25 research outputs found

    Fuzzy rule-based transfer learning for label space adaptation

    Full text link
    © 2017 IEEE. As the age of big data approaches, methods of massive scale data management are rapidly evolving. The traditional machine learning methods can no longer satisfy the exponential development of big data; there is a common assumption in these data-driving methods that the distribution of both the training data and testing data should be equivalent. A model built using today's data will not adequately address the classification tasks tomorrow if the distribution of the data item values has changed. Transfer learning is emerging as a solution to this issue, and many methods have been proposed. Few of the existing methods, however, explicitly indicate the solution to the case where the labels' distributions in two domains are different. This work proposes the fuzzy rule-based methods to deal with transfer learning problems where the discrepancy between the two domains shows in the label spaces. The presented methods are validated in both the synthetic and real-world datasets, and the experimental results verify the effectiveness of the introduced methods

    CO2 emission based GDP prediction using intuitionistic fuzzy transfer learning

    Get PDF
    The industrialization has been the primary cause of the economic boom in almost all countries. However, this happened at the cost of the environment, as industrialization also caused carbon emissions to increase exponentially. According to the established literature, Gross Domestic Product (GDP) is related to carbon emissions (CO2) which could be optimally employed to precisely estimate a country's GDP. However, the scarcity of data is a significant bottleneck that could be handled using transfer learning (TL) which uses previously learned information to resolve new tasks, more specifically, related tasks. Notably, TL is highly vulnerable to performance degradation due to the deficiency of suitable information and hesitancy in decision-making. Therefore, this paper proposes ‘Intuitionistic Fuzzy Transfer Learning (IFTL)’, which is trained to use CO2 emission data of developed nations and is tested for its prediction of GDP in a developing nation. IFTL exploits the concepts of intuitionistic fuzzy sets (IFSs) and a newly introduced function called the modified Hausdorff distance function. The proposed IFTL is investigated to demonstrate its actual capabilities for TL in modeling hesitancy. To further emphasize the role of hesitancy modelled with IFSs, we propose an ordinary fuzzy set (FS) based transfer learning. The prediction accuracy of the IFTL is further compared with widely used machine learning approaches, extreme learning machines, support vector regression, and generalized regression neural networks. It is observed that IFTL capably ensured significant improvements in the prediction accuracy over other existing approaches whenever training and testing data have huge data distribution differences. Moreover, the proposed IFTL is deterministic in nature and presents a novel way for mathematically computing the intuitionistic hesitation degree.© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Fuzzy Transfer Learning Using an Infinite Gaussian Mixture Model and Active Learning

    Full text link
    © 2018 IEEE. Transfer learning is gaining considerable attention due to its ability to leverage previously acquired knowledge to assist in completing a prediction task in a related domain. Fuzzy transfer learning, which is based on fuzzy system (especially fuzzy rule-based models), has been developed because of its capability to deal with the uncertainty in transfer learning. However, two issues with fuzzy transfer learning have not yet been resolved: choosing an appropriate source domain and efficiently selecting labeled data for the target domain. This paper proposes an innovative method based on fuzzy rules that combines an infinite Gaussian mixture model (IGMM) with active learning to enhance the performance and generalizability of the constructed model. An IGMM is used to identify the data structures in the source and target domains providing a promising solution to the domain selection dilemma. Further, we exploit the interactive query strategy in active learning to correct imbalances in the knowledge to improve the generalizability of fuzzy learning models. Through experiments on synthetic datasets, we demonstrate the rationality of employing an IGMM and the effectiveness of applying an active learning technique. Additional experiments on real-world datasets further support the capabilities of the proposed method in practical situations

    Fuzzy Rule-Based Domain Adaptation in Homogeneous and Heterogeneous Spaces

    Full text link
    © 2018 IEEE. Domain adaptation aims to leverage knowledge acquired from a related domain (called a source domain) to improve the efficiency of completing a prediction task (classification or regression) in the current domain (called the target domain), which has a different probability distribution from the source domain. Although domain adaptation has been widely studied, most existing research has focused on homogeneous domain adaptation, where both domains have identical feature spaces. Recently, a new challenge proposed in this area is heterogeneous domain adaptation where both the probability distributions and the feature spaces are different. Moreover, in both homogeneous and heterogeneous domain adaptation, the greatest efforts and major achievements have been made with classification tasks, while successful solutions for tackling regression problems are limited. This paper proposes two innovative fuzzy rule-based methods to deal with regression problems. The first method, called fuzzy homogeneous domain adaptation, handles homogeneous spaces while the second method, called fuzzy heterogeneous domain adaptation, handles heterogeneous spaces. Fuzzy rules are first generated from the source domain through a learning process; these rules, also known as knowledge, are then transferred to the target domain by establishing a latent feature space to minimize the gap between the feature spaces of the two domains. Through experiments on synthetic datasets, we demonstrate the effectiveness of both methods and discuss the impact of some of the significant parameters that affect performance. Experiments on real-world datasets also show that the proposed methods improve the performance of the target model over an existing source model or a model built using a small amount of target data

    Deep Transductive Transfer Learning for Automatic Target Recognition

    Full text link
    One of the major obstacles in designing an automatic target recognition (ATR) algorithm, is that there are often labeled images in one domain (i.e., infrared source domain) but no annotated images in the other target domains (i.e., visible, SAR, LIDAR). Therefore, automatically annotating these images is essential to build a robust classifier in the target domain based on the labeled images of the source domain. Transductive transfer learning is an effective way to adapt a network to a new target domain by utilizing a pretrained ATR network in the source domain. We propose an unpaired transductive transfer learning framework where a CycleGAN model and a well-trained ATR classifier in the source domain are used to construct an ATR classifier in the target domain without having any labeled data in the target domain. We employ a CycleGAN model to transfer the mid-wave infrared (MWIR) images to visible (VIS) domain images (or visible to MWIR domain). To train the transductive CycleGAN, we optimize a cost function consisting of the adversarial, identity, cycle-consistency, and categorical cross-entropy loss for both the source and target classifiers. In this paper, we perform a detailed experimental analysis on the challenging DSIAC ATR dataset. The dataset consists of ten classes of vehicles at different poses and distances ranging from 1-5 kilometers on both the MWIR and VIS domains. In our experiment, we assume that the images in the VIS domain are the unlabeled target dataset. We first detect and crop the vehicles from the raw images and then project them into a common distance of 2 kilometers. Our proposed transductive CycleGAN achieves 71.56% accuracy in classifying the visible domain vehicles in the DSIAC ATR dataset.Comment: 10 pages, 5 figure

    EEG-Analysis for Cognitive Failure Detection in Driving Using Type-2 Fuzzy Classifiers

    Get PDF
    The paper aims at detecting on-line cognitive failures in driving by decoding the EEG signals acquired during visual alertness, motor-planning and motor-execution phases of the driver. Visual alertness of the driver is detected by classifying the pre-processed EEG signals obtained from his pre-frontal and frontal lobes into two classes: alert and non-alert. Motor-planning performed by the driver using the pre-processed parietal signals is classified into four classes: braking, acceleration, steering control and no operation. Cognitive failures in motor-planning are determined by comparing the classified motor-planning class of the driver with the ground truth class obtained from the co-pilot through a hand-held rotary switch. Lastly, failure in motor execution is detected, when the time-delay between the onset of motor imagination and the EMG response exceeds a predefined duration. The most important aspect of the present research lies in cognitive failure classification during the planning phase. The complexity in subjective plan classification arises due to possible overlap of signal features involved in braking, acceleration and steering control. A specialized interval/general type-2 fuzzy set induced neural classifier is employed to eliminate the uncertainty in classification of motor-planning. Experiments undertaken reveal that the proposed neuro-fuzzy classifier outperforms traditional techniques in presence of external disturbances to the driver. Decoding of visual alertness and motor-execution are performed with kernelized support vector machine classifiers. An analysis reveals that at a driving speed of 64 km/hr, the lead-time is over 600 milliseconds, which offer a safe distance of 10.66 meters

    Multi-Label Takagi-Sugeno-Kang Fuzzy System

    Full text link
    Multi-label classification can effectively identify the relevant labels of an instance from a given set of labels. However,the modeling of the relationship between the features and the labels is critical to the classification performance. To this end, we propose a new multi-label classification method, called Multi-Label Takagi-Sugeno-Kang Fuzzy System (ML-TSK FS), to improve the classification performance. The structure of ML-TSK FS is designed using fuzzy rules to model the relationship between features and labels. The fuzzy system is trained by integrating fuzzy inference based multi-label correlation learning with multi-label regression loss. The proposed ML-TSK FS is evaluated experimentally on 12 benchmark multi-label datasets. 1 The results show that the performance of ML-TSK FS is competitive with existing methods in terms of various evaluation metrics, indicating that it is able to model the feature-label relationship effectively using fuzzy inference rules and enhances the classification performance.Comment: This work has been accepted by IEEE Transactions on Fuzzy System

    A LightGBM-Based EEG Analysis Method for Driver Mental States Classification

    Get PDF
    Fatigue driving can easily lead to road traffic accidents and bring great harm to individuals and families. Recently, electroencephalography- (EEG-) based physiological and brain activities for fatigue detection have been increasingly investigated. However, how to find an effective method or model to timely and efficiently detect the mental states of drivers still remains a challenge. In this paper, we combine common spatial pattern (CSP) and propose a light-weighted classifier, LightFD, which is based on gradient boosting framework for EEG mental states identification. ,e comparable results with traditional classifiers, such as support vector machine (SVM), convolutional neural network (CNN), gated recurrent unit (GRU), and large margin nearest neighbor (LMNN), show that the proposed model could achieve better classification performance, as well as the decision efficiency. Furthermore, we also test and validate that LightFD has better transfer learning performance in EEG classification of driver mental states. In summary, our proposed LightFD classifier has better performance in real-time EEG mental state prediction, and it is expected to have broad application prospects in practical brain-computer interaction (BCI)
    corecore