233 research outputs found

    Towards Vulnerability Discovery Using Staged Program Analysis

    Full text link
    Eliminating vulnerabilities from low-level code is vital for securing software. Static analysis is a promising approach for discovering vulnerabilities since it can provide developers early feedback on the code they write. But, it presents multiple challenges not the least of which is understanding what makes a bug exploitable and conveying this information to the developer. In this paper, we present the design and implementation of a practical vulnerability assessment framework, called Melange. Melange performs data and control flow analysis to diagnose potential security bugs, and outputs well-formatted bug reports that help developers understand and fix security bugs. Based on the intuition that real-world vulnerabilities manifest themselves across multiple parts of a program, Melange performs both local and global analyses. To scale up to large programs, global analysis is demand-driven. Our prototype detects multiple vulnerability classes in C and C++ code including type confusion, and garbage memory reads. We have evaluated Melange extensively. Our case studies show that Melange scales up to large codebases such as Chromium, is easy-to-use, and most importantly, capable of discovering vulnerabilities in real-world code. Our findings indicate that static analysis is a viable reinforcement to the software testing tool set.Comment: A revised version to appear in the proceedings of the 13th conference on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA), July 201

    Towards Smart Hybrid Fuzzing for Smart Contracts

    Get PDF
    Smart contracts are Turing-complete programs that are executed across a blockchain network. Unlike traditional programs, once deployed they cannot be modified. As smart contracts become more popular and carry more value, they become more of an interesting target for attackers. In recent years, smart contracts suffered major exploits, costing millions of dollars, due to programming errors. As a result, a variety of tools for detecting bugs has been proposed. However, majority of these tools often yield many false positives due to over-approximation or poor code coverage due to complex path constraints. Fuzzing or fuzz testing is a popular and effective software testing technique. However, traditional fuzzers tend to be more effective towards finding shallow bugs and less effective in finding bugs that lie deeper in the execution. In this work, we present CONFUZZIUS, a hybrid fuzzer that combines evolutionary fuzzing with constraint solving in order to execute more code and find more bugs in smart contracts. Evolutionary fuzzing is used to exercise shallow parts of a smart contract, while constraint solving is used to generate inputs which satisfy complex conditions that prevent the evolutionary fuzzing from exploring deeper paths. Moreover, we use data dependency analysis to efficiently generate sequences of transactions, that create specific contract states in which bugs may be hidden. We evaluate the effectiveness of our fuzzing strategy, by comparing CONFUZZIUS with state-of-the-art symbolic execution tools and fuzzers. Our evaluation shows that our hybrid fuzzing approach produces significantly better results than state-of-the-art symbolic execution tools and fuzzers

    A Survey of Symbolic Execution Techniques

    Get PDF
    Many security and software testing applications require checking whether certain properties of a program hold for any possible usage scenario. For instance, a tool for identifying software vulnerabilities may need to rule out the existence of any backdoor to bypass a program's authentication. One approach would be to test the program using different, possibly random inputs. As the backdoor may only be hit for very specific program workloads, automated exploration of the space of possible inputs is of the essence. Symbolic execution provides an elegant solution to the problem, by systematically exploring many possible execution paths at the same time without necessarily requiring concrete inputs. Rather than taking on fully specified input values, the technique abstractly represents them as symbols, resorting to constraint solvers to construct actual instances that would cause property violations. Symbolic execution has been incubated in dozens of tools developed over the last four decades, leading to major practical breakthroughs in a number of prominent software reliability applications. The goal of this survey is to provide an overview of the main ideas, challenges, and solutions developed in the area, distilling them for a broad audience. The present survey has been accepted for publication at ACM Computing Surveys. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5FvcComment: This is the authors pre-print copy. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5Fv

    Specognitor: Identifying Spectre Vulnerabilities via Prediction-Aware Symbolic Execution

    Full text link
    Spectre attacks exploit speculative execution to leak sensitive information. In the last few years, a number of static side-channel detectors have been proposed to detect cache leakage in the presence of speculative execution. However, these techniques either ignore branch prediction mechanism, detect static pre-defined patterns which is not suitable for detecting new patterns, or lead to false negatives. In this paper, we illustrate the weakness of prediction-agnostic state-of-the-art approaches. We propose Specognitor, a novel prediction-aware symbolic execution engine to soundly explore program paths and detect subtle spectre variant 1 and variant 2 vulnerabilities. We propose a dynamic pattern detection mechanism to account for both existing and future vulnerabilities. Our experimental results show the effectiveness and efficiency of Specognitor in analyzing real-world cryptographic programs w.r.t. different processor families
    • …
    corecore