, no. 10,
pp. 1235-1244, Jun. 2013.

[33] W. Jiang, F. Ren, and C. Lin, ”Phase Plane Analysis of Quantized
Congestion Notification for Data Center Ethernet,” IEEE/ACM Trans.
Networking, vol. 23, no. 1, pp. 1-14, Feb. 2015.

[34] T. Zhang, J. Wang, J. Huang, Y. Huang, J. Chen, and Y. Pan, ”Adaptive-
Acceleration Data Center TCP,” IEEE Trans. Comput., vol. 64, no. 6, pp.
1522-1533, Jun. 2015.

[35] T. Zhang, J. Wang, J. Huang, Y. Huang, J. Chen, and Y. Pan, ”Adap-
tive marking threshold method for delay-sensistive TCP in data center
network,” Journal of Network and Computer Applications, vol. 61, pp.
222-234, Feb. 2016.

[36] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, and D. Zats, TIMELY: RTT-based
Congestion Control for the Datacenter, in Proc. ACM SIGCOMM, 2015,
pp. 537-550.

[37] C Lee, C Park, K Jang, S Moon, and D Han, Accurate Latency-based
Congestion Feedback for Datacenters, in Proc. USENIX ATC, 2015, pp.
403-415.

[38] A. Tirumala and L. Cottrell, Iperf Quick Mode, http://www-
iepm.slac.stanford.edu/bw/iperf res.html.

[39] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese,
CONGA: Distributed congestion-aware load balancing for datacenters, in
Proc. ACM SIGCOMM, 2014, pp. 503-514.

[40] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, pFabric: Minimal Near-Optimal Datacenter Transport, in
Proc. ACM SIGCOMM, 2013, pp. 435-446.

[41] Y. Zhao, K. Chen, W. Bai, M. Yu, C. Tian, Y. Geng, Y. Zhang, D. Li, and
S. Wang, RAPIER: Integrating Routing and Scheduling for Coflow-aware
Data Center Networks, in Proc. IEEE INFOCOM, 2015, pp. 424-432.

[42] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang, Practical
Information-Agnostic Flow Scheduling in Data Center Networks, in Proc.
USENIX NSDI, 2015, pp. 455-468.

[43] D. Zhuo, Q. Zhang, V. Liu, A. Krishnamurthy, and T. Anderson,
RackCC: Rack-level Congestion Control, in Proc. Hotnets, 2016.

Tao Zhang is pursuing his Ph.D. degree in the
Department of Information Science and Engineer-
ing, Central South University, China. His research
interests include congestion control and data center
networks.

IEEE/ACM TRANSACTIONS ON NETWORKING 15

JianXin Wang received the BEng and MEng de-
grees in computer engineering from Central South
University, China, in 1992 and 1996, respectively,
and the PhD degree in computer science from Cen-
tral South University, China, in 2001. He is the chair
of and a professor in Department of Computer Sci-
ence, Central South University, Changsha, Hunan,
P.R. China. His current research interests include
algorithm analysis and optimization, parameraized
algorithm, Bioinformatics and computer network. He
is a senior member of IEEE.

Jiawei Huang obtained his PhD (2008) and Mas-
ters degrees (2004) from the School of Information
Science and Engineering at Central South Univer-
sity. He also received his Bachelors (1999) degree
from the School of Computer Science at Hunan
University. He is now an associate professor in the
School of Information Science and Engineering at
Central South University, China. His research in-
terests include performance modeling, analysis, and
optimization for wireless networks and data center
networks.

Jianer Chen received the PhD degree in computer
science from Courant Institute of New York Uni-
versity in 1987 and the PhD degree in mathematics
from Columbia University in 1990. He is currently
a professor of computer science at Texas A&M Uni-
versity, and Central South University in Changsha,
Hunan, P.R. China. His main research is centered
on computer algorithms and their applications. His
current research projects include exact and param-
eterized algorithms, computer graphics, computer
networks, and computational biology.

Yi Pan received his B.Eng. and M.Eng. degrees
in computer engineering from Tsinghua University,
China, in 1982 and 1984, respectively, and his Ph.D.
degree in computer science from the University of
Pittsburgh, USA, in 1991. He is currently a Professor
and Chair of the Department of Computer Science
and Professor of the Department of Computer In-
formation Systems at Georgia State University. His
research interests include parallel and cloud comput-
ing, wireless networks, and bioinformatics. He is a
senior member of the IEEE.

Geyong Min received the B.Sc. degree in computer
science from Huazhong University of Science and
Technology, Wuhan, China, in 1995 and the Ph.D.
degree in computing science from the University of
Glasgow, Glasgow, U.K., in 2003. He is a Profes-
sor of high-performance computing and networking
with the Department of Mathematics and Comput-
er Science, College of Engineering, Mathematics
and Physical Sciences, University of Exeter, Exeter,
U.K. His research interests include future Internet,
computer networks, wireless communications, mul-

timedia systems, high-performance computing, modeling, and performance
engineering.

