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Professor André Baptista for their assistance and dedicated involvement in every step,

throughout this long process. Their support was fundamental to reach this stage.

I also have to thank the persons that I encountered along my journey, including my col-

leagues at INESC TEC and most recently at Blaze Information Security. Their kindness,

comprehension of my battles, and empathy was essential to be able to conciliate my stud-

ies and job.

I would also like to thank my parents and my friends for supporting me and providing

a continuous encouragement throughout my years of study, with a lot of patience. This

accomplishment would not have been possible without them.



UNIVERSIDADE DO PORTO

Abstract
Faculdade de Ciências da Universidade do Porto

Departamento de Ciência de Computadores

MSc. Information Security

Resilience of code obfuscation to optimization and fuzzing

by Frederico LOPES

Code obfuscation is being widely used not only to mask code in commercial products but

also to obfuscate malware code. These obfuscations are made so that it is much harder to

reverse engineer and analyse a given program, such that it becomes very hard or almost

infeasible to do it. Although it is possible to manually reverse these obfuscation transfor-

mations, it is very time-consuming and impractical for much of the obfuscated software

out there. Our goal is to analyse if state-of-the-art optimizers found on compilers and

such can reverse these obfuscations, to what extent and what is their impact in automatic

code analysis tools. For that, we built a framework for obfuscating, optimizing, analysing

and extracting metrics from a set of programs ranging from very simple code, programs

with several source-code files and functionalities, and programs specifically built to test

automated analysis tools. These programs were obfuscated using the Tigress obfuscator

of C programs, optimized using the Clang/LLVM compiler infrastructure and the Souper

peephole optimizer, analysed with KLEE and AFL++, and had the metrics extracted from

them, analysis and generated programs. To make this we implemented a set of scripts

that automatically accomplish these steps, including building our own reproducible en-

vironment, and contributed to the update of an open source tool. From our results, we

concluded that the optimizations could not systematically revert the obfuscations by im-

proving the analysis of the tools, and in some cases they actually hindered the analysis.

We could not find a variable that explains these results and the evidence shows that the

behaviour of the analysis tools on the obfuscations and code optimizations is highly de-

pendent on the original program. Another conclusion of this work is that the maximum

time an analysis tool can run is the most important variable of all others to achieve a

higher coverage and more reliable results.
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Resiliência de ofuscação de código a optimizações e fuzzing

por Frederico LOPES

A ofuscação de código está a ser amplamente utilizada não só para mascarar código em

produtos comerciais, mas também para ofuscar malware. Estas ofuscações são feitas de

tal forma que é muito mais difı́cil realizar engenharia reversa e analisar um determinado

programa, tornando-a muito difı́cil ou quase inviável de fazê-la. Embora seja possı́vel in-

verter manualmente estas transformações de ofuscação, é muito demorado e impraticável

para grande parte do software ofuscado. O nosso objectivo é analisar se os optimizadores

de última geração encontrados em compiladores e outros softwares podem inverter estas

ofuscações, até que ponto, e qual é o seu impacto nas ferramentas de análise automática

de código. Para isso, construı́mos uma framework para ofuscação, optimização, análise e

extracção de métricas a partir de um conjunto de programas que vão desde códigos muito

simples, programas com vários ficheiros de código-fonte e várias funcionalidades, e pro-

gramas especificamente construı́dos para testar ferramentas de análise automática. Estes

programas foram ofuscados utilizando o ofuscador Tigress de programas C, optimizados

utilizando a infra-estrutura do compilador Clang/LLVM e o optimizador peephole Sou-

per, analisados com as frameworks KLEE e AFL++, e tiveram as suas métricas extraı́das,

que sejam das análises ou programas gerados. Para tal, implementámos um conjunto

de scripts que realizam automaticamente estas etapas, incluindo a construção do nosso

próprio ambiente reprodutı́vel, e contribuı́mos para a actualização de uma ferramenta

de código-fonte aberto. A partir dos nossos resultados, concluı́mos que as optimizações

não conseguiram reverter sistematicamente as ofuscações, melhorando a análise das fer-

ramentas, e em alguns casos impediram a análise de obter melhores resultados. Não

conseguimos encontrar uma variável que explicasse estes resultados e as provas mostram

mailto:up201604674@fc.up.pt


que o comportamento das ferramentas de análise sobre as ofuscações e optimizações de

código é altamente dependente do programa original. Outra conclusão deste trabalho é

que o tempo máximo que uma ferramenta de análise pode correr é a variável mais impor-

tante de todas as outras para se conseguir uma cobertura mais elevada e reultados mais

fidedignos.
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Chapter 1

Introduction

Code obfuscation is used to prevent an attacker from reverse engineering a software pro-

gram. On commercial products, the end goal is to distribute software but prevent that

someone reverse engineers it to ”steal” intellectual property (IP). On malware, the end

goal is also to prevent reverse engineer and analysis of the given code, but the reason is

so that it’s harder to understand its behaviour, what its functions are and how they are

achieved. Although it does not prevent an attacker to reverse engineer the obfuscated

program entirely, it makes the task very hard and impractical if the code is not changed

to simplify its operations. To give an example, an obfuscation can be replacing classes

and variable names with meaningless labels and adding unused or meaningless code to

an application script. Software obfuscation is the technique of transforming the code of

a program into another but considerably much harder to understand while retaining its

semantics. This means that for each input, the modified program must output the same

result as the original program (semantically equivalent). In essence, obfuscation is a pro-

tection against MATE (Man-At-The-End) attacks.

1.1 Motivation

Nowadays more and more applications are being analysed by automatic analysis tools

in order to find bugs that the programmer and tester missed, and are starting to become

part of the testing phase in Continuous Integration/Continuous Delivery (CI/CD) sys-

tems and in DevSecOps, both static and dynamic analysis tools. One of them is symbolic

execution which analyses the program symbolically, meaning that an interpreter runs the

1



2 RESILIENCE OF CODE OBFUSCATION TO OPTIMIZATION AND FUZZING

program where the inputs are symbolic, making the variables being symbolic values (for-

mulas). When it encounters a branch, it divides the execution in two, one where the

condition is true and another where it is false, and updates the constraints on those paths.

The execution of the program resumes in both branches but separately. Because this tech-

nique can ”test” all possible inputs, it is useful to detect memory bugs, discover which

code in unreachable and with what inputs a certain part of the code is reachable. Another

technique is fuzzing which essentially takes a set of inputs, mutates them, and executes

the program with that new input to attempt to increase the coverage of the analysis on

the target program.

1.2 Problem Statement

Although obfuscation is being widely used, in commercial and non-commercial reasons,

commercial and academic state-of-the-art obfuscation techniques are vulnerable to a plethora

of automated deobfuscation attacks, such as symbolic execution, optimization, taint anal-

ysis, or program synthesis. While there are several revised and enhanced obfuscation

techniques, most of them can also be circumvented or removed entirely. This happens

because these techniques only focus on a single attack vector, and attackers can use other

more effective techniques to overcome them [1].

An open question is whether code optimisations supported by many compilers can aid

or speedup dynamic analysis, given that in order to make code faster, optimization some-

times simplifies the code. Can they be seen as akin to ”deobfuscation” in that sense? Some

obfuscations can be reverted using code optimizations, but with which and to what ex-

tent? How to measure it? And how is their impact on automated analysis tools? Our

main objective is to test if certain optimizations can revert obfuscation transformations

and how automatic analysis tools such as symbolic execution and fuzzing are affected by

it. There have been some studies that try to revert the transformations that obfuscation

tools make, but no empirical study, tool or framework has been created to answer this

question. Our assumption is that some optimizations can in fact revert some of the ob-

fuscations, partially or event totally (e.g., encode arithmetic obfuscation), while others it

cannot (e.g., virtualization obfuscation). Our aim is to develop a framework and work-

flow to standardize these types of tests so that we have an automated and analytical way

to answer these questions.
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1.3 Contributions

This thesis proposes a framework that can automatically obfuscate and optimize pro-

grams, analyse them, and extract metrics from them, including the coverage of the test

cases generated by the analysis. The framework takes form as a set of scripts that auto-

mates these steps for each phase of the framework and outputs structured result files that

can be used to analyse the results, a set of contributions to open source tools, and a study

on how the analysis tools react when obfuscated code is optimized. Using the previously

mentioned solutions, we studied the effect of optimizations on obfuscations using two

analysis frameworks, KLEE and AFL++.

1.4 Outline

With the work described in this dissertation we made the following contributions:

• Chapter 2 presents and examines the state of the art of the field of obfuscations,

optimizers, symbolic execution and fuzzing by giving an general overview of the

techniques and tools used to better understand their functionality and how they

work. It describes the features and limitations of each tool, and why we chose them

to use on our framework.

• Chapter 3 states and describes our approach to using these tools to fulfill our re-

quirements in all phases of the framework.

• Chapter 4 describes in detail our implementation. This includes the scripts created

along with their functionality, the tools used and their options when called, and

other software built to support the development and execution of the analysis.

• Chapter 5 described an evaluation of the proposed framework for a set of C pro-

grams, along with a detailed discussion of the associated results.

• Chapter 6 presents concluding remarks and discussed future work.



Chapter 2

State of the Art

In this chapter, we present the state-of-the-art on the topics contained in this thesis. We

begin by giving an introduction to the topic of software obfuscation on Section 2.1, and

on Section 2.2 by surveying related work about obfuscations, methods to evaluate obfus-

cations, symbolic execution and fuzzing tools including their limitations, ways to hinder

symbolic execution, etc. After, on Section 2.3, we describe in detail what is obfuscation,

which transformations exist, their purpose, and present an explanation of each one in-

cluding the programs available that can apply them. On Section 2.4 we depict what is

fuzzing, the advantages and disadvantages of the different types of fuzzing, and the tools

available. On Section 2.5 we depict what is symbolic execution, its advantages and limita-

tions, and the tools available. On Section 2.6 we present what optimization is used for in

the current time, which optimizers exist and their advantages and disadvantages. Finally,

on Section 2.7, we describe what is the cyclomatic complexity of a program and how this

value is calculated.

2.1 Background

There is a good amount of theoretical research on obfuscating computation models but

not many practical. While computation models are mathematical and their properties

usually provable, real code is more complex with many edge cases and differences be-

tween programming languages and it is harder to solve their properties. Due to this

complexity and differences in programming languages, the tools available focus on only

one programming language and a set of obfuscations, in general.

4
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The level of obfuscation of a program is defined by the transformations done to it and in

what order. This is the concept of layered obfuscation [2]. When obfuscating a program,

developers need to know the techniques available. Such knowledge is essential to choose

the appropriate techniques and their order of application. Depending on the order of

the obfuscations applied, the resulting program can have several orders of magnitude of

obfuscation level. If a developer wishes to use virtualization as an transformation, then it

should be applied first, so that the level of obfuscation of subsequent transformations is

multiplied for the reason that the virtualization transformation adds a massive amount of

code.

2.2 Related Work

Collberg et al. [3] proposed a general taxonomy for evaluating the quality of obfuscation

transformations. This taxonomy states that code obfuscation should be scored accord-

ing to these properties: potency against human-assisted (manual) attacks, resilience against

automated attacks, speed and size cost (in terms of performance overhead) added by

the obfuscation, and stealthiness, which measures the difficulty of identifying parts of

obfuscated code in a given program. This article also proposed using several existing

software features to evaluate potency, namely: program length, cyclomatic complexity,

nesting complexity, data flow complexity, fan-in/out complexity, data structure complex-

ity and object-oriented design metrics.

Banescu et al. [4] designed a system to predict the resilience of obfuscations against sym-

bolic execution attacks using machine learning. To achieve it, it proposes a general frame-

work for selecting the most significant software features to estimate the effort of an au-

tomated attack. It then uses the selected features to build regression models that can

predict the resilience of different obfuscations against automated attacks (deobfuscation).

To evaluate the obfuscations, they try to predict the time needed to deobfuscate a set

of C programs, using an attack based on symbolic execution, or in other words, predict

the effort needed by an automated deobfuscation attack. Before, Banescu et al. [5] also

proposed using the effort needed to run a deobfuscation attack to measure software ob-

fuscation resilience against automated attacks, but does not attempt to predict the effort

needed for deobfuscation, which this paper tries to answer.
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Banescu et al. [4] work is complementary to the Obfuscation Executive (OE) proposed

by Heffner and Collberg [6]. The OE uses a framework to choose a sequence of obfusca-

tions that should be applied to a program in order to increase its potency against manual

attacks, while this work is focused on the resilience against automated attacks.

Yadegari et al. [7] addresses the problem that many of the deobfuscation approaches are

obfuscation-specific, and although it is important and useful, such approaches fail to de-

liver correct results if the obfuscation is slightly different or uses another technique to

achieve the same result. The approaches that exist to deobfuscate the virtualization trans-

formation make strong assumptions about the structure and properties of the interpreter

and dispatcher and this can cause the deobfuscator to not recognize the virtualization

technique and hence not output the right result. They solve this issue by designing an

automatic way to deobfuscate the two most biggest challenges in reverse engineering:

emulation-based obfuscation (e.g., virtualization) and return-oriented programming. By

using taint analysis, optimizations (code simplification, dead code elimination and con-

trol transfer simplification), concolic execution (concrete + symbolic execution), control

dependency analysis (build the control-flow graph), they can effectively strip out the ob-

fuscation and extract the logic of the original code.

Banescu and Collberg et al. [8] proposes a way to characterize the resilience of code

obfuscation against automated symbolic execution attacks. What they found was that

transformations that preserve program semantics can be easily deobfuscated by symbolic

execution based deobfuscators, including virtualization. They also propose a new trans-

formation that slightly changes program behavior, rendering symbolic execution based

deobfuscation ineffective in practice.

Garba and Favaro created SATURN [9], a tool that can revert some obfuscations and re-

compile the obfuscated code based on the LLVM framework. More heavy obfuscations

such has virtualization and self-modification are left out. They propose a way to lift ex-

ecutables back into the compiler intermediate language LLVM-IR and introduce a tech-

nique to recover the control flow graph of an obfuscated binary with an iterative con-

trol flow graph construction algorithm, based on compiler and external optimizations

(Souper) and symbolic execution.

On the contrary of SATURN, Salwan et al. [10] focuses on defeating the virtualization
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obfuscation. They present a generic and fully automatic approach to revert virtualiza-

tion, using taint analysis, symbolic execution and code simplification. To show the result,

they solved Tigress Challenge in a fully automated manner [11]. They also provide some

potential defenses to these attacks.

Another approach is taken by Coogan et al. [12] that uses the programs interaction with

the operating system though system calls to identify the instructions that affect these in-

teractions. This is because the program must use this interface in order to make impact

with his behaviour. The resulting set of instructions is an approximation of the original

code, while the remaining are semantically uninteresting and are discarded.

Blazytko et al. developed Syntia [13], a generic automated code deobfuscation using

program synthesis, guided by Monte Carlo Tree Search (MCTS). It works by simplify-

ing execution traces by dividing them into distinct trace windows whose semantics are

then ”learned” by the synthesis. They managed to synthesize the semantics of arithmetic

instruction handlers in two of the best commercial virtualization-based obfuscators (VM-

Protect and Themida) with a success rate of more than 94%

Yadegari et al. [14] proposes three obfuscations that cause trouble to concolic analysis

and leading them to imprecision and/or excessive resource usage. Two of these tech-

niques can already be found in malware in the wild while the third is a simple variation

on an existing technique. They show that with such obfuscations, existing symbolic exe-

cution based deobfuscators can’t revert the obfuscation or the time is increased in several

orders of magnitude, and purposes methods to solve this issue using a combination of

fine-grained bit-level taint analysis and architecture-aware constraint generation.

Branko Spasojević has done something similar to this thesis. He developed a plugin for

the IDA Pro disassembler capable of rewriting binaries using optimization algorithms to

facilitate the work of reverse engineers [15].

Suk et al. applies obfuscations and optimizations at source-level for C/C++ code [16].

They developed an optimization tool called SCORE (Source Code Optimization & RE-

construction) that optimizes the obfuscated source-code. They claim that applying the

optimizations at source-level is more effective because when using optimizers for Inter-

mediate Languages (IR) it is hard to revert the IR code to source code (lifting), due to their
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goal being to output optimized source-code, even when SCORE output source code is not

optimized by the compiler optimization module.

Liang et al. combined trace analysis, symbolic execution and compiler optimization mod-

ules to revert the virtualization obfuscation [17]. They developed an symbolic execution

based deobfuscator to automatically extract the semantic information of the virtual ma-

chine bytecode handlers (the execution of each bytecode corresponds to the invocation of

its handler) and represent the handlers in high-level programming languages. This way

they can process each bytecode and translate it into source code that represents the in-

vocation of the corresponding functions, allowing to compile the code and in the process

use the compiler’s optimizer.

Canavese et al. [18] proposes a way to predict the value of the potency of an obfuscation

by using Artificial Neural Networks (ANN). This solves the issue of only being able to

compute the potency value after the obfuscations has been applied and can now estimate

a priori it’s value. They base their calculation on Collberg et al. research where he pro-

poses a way to compute the potency by measuring changes in complexity metrics induced

by the obfuscation transformations [3].

Unfortunately in this field there is a lack of maturity in the tools available. Only a small

subset of them work as expected and there is always something missing or does not work

quite well. We selected an obfuscator of C code, a symbolic execution program and a

fuzzing program. These tools were selected by their maturity, features and documenta-

tion. Although obfuscation has been around for over 30 years, the tools available, com-

mercially and open-source, are not well maintained, have limitations and have a lack of

documentation, especially on errors.

Nowadays there are many tools that implement some techniques to obfuscate programs,

and there are obfuscators for various programming languages. In this thesis, we will focus

our efforts in the obfuscation, optimization and analysis of C programs due to the fact that

obfuscation, optimization, symbolic execution and fuzzing tools are more mature in this

language and compiled code.
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2.3 Obfuscations

When referencing obfuscation, each tool implements its set of techniques and features of

those transformations. There are many ways to achieve a certain transformation and they

can vary in effectiveness, arduousness of reverse engineering by manual and automatic

tools, code size, and speed of the resulting code.

The obfuscator we chose was Tigress [19]. Because we could not lift the code to an

analysable format we had to opt for an source-code C obfuscator and the most complete

one is Tigress. Tigress is an obfuscator for the C language that supports many defenses

against both static and dynamic reverse engineering and de-virtualization attacks. Tigress

as a source-to-source transformer, it takes a C source program as input and returns a new

C program as output. It is written in OCaml (about 80,000 lines of code) on top of two

libraries: CIL (a C front end) and MyJit (a runtime code generator). It is one of the state-of-

the-art obfuscators due to it’s numerous transformations, options and usage in research

papers. Below we highlight a set of obfuscations performed using Tigress that we used

on our tests.

2.3.1 Literals Encoding

This transformation replaces literal integers with opaque expressions and literal strings

with calls to functions that generate them at runtime. This makes it harder to determine

the strings in a program by static analysis. One example is to hide the IP address of the

malware’s control and command server.

Example:

1 void decodeStr(char *string){

2 ...

3 for(int i=0; string[i] != ’\0’; i++)

4 string[i] = decodeChar(string[i]);

5 ...

6 }

7

8 int main(){

9 ...

10 char* string = "Hsc1Had2jHG";

11 decodeStr(string);

12 ...
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13 }

LISTING 2.1: Literals Encoding string example

2.3.2 Arithmetic Encoding

Replace integer arithmetic with more complex expressions. This transformation essen-

tially adds redundant operations to arithmetic expressions. It is used so that it is harder

to determine the operands and results of an arithmetic operation.

Example:

1 x + y = x - ¬y - 1

2 = (x ⊕ y) + 2*(x ∧ y)

3 = (x ∨ y) + (x ∧ y)

4 = 2*(x ∨ y) - (x ⊕ y)

LISTING 2.2: Arithmetic Encoding example

2.3.3 Data Encoding

This transformation behaves just like literals encoding but applies the technique to vari-

ables. This makes it harder to determine the result of a variable and its operands.

Example:

1 int main() {

2 int arg1 = ...

3 int arg2 = ...

4 int a = arg1;

5 int b = arg2;

6 int x = a*b;

7 printf("x=%i\n",x);

8 }

LISTING 2.3: Data Encoding example (Before)

1 int main() {

2 int arg1 = ...

3 int arg2 = ...

4 int a = 1789355803 * arg1 + 1391591831;

5 int b = 1789355803 * arg2 + 1391591831;;
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6 int x = ((3537017619 * (a * b) - 3670706997 * a) - 3670706997 * b)

+ 3171898074;

7 printf("x=%i\n", -757949677 * x - 3670706997);

8 }

LISTING 2.4: Data Encoding example (After)

2.3.4 Branches Encoding

The goal of this transformation is to make it harder for automatic analysis tools (such as

disassemblers) to determine the target of branches. It transforms branch jump operands

to indirect jumps.

Example:

1 jmp L

LISTING 2.5: Branches Encoding example (Before)

1 void bf(){

2 ra <- L

3 ret

4 }

LISTING 2.6: Branches Encoding example (After)

2.3.5 Opaque Predicates

An opaque predicate is a predicate whose value is known to the obfuscator but is difficult

to deduce. Essentially it is a branch where it is always true or false. Normally is used

together with junk code so that it produces a cluttered control flow graph with paths that

are infeasible and/or redundant. This makes analysis based on the control flow graph

very hard. There are three types of opaque predicates. Invariant opaque predicates are

built from well-known algebraic theorems like x2 < 0, which is always false. Contextual

opaque predicates are made using a value which is determined on runtime but only when

executing a specific context. This means that the obfuscator knows the result of a predicate

at some moment in the code but if the context is not satisfied the result is the inverse. The

last is dynamic opaque predicates, being the most advanced one, which always evaluates

the predicate to the same value, but the initial value is different is each run.
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Example:

1 ...

2 int a, b;

3 ...

4 if (7*a*a-1 != b*b)

5 // always true

6 runCode ();

7 else

8 bogusCode ();

LISTING 2.7: Opaque Predicates example

2.3.6 Control-Flow Flattening

Control-Flow Flattening puts every basic block at the same level. It employs a dispatcher

and keeps a variable to determine the next basic block to execute. This is a dispatcher-

based obfuscation that puts all basic blocks at the same level. The order of execution of

the code blocks is determined at runtime, so it’s is impossible to know the control flow

of the program without executing the program. Tigress uses Chenxi Wang’s algorithm to

achieve this. The example below transforms a while loop into another form with switch-

case.

Example:

1 int a = 1;

2 int b = 2;

3 while (a < 10) {

4 b = a+b;

5 if (b > 10)

6 b--;

7 a++;

8 }

9 printf("%d", b);

LISTING 2.8: Control-Flow Flattening example using switch (Before)

1 int swVar = 1;

2 switch (swVar) {

3 case 1:

4 a = 1; b = 2;

5 swVar = 2;
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6 break;

7 case 2:

8 if (!(a<10))

9 swVar = 6;

10 else

11 swVar = 3;

12 break;

13 case 3:

14 b = b+a;

15 if (!(b>10))

16 swVar = 5;

17 else

18 swVar = 4;

19 break;

20 case 4:

21 b--;

22 swVar = 5;

23 break;

24 case 5:

25 a++;

26 swVar = 2;

27 break;

28 case 6:

29 printf("%d", b);

30 break;

31 }

LISTING 2.9: Control-Flow Flattening example using switch (After)

2.3.7 Anti Taint Analysis

The goal of this transformation is to disrupt analysis tools that make use of dynamic

taint analysis. It works by transferring the value of the tainted variable indirectly to an

untainted variable. Tigress counts up to the variable of the tainted variable and applies the

value (of the count variable) to the untainted variable bit-by-bit, tested in an if statement.

1 int taintedVar , untaintedVar;

2 scanf("%d", taintedVar);

3 for (int i=INT_MIN; i < INT_MAX; i++)

4 if (i == taintedVar)

5 untaintedVar = i;



14 RESILIENCE OF CODE OBFUSCATION TO OPTIMIZATION AND FUZZING

LISTING 2.10: Anti Taint Analysis example

2.3.8 Anti Alias Analysis

The goal of this transformation is to disrupt static analysis tools that make use of inter-

procedural alias analysis. Alias Analysis is composed of techniques which attempt to

determine whether or not two pointers can point to the same object in memory in a given

moment of the code. There are many different algorithms for alias analysis and many

different ways of classifying them but Tigress current implementation is simplistic: it

simply replaces all direct function calls with indirect ones.

Example:

1 x = foo(n)

LISTING 2.11: Anti Alias Analysis example (Before)

1 void *arr[] = {..., & foo , ...};

2

3 int expr = 42;

4

5 int x = ((int (*)(int n ))arr[expr])(n);

LISTING 2.12: Anti Alias Analysis example (After)

2.3.9 Virtualization

Virtualization is an emulation-based obfuscation and consists in interpreting the program

instead of running it directly, just like Python is run. Virtualization-based obfuscators

transform the instructions of the original code to instructions of a virtual instruction set,

that is specialized for that specific interpreter. The generated interpreter consists of a vir-

tual instruction set, specific of that interpreter, a bytecode array which contains the code

in the virtual instruction set, a virtual program counter (VPC) and a virtual stack pointer

(VSP) that act just like the normal program counter and stack pointer, a dispatch unit, and

a list of instruction handlers, one for each virtual instruction. To make the program more

difficult to analyse the transformation has been designed to induce as much diversity as

possible, i.e. every decision made is dependent on a randomization seed.
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1 enum ops {Locals = 116, Plus = 135, Load = 60, Goto = 231,

2 Const = 3, Store = 122, Return = 72};

3

4 unsigned char bytecode [41] = {

5 Locals ,24,0,0,0,Const ,1,0,0,0,Locals ,24,0,0,0,Load ,Plus ,Store ,Locals ,

6 28,0,0,0,Const ,0,0,0,0,Store ,Goto ,4,0,0,0,Locals ,28,0,0,0,Load ,Return };

7

8 int main() {

9 while (1) {

10 switch (*pc) {

11 case Const: pc++; (sp+1) ->_int = *(( int *)pc); sp++; pc+=4; break;

12 case Load: pc++; sp->_int = *(( int *)sp->_vs); break;

13 case Goto: pc++; pc+= *(( int *)pc); break;

14 case Plus: pc++; (sp+-1)->_int=sp->_int+(sp+-1)->_int; sp --; break;

15 case Return: pc++; return (sp->_int); break;

16 case Store: pc++; *(( int *)(sp+-1)->_vs)=sp->_int; sp+=-2; break;

17 case Locals: pc++; (sp+1) ->_vs=(void *)(vars +*(( int *)pc));

18 sp++; pc+=4; break;

19 }}

LISTING 2.13: Anti Taint Analysis example

2.4 Fuzzing

Fuzzing or fuzz testing is an automated software testing technique and the most relevant

in vulnerability discovery. It is in essence a dynamic concrete execution technique, be-

cause the values of the variables are not symbolic but rather always concrete. Fuzzing

consists in providing random inputs mutated from an initial set of user-provided inputs

that can cause crashes, assertion failures or memory leaks, finding potential security vul-

nerabilities [20]. If the application crashed when given a specific input, the input was

considered to have triggered a bug.

Fuzzing can be improved with several enhancements to help the fuzzer achieve a higher

code coverage [21]. Bellow we highlight some of these improvements:

• Coverage-based fuzzing: coverage guided fuzzers seek to generate inputs that max-

imize the amount of code executed in the program for the reason that the more cov-

erage an analysis has, the more likely it is to find a vulnerability [22]. American
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Fuzzy Lop [23] is a state-of-the-art fuzzer that uses coverage as a metric for its guid-

ance and has found several bugs in popular open-source software. Although the

fuzzer will select the inputs that can help in reaching higher code coverage, the lack

of semantic awareness of the program makes the fuzzer not knowing which parts of

the input to mutate to cause a certain block of code to be executed.

• Taint-based fuzzing: taint-based fuzzers guide their exploration by analysing which

inputs control which variables making the fuzzer aware of the parts an input should

be mutated for it to drive execution down a given path but it is still unaware of

how to mutate the input [24]. Depending on the taint technique employed it can

deliver more complete results or performance improvements. The most complete

taint analysis is a bit-level taint analysis due to it’s precision but it requires more

memory when used [25].

• Symbolic-assisted fuzzing: symbolic execution engines have very limited scalability

due to the path explosion problem and one solution is to use faster analysis tech-

niques such as fuzzing. This approach leverages the strength of both techniques,

i.e., semantic awareness of the program that is used to mutate inputs that can in-

crease code coverage and faster analysis time because of the fuzzing part. Symbolic

execution is used to collect constraints for an input and negate them to generate

new inputs because the more coverage an analysis has, the more likely is to find an

vulnerability. Due to this some researchers are using the two techniques together in

order to obtain better performance [26] [27].

In order to use fuzzers at their full potential, the target program needs to be instrumental-

ized with sanitizers. One example is to use the address sanitizer that causes the program

to crash if an memory error happened, e.g., buffer overflow. By making the program crash

when improper operations are done the fuzzer can know that a bug was found with that

specific input. Normally this is done using the compilers embedded sanitizers.

Unfortunately, fuzzers don’t function properly if initial test cases are not provided. With-

out carefully crafted test cases to mutate, a fuzzer has a hard time exploring most part of

the code, covering only shallow functionality.

There are 4 types of fuzzers [20]:
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• Black-box fuzzing: black-box fuzzing is the oldest and simplest form of fuzzing.

These type of fuzzers are useful when dealing with unknown applications but be-

cause they lack knowledge of the internals of the target program, they do not deliver

the best results because they do not know if the program reach a higher coverge or

not.

• Gray-box fuzzing: gray-box fuzzers work without knowing the source code of the

target program and gain the information about the internals of the program though

program analysis.

• White-box fuzzing: white-box fuzzers build on heavyweight program analysis or

constraint solving, and can this way collect more information about it though anal-

ysis on the code and how inputs affect the program state. Leverages techniques from

program analysis just like gray-box fuzzing but use more effective methods such as

symbolic execution. The advantage with white-box fuzzing is that every new test

generate will in principle cover a new execution path in the program, increasing the

coverage. This is the type of fuzzer that offers better results.

• Grammar-based fuzzing: in these type of fuzzers the user needs to provide a gram-

mar that represents the input format of the target program so that the fuzzer can

generate tests based on the rules the user has provided for the input. This search if

very powerful because the user can guide the exploration to test specific patterns in

the input and gives the fuzzer a way to generate inputs without the user needing to

supply an initial set of inputs.

2.4.1 AFL++

There are lots of fuzzers but unfortunately very few are still actively maintained and have

updated and efficient techniques. We chose a black-box fuzzer, AFL++ (AFLplusplus)

[28], due to being the state-of-the-art tool in this category. It comes with it’s own compiler

to instrument the code with checks and information. Even though it needs access to the

code to instrument the target program but can also instrument binary targets using QEMU

[29], because it does not employ any heavyweight program analysis or constraint solving

as it is not entirely a white-box fuzzer. In order for it to function, the final binary needs

to be instrumented and a set of initial inputs must be given so that the fuzzer can mutate
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them and try new inputs. We can also choose the number of cores and the maximum time

that the fuzzer runs, which gives us the ability to do multi-core execution.

2.5 Symbolic Execution

Symbolic execution, a white-box fuzzing method, is a program analysis technique intro-

duced in the mid-1970s to test whether certain properties of programs can be violated,

i.e. the program does not behave correctly for all types of input. Some examples might

be that no divisions by 0 can be done, no NULL pointers are dereferenced, there is no

backdoor that can be used to bypass authentication, etc. Although, in general, there is no

automatic way to determine a property (e.g., the target of an indirect jump), heuristics and

approximate analysis have proved in practice to be useful in a variety of environments,

including programs used in critical systems and in highly secure applications. This is use-

ful in software testing where it is required that certain properties to be always true in all

usage scenarios. One of the most known approaches is to test the program with different

and possibly random inputs exhaustively but it has limitations such as a code block that

only executes if the program is given a very specific input. Symbolic execution allows

us to explore many possible execution paths at the same time and aggregate them by ab-

stracting the variables into symbols and conditions (predicates) into equations and using

constraint solvers to compute for which inputs a given code block is executed and to give

an concrete input that satisfies those conditions. The state of the art in symbolic execution

research and implementation is described by Baldoni et al. [30] and by Zhang et al. [31].

We will highlight some of the most essential information contained in this study, which

is one of the best research papers into the state of this technique and it’s advantages and

disadvantages.

In 2013 DARPA announced its competition, the Cyber Grand Challenge (CGC) [32], last-

ing two years in order to boost the creation of automatic systems for detecting security

flaws, exploit them and applying patches in near real-time. Some symbolic execution tools

have been, since 2008, 24/7 analysing programs testing various software applications

from Microsoft, finding for example close to 30% of all bugs discovered by file fuzzing

during the development of Windows 7, which other analysis programs and blackbox test-

ing failed to discover [33].
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/ / a , b and c s y m b o l i c

void func ( i n t a , i n t b , i n t c ){

i n t x = 0 , y = 0 , z = 0 ;

i f ( a ) {

x = −2;

}

i f ( b < 5) {

i f ( ! a && c ) {

y = 1 ;

}

z = 2 ;

}

a s s e r t ( x + y + z != 3 ) ;

}
(a) (b)

FIGURE 2.1: Symbolic execution technique example

On the figure above 2.1 you can view the theory behind symbolic execution. Starting with

the function arguments, because we don’t know their values in concrete, these variables

are declared symbolic (abstract) and at this moment in the execution of the code the only

existing restrictions are the inferior and superior values of these variables, namely the

limits of type int in C. After that, the variables x, y and z are concretely declared with the

value 0. Following the code, we stop at the first predicate an divide the code exploration

in two parts: one in that the variable a is zero and another in which it is different of zero,

executing both paths independently. This way we can separate different execution paths

and test all possible ways of execution the function. By dividing the execution in two, we

also change the restrictions of the variable a and update the value of the variable x for

each path. We follow the same steps for all the branches in the code along the execution.

At the end of the function we have an assert, that tests if the sum of x, y and z is different

than 3. If it is true, the program can return of the function and continue it’s execution, else

the execution is aborted and the values for which the program aborts are reported. Using

this technique we can specify the values of the variables for which the function will have

an incorrect behaviour, identifying more easily the why of that behaviour, facilitating the

resolution of errors.
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2.5.1 Symbolic Execution Limitations

In the last figure 2.1, symbolic execution can identify every input that will make the assert

call fail. This is achieved by exhaustively explore all possible execution states of the pro-

gram. From a theoretical point of view, exhaustive symbolic execution provides a sound

and complete methodology. The meaning of soundness is preventing false negatives, i.e.,

all possible unsafe inputs are guaranteed to be found, while completeness is preventing

false positives, i.e., all inputs values that are considered unsafe are in fact unsafe.

Unfortunately the plain version of symbolic execution has many drawbacks when dealing

with other than small applications so there is a need to make a trade-off between sound-

ness and performance if we want it to be scalable. The challenges of processing real-world

applications are the following:

• Memory: one of the obstacles of symbolic execution is the way each tool handles

pointers, arrays or other complex objects due to a fact that representing such mem-

ory in symbolic form is very demanding. One example is using pointers that ma-

nipulate jump instructions, making the addresses being described by symbolic ex-

pressions. There are different memory models and each one have their advantages

and disadvantages [34] [35].

• State space explosion: symbolically executing every feasible path of the program

does not scale in large programs. The number of possible paths grows exponen-

tially with the increase of the program size an can even be infinite in the case of

programs with infinite loops [36]. The solutions to this problem usually involve

in using heuristics to find the paths that can increase the coverage of the program

the most [37], reducing the execution time by making the execution of independent

paths parallel [38], or by merging states with similar ones [39].

• Constraint solving: Satisfiability Modulo Theories (SMT) solvers can handle large

amounts and complex combinations of constraints over a very large number of vari-

ables but constructs such as non-linear arithmetic (second and beyond order poly-

nomials) is an obstacle to efficiency. There are also many ways to implement SMT

solvers and there is also a competition that benchmarks these solvers in several areas

[40].
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• Environment interaction: normally programs need to make their behaviour have

impact in the system where they are executing. The manner is to make calls to li-

brary code and use system calls. These calls cause side effects like creating files,

opening a network socket, etc., and affect the execution of the program later and

must be accounted for, although exploring every possible external interaction out-

come may be unfeasible.

• Obfuscated code: obfuscated code uses various environment elements to decide if

it should execute or not some block of code and many times the instruction pointer

(IP) becomes symbolic due to the presence of some jump addresses being computed

at runtime. One way to overcome this issue is to use taint analysis, by registering

which variables have influence on the program, even in the computation of a jump

target [34].

A symbolic execution engine can be augmented with fuzzing to reach deeper states in the

exploration more quickly and efficiently [41] [42] because as we saw, symbolic execution

has many scalability limitations.

Symbolic execution engines leverage the strength of SMT solvers to figure out if a certain

path is actually possible, or if it should be discarded. Satisfiability modulo theories (SMT)

is the problem of determining whether a mathematical formula is satisfiable or not. It

generalizes the Boolean satisfiability problem (SAT), that uses boolean variables, to be

able to solve more complex formulas containing all kinds of data like integers, floats,

arrays, strings, etc. SMT solvers (e.g., Z3, STP, etc.) have been used as a building block

for a wide range of tools across computer science, for example in program analysis such

as symbolic execution [43].

2.5.2 KLEE

There are several open-source symbolic execution tools available, each one with their ad-

vantages and disadvantages. Some analyse binary files, e.g., S2E [44] [45] [46], Mayhem

[47], Miasm [48], angr [27] [21] [49], Triton [50], while others need access to the source

code, e.g., SymCC [51] or to intermediate representations (IR), e.g., KLEE [52]. The ones

that analyse binaries first lift the code to an IR such as QEMU IR (e.g., S2E) or to their own

IR (e.g., Miasm).
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KLEE is an open source dynamic symbolic execution engine built on top of the LLVM

compiler infrastructure and has been chosen as the symbolic execution engine for our tests

for many reasons. It is one of the most complete symbolic execution engines and is widely

supported. KLEE was designed with knowledge from a previous engine called EXE [53],

which two of the three developers made KLEE, and employs a variety of constrain solving

optimizations, represents program states compactly and uses search heuristics to achieve

high code coverage [52]. The way that KLEE handles the external environment is to use

models that understand the semantics of the desired action well enough to generate the re-

quired constraints. This allows KLEE to analyse bigger applications and system-intensive

programs due to these performance optimizations. Zhang et al. [31] describes the current

state of symbolic execution and makes an updated analysis of KLEE and its state in terms

of improvements and obstacles.

KLEE analyses LLVM-bitcode files so it is needed to have the source code or use a lifter

that can lift binaries to source code or LLVM Intermediate Representation (LLVM-IR).

2.6 Optimizations

Optimizers are in our everyday life when compiling code. They are as old as compilers

and aid developers in focusing more on the code they write and less in small optimiza-

tions. Normally they are found embedded in compilers (GCC) and sometimes they are a

separate module of a large infrastructure (Clang). Because they were created a long time

ago and everyone that compiles human readable code to machine code uses it, they are

very mature and offer very high effectiveness and correctness (semantically equivalent).

When talking about compiler optimizations, there are 4 main levels [54]:

• -O0: Means ”no optimization”: this level compiles the fastest and generates the most

debuggable code.

• -O1: Somewhere between -O0 and -O2.

• -O2: Moderate level of optimization which enables most optimizations.

• -O3: Like -O2, except that it enables optimizations that take longer to perform or

that may generate larger code (in an attempt to make the program run faster).
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Each of these levels have their optimizations enabled and make a difference in the final

program in terms of speed and size.

In the category of optimizers, the tools available are very mature and have plenty of fea-

tures and documentation. The most commonly used optimizers are compiler optimizers

due to the fact that is in everyone best interest to optimize their code to deliver faster

computations. Additionally, there exists an optimizer which is not part of compilers but

uses several techniques to optimize programs, called Souper, as we will see later.

2.6.1 Clang/LLVM

LLVM is a set of open-source modular and reusable compiler and toolchain technologies,

which can be used to develop a compiler front end for any programming language and a

back end for any instruction set architecture (ISA). LLVM is designed around a language-

independent intermediate representation (IR), called LLVM IR, that serves as a portable,

high-level assembly language that can be used in a variety of ways like optimization,

translation, analysis, etc. LLVM provides the middle layers of a complete compiler sys-

tem, that accepts intermediate representation (IR) code from a compiler (front end) as

input and emits an optimized IR. After that, the optimized IR can then be compiled into

architecture specific code or CPU specific code and linked to external libraries.

The Clang tool is a front end compiler that is used to compile programming languages

such as C++, C, Objective C++ and Objective C into machine code and is a direct competi-

tor of GCC. At its core, Clang uses the LLVM infrastructure as its back end and it has been

included in the release of the LLVM since the LLVM 2.6. It has a wide support of archi-

tectures, CPU’s, and language features (e.g., C++20, etc.). By using LLVM as it’s backend,

it means that it can compile any language that can be lowered to LLVM IR, meaning that

creating compilers for new languages is much easier (Apple’s Swift language uses LLVM

as its compiler framework, and Rust uses LLVM as a core component of its tool chain).

The Clang Compiler has been designed to work just like any other compiler. Clang works

in three different stages [55]:

• First stage: the frontend parses the source code. It checks the code for errors and

builds a language-specific Abstract Syntax Tree (AST) to work as its input code.

• Second stage: optimize the AST that was generated by the frontend.
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• Thirst stage: generate the final code (machine code) which can be dependent on the

target system.

Clang has a design similar to LLVM because it uses a library-based architecture [56]. In

this design, various parts of the front-end can be cleanly divided into separate libraries

which can then be mixed up for different needs and uses. It also includes a static analyzer

[57], sanitizers [58] and several code analysis tools.

We will use Clang to compile the code from our test set and use it’s optimization levels to

test their strength in removing obfuscations.

2.6.2 KLEE Optimize Flag

The KLEE optimize flag runs a built-in optimizer before the analysis and applies a subset

of compiler optimizations to the code [59] [60]. This optimization only happens in the

analysis phase due to being an optimization set chosen for the KLEE symbolic execution

framework, a set with optimizations contained in clang, and does not output the resulting

LLVM bitcode. This option is disabled by default and can be enabled with KLEE’s --

optimize command line option.

2.6.3 Souper

Souper is a peephole optimizer. Peephole optimization is an optimization technique per-

formed on a small set of compiler-generated instructions; the small set is known as the

peephole or window [61]. Peephole optimization involves changing the small set of in-

structions to an equivalent set that has better performance and is usually performed late

in the compilation process after machine code has been generated. This is because peep-

hole optimizations also use hardware specific instructions to optimize the code.

The more common techniques applied in peephole optimization are:

• Null sequences: Delete useless operations.

• Combine operations: Replace several operations with one equivalent.

• Arithmetic operations: Use arithmetic rules to simplify or reorder instructions.

• Special case instructions: Use special instructions that are only available in certain

CPU’s to optimize code.



2. STATE OF THE ART 25

• Address mode operations: Use memory access instructions of the targeted hard-

ware.

• Redundant load and store elimination: Redundancy in memory operations is elim-

inated.

• Strength Reduction: The operators that consume higher execution time are replaced

by the operators consuming less execution time (e.g., instead of multiplying a num-

ber by 2, substitute the instruction with a shift left instruction.)

• Pattern matching: Transform code using patterns that are known to be equivalent

but faster.

• Constant propagation: Process of substituting the values of known constants in ex-

pressions at compile time.

• Constant folding: Process of recognizing and evaluating constant expressions at

compile time rather than computing them at runtime.

Souper uses an SMT solver to optimize the target program even further. Solvers are also

a key enabler for program synthesis, which supports the discovery of new optimizations

that are out of reach for naive search [62].

The input and output of souper is LLVM bitcode, but internally it uses it’s own IR, Souper

IR, that has 51 instructions, all derived from LLVM IR. This is very positive since KLEE

analyzes LLVM bitcode files.

2.7 Cyclomatic Complexity

Metrics in software development are used to quantify and qualify software characteris-

tics to measure it’s performance, size, complexity, etc. These metrics can then be used to

improve the software built or to make a decision on it’s usage and implementation. One

of the existing metrics is the cyclomatic complexity. Cyclomatic complexity is a software

testing metric used to measure the complexity of a program. It is a quantitative mea-

sure of independent paths, paths that have at least one edge which has not been traversed

before in any other paths, in the source code of a program and can be calculated using con-

trol flow graphs for functions, modules, methods or classes within a program. Programs
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with lower Cyclomatic complexity are easier to understand and less risky to modify. This

metric was developed by Thomas J. McCabe and it is based on the control flow repre-

sentation of the program, which means that it is obtained through static analysis of the

program code.

The example shown next describes the cyclomatic complexity metric. Below is an example

program taken from Tutorials Point [63]:

1 A = 10

2 IF B > C THEN

3 A = B

4 ELSE

5 A = C

6 ENDIF

7 Print A

8 Print B

9 Print C

LISTING 2.14: Example program for cyclomatic complexity explanation

Knowing that the cyclomatic complexity is defined as M = E − N + 2P, where E equals

the number of control flow graph edges, N is the number of nodes in the control flow

graph and P standing for the number of interconnected components, we can compute the

CFG for this program to calculate the cyclomatic complexity. Figure 2.2 depicts the CFG

for the example program:
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FIGURE 2.2: Control Flow Graph for the example program [63]

With this visual information we can easily calculate the metric. We can see there are seven

nodes and seven edges in the graph, so the cyclomatic complexity is 7 − 7 + 2 = 2.

In our case, we will use the cyclomatic complexity to evaluate the complexity generated

by obfuscations and code optimizations on the final programs.



Chapter 3

Methodology

This chapter describes and details our framework to automatically transform, build, bench-

mark and extract metrics from the analysis made on the programs by the analysis tools.

We start by describing our framework in Section 3.1 by giving an abstract overview of

the steps and tools used and how they are chained together to make an analysis from

start to end. After that, on Section 3.2, we describe what metrics will be taken and their

purpose, on Section 3.3 we specify the tools that are going to be used in order to achieve

the proposed framework, and on section 3.4 we describe the virtual machine created that

hosts all the tools needed to run the entire flow.

3.1 Framework

We developed a testing methodology for benchmarking the effect of optimizations on

obfuscated programs in symbolic execution and fuzzing tools. Our approach to measure

and define the level of revertness that optimizations have on the obfuscated program is

to quantify how much the coverage of an analysis has been increased depending on the

level of optimization.

Succinctly, our benchmarking approach is comprised of three phases: compilation of the

target programs (obfuscation, optimization and compilation), analysis, and metric extrac-

tion. In the compilation phase, the programs are obfuscated using Tigress transformations

and optimized. Then, these program are compiled to LLVM bitcode, for KLEE to analyse,

and compiled to machine code, for AFL++ to analyse them. After we have the target

28
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program obfuscated and optimized in both formats, we can go to the second phase. The

second phase is where the programs that were compiled in the previous phase are anal-

ysed with KLEE and AFL++. These programs are run with a predefined timeout, memory

and thread limits, and their analysis are saved on a separate directory for each combina-

tion of obfuscation/optimization. The third and last phase is to extract the metrics from

the analysis, mainly the inputs that the analysis generated in order to compute their cov-

erage against the original program. At the same time the coverage is computed, which is

one of the metrics extracted, a CSV file is built containing the coverages of the analysis in

order to import it to spreadsheets, make analysis, build plots, etc. Figure 3.1 depicts our

workflow in a summarized and graphical manner.

FIGURE 3.1: Framework workflow

The first step in our methodology is to take a program and individually obfuscate it with

a transformation using Tigress. Because Tigress is a source-to-source obfuscator [19],

this means that we can take the transformed source-code and use all tools that work on

source-code, including compilers, etc. The transformations that we applied on our tests

are 9 in total and are as follows: Literals Encoding, Arithmetic Encoding, Data Encod-

ing, Branches Encoding, Opaque Predicates, Control-Flow Flattening, Anti Taint Analysis,

Anti Alias Analysis and Virtualization. The obfuscator needs to know the function names

and variables of the target program in order to use some obfuscations, and to make this

framework generic, a file containing that information has to be created for each program

by following the same structure.
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Next we take all of the outputted programs from the former step and compile them by

applying all optimizations for each one. These optimizations are the 4 levels of optimiza-

tions that Clang has [54] (-O0, -O1, -O2, and -O3), the Souper optimizer [62] and KLEE’s

optimize flag (only applied when executing KLEE). We use the Clang optimizations indi-

vidually and combined with Souper, and the same step is applied to KLEE’s optimize flag

[60], which is applied in solo and in combination with Souper. This gives us 10 different

test cases for each obfuscating transformation when analysing the program with KLEE

and 8 when using AFL++ (due to AFL++ not having an optimize flag like KLEE does).

There is also a version compiled without any obfuscations or optimizations but with spe-

cial flags for measuring the coverage when the program is run with some input. This is

used so that we can measure the coverage of the test cases generated from the analysis of

KLEE and AFL++.

The compilation process is made in two steps: the first one compiles the program to LLVM

bitcode using Clang, in order to analyse it with KLEE and to optimize it with Souper, and

the second step compiles it to machine code using the custom Clang compiler that AFL++

has put together, called afl-clang-lto [64], which is one of the custom compilers that

AFL++ has. This later compiler was tailor-made to aggregate all the instrumentations

that AFL++ needs the target program to have, in one toolchain. It prepares the target to

be fuzzed efficiently and instruments it with the necessary instructions to be able to catch

crashes more precisely and to analyse the program more efficiently. We chose afl-clang-

lto instead of afl-clang-fast and afl-gcc-fast because the documentation states that

it is faster and gives better coverage [64]. Also, the names of the programs, their ob-

fuscation, optimization level, and if they have been optimized with Souper or not, also

follow a structured type. This way we can then filter the files by their transformation and

optimization using their name.

After the previous steps are completed, we are left with 100 analysis benchmarks when

using KLEE and 90 when using AFL++, for each program. The next step is to analyse

these programs using the KLEE symbolic execution engine and the AFL++ fuzzer. For

KLEE, we analyse all LLVM bitcode files, e.g., .bc extension, and for AFL++ we analyse

all binary files. The test cases that KLEE generated for the target program without any

obfuscations and optimizations (base program) are exported to AFL++ input set format
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to use them as the initial input. This is because AFL++ is a fuzzer and fuzzers need an

initial input set for them to mutate the input and reach new code blocks on its analysis.

After all analysis have been run, we export all the generated test cases for each analysis

to individual inputs. Then, we run the target program compiled without any obfusca-

tions, no optimizations, and with coverage options to see the coverage that the analysis

has made with relation to the base program. With this coverage measurements of the

analysis of KLEE and AFL++, we build a CSV file so that we can import it to programs

and frameworks that analyse these type of files like spreadsheets or pandas [65], in order

to build plots about the results of the analysis to visually analyse the results. This is done

not only to the coverage but also to other metrics as we will specify later.

Here are the steps summarized:

1. Create a structured file in the root of the target program. This file must follow the

rules and be semantically equal to the files used in other programs.

2. Obfuscate the target program with the transformations chosen using Tigress.

3. Compile the programs from step 2 to LLVM bitcode, using Clang, and to machine

code (binaries), using afl-clang-lto, while applying the optimizations of the com-

piler (-O0, -O1, -O2, and -O3). Also compile a special binary without obfuscations

or optimizations and with special compiler flags to measure the coverage when run.

4. Run Souper for the LLVM bitcode files from step 3 (except the special binary to mea-

sure the coverage), which also outputs LLVM bitcode, and compile the outputted

programs with afl-clang-lto.

5. Run KLEE without the optimize flag on each LLVM bitcode program from the pre-

vious steps, except the special binary to measure the coverage.

6. Run KLEE with the optimize flag on the LLVM bitcode programs that have no op-

timization from the compiler, and that have no optimization from the compiler but

have been optimized with Souper, from the previous steps, except the special binary

to measure the coverage.

7. Convert an amount of test cases generated by KLEE’s analysis on the target program

that has no obfuscations or optimizations (base program) into text.
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8. Run AFL++ on each binary program from the previous steps, except the special

binary to measure the coverage, using the output of the previous step as the initial

input.

9. Export the test cases generated by the analysis on all programs, compute the cover-

age for each analysis and build a CSV file with the results.

10. Do the previous step for the time spent on solver metric and compute the cyclomatic

complexity of the programs generated.

3.2 Metrics

To be able to evaluate the analysis made, one of the metrics that will be used is the cov-

erage the inputs generated achieve when run against the original program. An analysis

which as a high coverage means that the inputs generated cover most of the program

whilst an analysis with low coverage means that the inputs generated only cover a small

part of the program, meaning that the analysis had difficulties in analysing most of the

program. We will use this metric as our main assessment in how an obfuscation or opti-

mization hampered or helped the analysis of the tools.

To try to explain the different results obtained, other metrics will be extracted such as the

time spent on the solver in the case of the KLEE analysis and the amount of initial inputs

in the case of AFL++, and if the analysis behaves better or worse if the time of the analysis

or the input size is increased.

Another metric that will be computed is the cyclomatic complexity which is a metric that

states the number of linearly independent pathways in a code segment and it’s a software

statistic that shows how complicated a program is. We will use this metric to see if there

is any correlation of the obfuscations and optimizations with the cyclomatic complexity

of the program.

3.3 Tools

Next, we present the tools we are going to use in order to build the proposed framework.

Their selection and functionality will also be depicted. Likewise, a word on how the

scripts should be developed is given.
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3.3.1 Obfuscating, Compiling and Optimizing

The tools to build the examples (obfuscate, compile and optimize) should be aware if

the target source-code has only one file or is made up of several files. The building of

programs where the source-code is all in one source file is done by obfuscating the source-

code with Tigress and compiling it to LLVM bitcode and binary formats with Clang and

afl-clang-lto. To build programs with more than one source-code file, we will use the

WLLVM (whole-program LLVM) [66] compiler that compiles the whole program using

Clang or GCC (we use Clang), in which the LLVM bitcode of the whole program will

be extracted from the outputted binary using the tool extract-bc [66], also contained in

WLLVM. KLEE has a tutorial on how to test the GNU Coreutils [67] on KLEE in which

they use WLLVM to compile the program and then extract the LLVM bitcode so that KLEE

can analyse it [68].

3.3.2 Benchmarking with KLEE and AFL++

Similar to the design and organization of the scripts for the building stage, the analysis for

the KLEE and AFL++ tools should also be separated in scripts accordingly to the obfus-

cation. Although the analysis with KLEE and AFL++ does not alter between obfuscations

or optimizations like the building phase (because Tigress must be run with different op-

tions), we established that when invoking an analysis for an obfuscation it will first list all

the files the tools in question can analyse, LLVM bitcode for KLEE and ELF binaries for

AFL++, in the given directory but filter them by their obfuscation. For example, the script

to benchmark the flatten transformation using KLEE should list all files in the directory

given and filter the files that are LLVM bitcode and have the flatten text on their name.

After that, it should call a generic script to analyse each file that was listed after the fil-

tering. We decided to specify these additional scripts so that we can more easily analyse

just the obfuscation we want. To analyse the files with KLEE’s optimize flag we list all

LLVM bitcode files without compiler optimizations and without compiler optimizations

but optimized with Souper and run KLEE on those files.

3.3.3 Metrics Extraction

The last step is to export the metrics generated by KLEE and AFL++ analysis. One of the

main metrics to be extracted is the coverage percentage the inputs of an analysis have

when executed against the original program [69]. To do this we transform the test cases
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generated from KLEE and AFL++ analysis to files that contain those inputs in plain text,

and we will use the tool ktest-tool [70] to extract the inputs from the .ktest files. After

we have the inputs exported to a directory, we execute the program compiled with the

coverage compiler flags with all the inputs that were exported to the directory. To view

the result of the coverage for all those inputs, we will use the llvm-cov tool [71] that

keeps track of the coverage in a file contained in the source-code directory that has the

name of the source-code file and the .gcda extension. After computing the coverage, we

add the result to a CSV file that is incrementally built by repeating this stage to all of the

benchmarks.

Other metric such as the time spent on the solver for the KLEE analysis will be extracted

using the klee-stats tool [70] and the cyclomatic complexity will be extracted using the

metrics tool [72]. The same procedure of the coverage metric applies to the rest of the met-

rics. In this case, the common procedure is to export all of these metrics by saving them

to an CSV file that contains the obfuscations and optimizations and the corresponding

metric.

What the common procedure allows us to do is to generate plots generically and auto-

matically due to the fact that every plot is generated the same way, e.i., by giving the plot

generator the CSV file which we want it to plot.

3.4 Virtual Machine

To make sure our test environment is portable and anyone can use it, a virtual machine

will be developed that hosts all the tools needed, with the fixed versions and settings.

Because we might want to update the versions of the tools or change some setting and

redistribute that new VM, we will create a packer template to automate the building of

these virtual machines [73]. Packer is an open source tool that enables the creation of

identical virtual machine images or containers for multiple platforms from a single source

configuration and is used to automate the creation of such machines. The steps to build

the VM will be automated and they will be uploaded to Vagrant Cloud [74], where anyone

can upload and download these virtual machines. The images outputted by packer are

compatible with several virtualization software, e.g., VirtualBox [75].



Chapter 4

Implementation

This chapters depicts the concrete implementation that was done by following the abstract

methodology from the previous chapter.

All of the steps mentioned above should be automated using generic scripts, meaning that

one must only create the folder of the new target program, add the source code, add the

structured file containing the function names, variables, etc., and update the benchmark

script so that it does all the necessary steps to obfuscate, optimize, compile, analyse and

extract the metrics of the analysis, but for the new program.

4.1 Obfuscation

To generate all the programs with the obfuscations applied to them, we developed some

scripts to automatically obfuscate the programs which can be reused when a new program

is tested. To keep track of the different variables, functions, and file names we have a

special file that holds these variables, making the obfuscation scripts generic and reusable

for each program. This file is also used when optimizing and compiling the generated

programs.

The scripts to achieve such automation reside in the scripts directory, on the build and

build-cgc directories, and they are separated by obfuscation type. Although the name

might indicate that separate scripts are needed to build each program type, KLEE exam-

ples and CGC programs, the reality is that the first directory is for programs which only

have one source code file and the second for programs with multiple source code files.

35
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The scripts to obfuscate, optimize and compile the generated programs are the same and

this is the first step of those scripts. They also accept arguments which change the opti-

mization level of the generated program, and the directory containing the program and

the special variables file.

The script that builds all programs with all obfuscations and with all optimizations is

the build-binaries.sh script, which in turn will call the script build-full.sh, inside

the build and build-cgc directories, for each optimization level of each program, which

in turn will call each one of the obfuscation scripts. The execution tree in Listing 4.1

demonstrates the flow that each script makes.

1 build -binaries.sh

2 build -full.sh -O0 ../ Maze_Obfuscated/

3 build -vanilla.sh -O0 ../ Maze_Obfuscated/

4 build -anti_alias_analysis.sh -O0 ../ Maze_Obfuscated/

5 build -anti_taint_analysis.sh -O0 ../ Maze_Obfuscated/

6 build -encode_arithmetic.sh -O0 ../ Maze_Obfuscated/

7 ...

8 build -full.sh -O1 ../ Maze_Obfuscated/

9 build -vanilla.sh -O1 ../ Maze_Obfuscated/

10 build -anti_alias_analysis.sh -O1 ../ Maze_Obfuscated/

11 build -anti_taint_analysis.sh -O1 ../ Maze_Obfuscated/

12 build -encode_arithmetic.sh -O1 ../ Maze_Obfuscated/

13 ...

14 build -full.sh -O2 ../ Maze_Obfuscated/

15 ...

16 build -full.sh -O3 ../ Maze_Obfuscated/

17 ...

18 build -coverage.sh -O0 ../ Maze_Obfuscated/

19 run_souper.sh ../ Maze_Obfuscated/Transformations/

20

21 build -full.sh -O0 ../ Reg_expr_Obfuscated/

22 build -vanilla.sh -O0 ../ Reg_expr_Obfuscated/

23 build -anti_alias_analysis.sh -O0 ../ Reg_expr_Obfuscated/

24 build -anti_taint_analysis.sh -O0 ../ Reg_expr_Obfuscated/

25 ...

LISTING 4.1: build-binaries.sh script execution tree
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The script that builds the program without obfuscations is build-vanilla.sh, the one

that builds the program to be used to compute the coverage is build-coverage.sh, run -

souper.sh runs souper on all the files in the specified directory, and the remaining scripts,

build-*.sh, build the program with the obfuscations.

The output of this phase is the programs generated by it, which contains the original

program and obfuscated ones, and the tool used to obfuscate the programs is Tigress.

4.2 Optimizations and Compilation

The next step in our testing flow is the optimization and compilation phase. This phase

deals with the original C code and the one generated by Tigress, optimizes it by using the

chosen optimizers, and compiles the programs into LLVM bitcode and binary formats.

The scripts to accomplish such task are the same as the obfuscation phase, and this is the

next and final step of those scripts. In there, the optimizers and compilers are called to

generate the programs which will then be fed into the analysis tools. The tools used in this

phase are clang, one of the most used compilers, wllvm and extract-bc, which is a set of

tools to compile whole programs into LLVM bitcode, souper, a peephole optimizer, and

afl-clang-lto, a modified Clang compiler with built-in customizations to instrument

the target program with sanitizers and other techniques, to be analyzed with AFL++.

If the program only contains one source code file, the scripts used are in the build direc-

tory and if it contains more than one source file, the scripts in the build-cgc directory are

used. In the case of single source file programs, the first step in this phase is performed

using clang and afl-clang-lto to optimize and compile the C source code into LLVM

bitcode and binary formats, respectively. And in the case of multiple source files pro-

grams, the tools used are wllvm to optimize and compile programs, which then have their

LLVM bitcode extracted by using the tool extract-bc that also comes with the wllvm

package, and afl-clang-lto to instrument and compile to binary format.

With the usage of clang, may it be when using clang itself, wllvm, or afl-clang-lto,

some flags were added to the compilation instructions, and they are described below:

• clang:
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– No optimization (-O0): -Wall, -g, -O0, -Xclang, -disable-O0-optnone [59], -fno-

stack-protector, -std=c89, -emit-llvm, and -c

– Optimized: -Wall, -g, -OX, -fno-stack-protector, -std=c89, -emit-llvm, and -c

– Coverage: -Wall, -g, -O0, -Xclang, -disable-O0-optnone, -fno-stack-protector,

-fprofile-arcs, and -ftest-coverage

• afl-clang-lto: -Wall, -g, -OX, -fno-stack-protector and -std=c89

• wllvm: -ldl, -fno-builtin, -fcommon, -w, -g, -OX, -fno-stack-protector, -ldl, -Wl, –no-

as-needed and -std=gnu99

The scripts to accomplish this step are the same as the previous one. The output of this

phase is the obfuscated programs but with the optimizations applied to them, and com-

piled into LLVM bitcode and binary formats. In total, there are 80 programs generated by

this phase and they are ready to be analysed by KLEE and AFL++.

4.3 KLEE and AFL++ Analysis

This phase consists in running the analysis tools with the generated programs from the

optimization and compilation phase. As stated before, the analysis tools chosen were

KLEE, the symbolic execution framework, and AFL++, the fuzzer for binary programs.

To make this phase automated and generic, we developed scripts to analyse the given

programs that change the analysis options accordingly to the options provided. These

scripts reside on the benchmark-klee and benchmark-aflpp directories and work by call-

ing the analysis tools and managing the output directories for each analysis. All of the

scripts inside those directories will in the end call benchmark.sh present in the two direc-

tories, which is the script that executes the analysis tools with the options provided. In

the case of KLEE, the script calls the tool klee and in the case of AFL++, afl-fuzz is the

tool called.

For the KLEE analysis, we noted that some analysis were terminating in a matter of sec-

onds and some strange warnings were being thrown. After investigating we found that

the STP solver had a very big stack size when solving some formulas and it’s limit was

low, and the solution is to allow for an unlimited stack size before executing KLEE [76].
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For the execution of the KLEE analysis, we use some flags which change the behaviour

of the analysis. On Table 4.1 these options are specified and have their value used and

functionality described for the KLEE framework and on Table 4.2 the flags for ALF++ are

specified.

Flags Value used Description

--simplify-sym-indices Set Simplify symbolic accesses using equalities

from other constraints (default=false).

--solver-backend STP Specifiy the core solver backend to use.

--solver-optimize-divides Set Optimize constant divides into add/shift/-

multiplies before passing them to the core

SMT solver (default=false).

--write-cov Set Write coverage information for each test case

(default=false).

--write-kqueries Set Write .kquery files for each test case (de-

fault=false).

--write-paths Set Write .path files for each test case (de-

fault=false).

--write-sym-paths Set Write .sym.path files for each test case (de-

fault=false).

--write-test-info Set Write additional test case information (de-

fault=false).

--only-output-states-

covering-new

Set Only output test cases covering new code

(default=false).

--external-calls all Specify the external call policy.

--posix-runtime Set Enable symbolic environment and link

with POSIX runtime. Options that can

be passed as arguments to the programs

are: --sym-stdin <max-len>, --sym-args

<min-argvs><max-argvs><max-len>+ file

model options (default=false).

--libc uclibc Choose libc version (none by default).
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--watchdog Set Use a watchdog process to enforce --max-

time.

--output-dir Depends on the

analysis

Directory in which to write results

(default=klee-out-<N>).

--optimize Set/Not Set (de-

pends on the

analysis)

Optimize the code before execution (de-

fault=false).

--max-time 10min/30min

(depends on the

analysis)

Halt execution after the specified duration.

Set to 0s to disable (default=0s).

--max-memory 6144MB Refuse to fork when above this amount of

memory (in MB) (see -max-memory-inhibit)

and terminate states when additional 100MB

allocated (default=2000).

--sym-stdin Depends on the

analysis

Provide a symbolic standard input and spec-

ify it’s size in bytes.

Flags Value used Description

-i Depends on the anal-

ysis

Input directory with test cases.

-o Depends on the anal-

ysis

Output directory for fuzzer findings.

-D Set Enable deterministic fuzzing (once per

queue entry).

-V 600/1800 seconds Fuzz for a specified time then terminate.

-s 1234 Use a fixed seed for the RNG.

-M fuzzer1 Distributed mode, name of the main

fuzzer.

-S fuzzer2/fuzzer3/

fuzzer4

Distributed mode, name of the sec-

ondary fuzzers.
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4.4 Metrics Extraction

The last step in our workflow is to extract the metrics of the analysis made and use that

to generate plots and subsequently evaluate each analysis.

To be able to extract these metrics, we extract all the inputs the analysis generated and

test them against the original program to compute the coverage they achieve. The result

is a CSV file, for each program, containing the coverage of the original program with the

inputs of each analysis, separated by lines and columns. Each row is a different obfusca-

tion and the columns represent the several optimizations done to the program. After that,

we generate heatmaps to visualize the results of the analysis and to aid on our examina-

tion of the outcomes of obfuscations and optimizations. Apart from this measurements,

we also generate heatmaps for the time spent on the solver by KLEE and the cyclomatic

complexity of the programs generated.

To produce such files and plots we developed scripts to generically and automatically

extract, compute, transform and plot the data and metrics generated for each analysis.

These scripts reside in the main scripts directory and each has it’s duty in this phase.

For the coverage metrics, first we export each input generated by the analysis by execut-

ing the script coverage-csv.sh, which calls the script ktest-to-text.sh in case of KLEE,

which in turn executes the ktest-tool tool from LLVM, and afl-to-text.sh in case of

AFL++, for each analysis. After that, we execute the script compute-coverage.sh to com-

pute the coverage an analysis had, by executing the program with all the inputs generated

and using the llvm-cov tool from LLVM to export the value. Now that we have a text

file with the analysis names and the respective coverage, we execute the scripts compute-

coverage-klee-output-to-csv.sh and compute-coverage-afl-output-to-csv.sh to trans-

form that output into a CSV file that is then fed into the plot generator script, csv-to-

plot.py, which is written in Python using the matplotlib [77], pandas [65], and numpy

[78] frameworks. The output of this workflow is the heatmap plots. The execution tree in

Listing 4.2 depicts this flow.

1 ./coverage -csv.sh

2 #KLEE analysis

3 for each analysis inside ../ Maze_Obfuscated/Transformations/ do:

4 ./ktest -to-text.sh ../ Maze_Obfuscated/Transformations/$analysis ../

Maze_Obfuscated/inputs/$analysis
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5 ./compute -coverage.sh ../ Maze_Obfuscated/inputs/$analysis ../

Maze_Obfuscated/maze.c ../ Maze_Obfuscated/Transformations/maze -O0 -

coverage

6 ./compute -coverage -klee -output -to-csv.sh compute -coverage -output maze >

compute -coverage -klee -maze.csv

7 #AFL++ analysis

8 for each analysis inside ../ Maze_Obfuscated/Transformations/ do:

9 ./afl -to -text.sh ../ Maze_Obfuscated/afl/$analysis ../

Maze_Obfuscated/inputs/afl -$analysis

10 ./compute -coverage.sh ../ Maze_Obfuscated/inputs/afl -$analysis ../

Maze_Obfuscated/maze.c ../ Maze_Obfuscated/Transformations/maze -O0 -

coverage

11 ./compute -coverage -afl -output -to-csv.sh compute -coverage -output maze >

compute -coverage -afl -maze.csv

12

13 # Same steps for other programs

LISTING 4.2: Coverage metric scripts execution tree

The same workflow is used for the time spent on the solver and cyclomatic complexity

metrics. In the case of the time spent on the solver, the scripts used are klee-solver-

time-csv.shwhich for each analysis executes the script extract-solver-time.sh, which

internally calls the tool klee-stats to extract this metric from KLEE’s analysis, and after

completing the extraction for all analysis the script klee-solver-output-to-csv.sh is

called to convert the output into a CSV format. For the cyclomatic complexity the main

script is cyclomatic-complexity-csv.sh that for each generated program will call the

tool calc-mccabe from the metrics package and that calls the script compute-cyclocomp-

output-to-csv.sh to convert the output into CSV format.

One of the contributions of this thesis is the porting of the Metrics tool from LLVM 3.4

into LLVM 11 which was needed in order to compute the cyclomatic complexity metric

for our programs.

4.5 Virtual Machine

Another contribution of this thesis is the set up of a virtual machine that hosts all of the

tools needed to run the analysis with their correct versions. To be able to automatically



4. IMPLEMENTATION 43

build a VM that is supported by several virtualization software’s and with the exact soft-

ware versions we need, we used packer to fulfill this requirement. By specifying the base

image, in our case Ubuntu Focal, the bash scripts with the instructions to compile and in-

stall all the tools, and the virtualization software provider, packer automates this process.

The output is a ready to run image, in our case for Virtual Box, that we upload to Vagrant

Cloud to be able to distributed for anyone that whishes to use it.

Inside the packer-template directory resides the files that packer uses to build the VM.

The configuration file used in this process is vagrant.json and the scripts which compile

and install the tools needed are klee.sh, souper.sh, aflplusplus.sh, and metrics.sh.

After this process is done, the image is uploaded to Vagrant Cloud.

4.6 Git Repository

All of the scripts and files specified on this chapter are available on a GitHub repository

so that anyone can have access to it. The repository is available at FredyR4zox/tigress-

obfuscations

https://github.com/FredyR4zox/tigress-obfuscations
https://github.com/FredyR4zox/tigress-obfuscations


Chapter 5

Results

The effectiveness of some obfuscations against fuzzing tools, including symbolic execu-

tion, has been studied by other peers in academia. During the evaluation of our testing

framework we will focus in our objective which is to test the resilience of obfuscations

against code optimization, while using fuzzing tools to benchmark this effectiveness. On

Section 5.1 we detail the setup used on the tests, including the hardware specifications of

the host system and operating system along with the tools used and their versions, the set

of programs chosen to be apart on our tests, and the tests that were performed. Then, on

Section 5.2, we present and discuss the results obtained by running our implementation

with the specified specifications.

5.1 Testing Specifications

In this section we will discuss the specifications of the tests, ranging from the hardware

specifications to the tests performed.

5.1.1 Software Setup

The tests were performed on a dedicated virtual machine hosted on OVH [79]. This vir-

tual machine had dedicated cores, where no other software was running alongside the

benchmarks. Another benefit is that the virtual machine hosted on OVH uses more ef-

ficient software to run the virtual machines in each server, increasing the computation

power available to our tests, even if the processor is less powerful compared to the ones

in our personal computers.

44
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Specifications
RAM 8GB
CPU 4 Cores 2.4GHz 16MB Intel Haswell (no TSX)
Disk 160GB NVMe SSD
Operating System Ubuntu 20.04.4 LTS

TABLE 5.1: OVH virtual machine specifications

The technical specifications of the virtual machine hosted on OVH are depicted on Table

5.1.

The tools used were the ones discussed on the Methodology section. We used tigress

as the obfuscator, clang and afl-clang-lto as the compilers to LLVM bitcode and exe-

cutable format with specific instrumentation for the fuzzer, respectively, while also serv-

ing as optimizers, and souper as one of the optimizers of LLVM bitcode. In the compilers

section, we also used wllvm and extract-bc as the tools to compile programs with more

than one file and extract it’s bitcode, e.g., for CGC programs, KLEE for the symbolic ex-

ecution engine, and AFL++ for the fuzzer. To compute the metrics we used ktest-tool

to extract the tests generated by KLEE and klee-stats to extract the metrics of the KLEE

analysis, including the time spent on the solver. Finally we used llvm-cov from LLVM to

compute the coverage and calc-mccabe from the Metrics tool to compute the cyclomatic

complexity of LLVM bitcode.

The following list depicts the versions of the tools specified above:

• KLEE (klee, ktest-tool, klee-stats): 2.3-pre

• LLVM (clang, llvm-cov): 11.1.0

• WLLVM (wllvm, extract-bc): 1.3.1

• souper: commit 4a251bde91ccb20f5e2389c9962ff905156fc3e9

• STP solver: 2.3.3

• AFL++ (afl-clang-lto, afl-fuzz): 4.01a

• Tigress: 3.1

• Metrics (calc-mccabe): 11
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5.1.2 Test Programs

The test programs chosen to be on our test set were varied in terms of functionality. The

first two programs were taken of KLEE’s examples, the second two’s were taken from

Darpa’s Cyber Grand Challenge [80], and the last one was taken from the tigress exam-

ples. The KLEE examples and the tigress random function were programmed to find a

specific input which allows the program to reach some winning state, and the CGC’s pro-

grams were made with memory corruption vulnerabilities. Although KLEE ignores tests

that lead to memory corruption, the programs were chosen because of their appropriate

size for analysis. The following list summarizes this set:

• Maze (KLEE’s examples)

• Regular Expressions (KLEE’s examples)

• Barcoder (Darpa’s Cyber Grand Challenge)

• Message Service (Darpa’s Cyber Grand Challenge)

• Random Function (Tigress examples)

The Maze program [81], one of KLEE’s examples, consists in guiding a starting position

to the end of the maze by accepting the keys ”w”, ”a”, ”s”, and ”d” to move through it.

In this case, there is more than one solution, and the analysis frameworks may not find

all solutions because it they stop when all paths have been covered, which can happen

without having found all solutions. In our case it does not matter due to the fact we are

trying to get the whole program covered, which has to have at least one solution, and not

find all the solutions.

The Regular Expressions program [82] was also taken from KLEE’s examples and its func-

tionality is to test if a user can find a regular expression which matches a certain string.

This specific example tests the regular expressions given by the user against the string

hello and to reach the winning state the user must insert a regular expression that matches

the string. The same situation of the Maze program happens on this one, where not all

solutions may be found by the analysis frameworks.

The Barcoder program [83] was taken from Darpa’s Cyber Grand Challenge and allows a

user to generate or decode barcodes. When inputting a barcode, a user may input as text,

bacoded ASCII representing the binary values or as a bitmap that digitally represents
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the barcode. Once a barcode is cached it can be viewed as either an ASCII or bitmap

representation. This program contains a format string and a stack-based buffer overflow

vulnerabilities.

The Message Service program [84], also taken from Darpa’s CGC, consists in a service

with register and login features in which users can exchange messages between them. In

addition to having the read and send messages features, they also have the list and delete

messages functionalities. This program contains a heap-based buffer overflow and a Use

After Free vulnerabilities.

The Random Function program [85] was taken from the tigress examples and its be-

haviour is for the analysis tools to find an input for which the program prints ”You win!”.

This program does also suffer from the same problem of the Maze and Regular Expression

programs where there exists more than one solution and not all are going to be found.

5.1.3 Experiments

5.1.3.1 Obfuscations

The first step in our experiments is the obfuscation phase. In this step the programs are

obfuscated with the obfuscations chosen using an widely available obfuscator, called Ti-

gress. It contains several obfuscations, also called transformations, in which it incorpo-

rates a considerable amount of options for each obfuscation. For our tests we chose the

default options for each transformation.

The obfuscation chosen for our tests were the following:

• Virtualization

• Obfuscations

• Virtualization

• Control-Flow Flattening

• Opaque Predicates

• Literals Encoding

• Data Encoding

• Arithmetic Encoding
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• Branch Encoding

• Anti Alias Analysis

• Anti Taint Analysis

By executing the scripts mentioned on Section 4.1 and following it’s rules, we now have

the original program obfuscated in the transformations mentioned in the previous list.

As usual, we are expecting that some obfuscations will yield worse results when analysing

them, with virtualization being the most difficult to revert and encode arithmetic the eas-

iest, at a first glance.

Note: The Jit, JitDynamic, EncodeExternal and SelfModify transformations were not used

in our testing benchmarks due to KLEE not supporting them.

5.1.3.2 Optimizations and Compilation

The optimizations used were the 4 levels which compilers commonly offer (O0, O1, O2,

O3), in our case being Clang, souper, and when analysing with KLEE, the KLEE optimize

flag. Compilers such as Clang have usually 4 levels of optimization, the first being O0

which does not optimize the resulting code and generating the most debuggable binary,

O1, an intermediate level between O0 and O2, O2 using most of the optimizations avail-

able, and O3, the same as O2 but enabling all optimizations, some which take longer to

perform or may generate larger code (in an attempt to run faster).

The other optimizations that we are going to use are souper, which is a peephole optimizer

for LLVM bitcode, and KLEE’s optimize flag that optimizes the program with a subset of

compiler optimizations before the analysis is run.

5.1.3.3 KLEE and AFL++ Analysis

The test set includes 5 programs and all of the programs are obfuscated with 9 transfor-

mations. Then they were optimized using the 4 levels of the compiler optimization and

the KLEE --optimize flag. To add to this, the programs optimized were then optimized

with souper, including KLEE’s optimize flag. This means that for each analysis set, we

are going to analyse the 5 programs where each one has 9 transformations, plus the orig-

inal program, and each of those generated programs (10) has 9 optimizations in the case
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of KLEE and 7 transformations in the case of AFL++, plus the generated programs with-

out optimizations. In total, for each program, the number of analysis to run is 100 for

KLEE and 80 for AFL++. Because each analysis set contains the 5 programs, you need to

multiple the numbers by 5.

As we will see, these numbers are not exactly correct because not all obfuscations are

able to be applied to all programs and sometimes the optimizations remove critical parts

of the program, which makes the analysis of the program incorrect due to the fact the

programs have different behaviours. This awaits an explanation because it’s weird that

optimizations are doing this, even the most less aggressive ones.

The results were obtained by running several benchmarks with different variables. One

of those variables is the time, where the analysis were run with time limits of 10 and 30

minutes to investigate how much of the results were dependent on the time limit. Another

variable is the limit of the input size to see if by giving a higher number for the analysis

tools they behaved better or worse and in these tests we doubled the input size for each

program. In the case of AFL++ the number of starting inputs are also examined to see

how AFL++ behaves when it is given a higher number of inputs at the beginning of the

analysis, where the default value is 10% of the inputs KLEE generated by analysing the

original program and the other is 50% of those inputs.

For tool specific limits, KLEE had a memory limit of 6144 MB, and AFL++ was executed

with 4 threads to mimic the number of CPU cores/threads of a low/medium power com-

puter and to use all of the computing power of the virtual machine. The solver used in

the tests was STP (Simple Theorem Prover) which is the one KLEE uses by default and

the stack size limit was set to none before the analysis ran.

Although symbolic execution is more slow and does not scale very well with large pro-

grams, there is a advantage that it’s got: the code KLEE analysis runs is on LLVM bitcode

and not compiled code, which does have less information stripped from the code.

For the KLEE analysis, we noted that some analysis were terminating in a matter of sec-

onds and some strange warnings were being thrown. After investigating we found that

the STP solver had a very big stack size when solving some formulas, and the solution is

to allow for an unlimited stack size before executing KLEE [76].
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5.1.3.4 Metrics

The last step in our workflow is to extract the metrics of the analysis made and use that

to generate plots and subsequently evaluate each analysis.

To analyse the behaviour of the analysis tools we extracted some metrics from their runs.

The one we will focus the most is the coverage percentage, where the inputs the analysis

generated are tested against the program without obfuscations and optimizations. For

example: if the result is 75%, it means the inputs the analysis generated cover 75% of the

original program. We established this measurement as the comparison variable to quan-

tify the difference obfuscations and optimizations have on a program when analysed by

symbolic execution and fuzzing tools. Then, to explain the different results and try to find

a variable which dictates the coverage the analysis will yield, we extract and analyse more

metrics in order to obtain an explanation of why that is happening. The first one is spe-

cific to KLEE and is about how much time of the analysis was spent waiting for the solver

to reach a solution to the given theorem. Another is the cyclomatic complexity of the

programs which measures the number of linearly-independent paths through a program,

meaning that programs with a lower cyclomatic complexity are easier to understand.

We also ran several analysis in which we modified some variables too see if the analysis

generated more tests and the difference that made in the final result. This is because

different obfuscations and optimizations might reach the same paths and generate the

same number of tests but need more time or more input to reach it. The variables were

the maximum time the analysis take, the input size, better demonstrated on the Barcoder

and Message Service programs which have a big input size, and the number of tests given

to AFL++ as the initial inputs.

5.2 Results

In the following sections we discuss and investigate if the code optimizations reverted

the obfuscations applied and which yield better results, and try to find a variable which

explains the results obtained by trying to infer the coverage before the analysis is run.

As we will see, the results are not what we initially expected using critical thinking, and

we examine if by modifying the execution variables of the analysis tools the results are

different, and if so, to what extent.
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To begin with, some plots will not have all values due to the fact some of these programs

were not behaving correctly. Some were crashing due to segmentation faults and others

didn’t worked as expected, e.g., some menus did not exist or the behaviour was not the

same as in the original program, where the same input would generate different results

from the original program. We will depict these issues later on this section.

5.2.1 Cyclomatic Complexity

First, let’s look at the cyclomatic complexity of the different programs. Figure 5.1 presents

the average cyclomatic complexity for all the programs. It is clear by the results that on av-

erage the cyclomatic complexity is lower the more optimization there is, specially starting

from the O2 level, which is what we predicted. As expected, the virtualization obfusca-

tion got the highest cyclomatic complexity of all programs on average. One curious result

is that the virtualization obfuscation got lower cyclomatic complexity values on the O1

optimization level, with and without Souper, compared to the original program. Let’s see

the plots one by one to get a better picture of these values.

FIGURE 5.1: Average cyclomatic complexity for all pro-
grams

If we evaluate each program individually, we can see that the results are not the same for

each one. In the case of the Maze program depicted on Figure 5.2, we can observe that
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the virtualization transformation does not have a lower cyclomatic complexity than the

programs without obfuscations, which is the opposite of the average results. By examin-

ing the Regular Expression’s cyclomatic complexity we notice that the same behaviour is

also true, e.i., the virtualization obfuscation does not have lower cyclomatic complexity

compared to the programs without obfuscations.

Comparing the Maze and Regular Expression programs, we note that the first has it’s

cyclomatic complexity decreased the more code optimization is done, while on the last

it starts to increase when the O1 and O2 levels are applied. Another difference between

these two programs is that in the Maze program the literals encoding transformation in-

creases the complexity by a factor of more than 2, and in the Regular Expression program

this behaviour is seen on the opaque predicates transformation.

This can be explained by the Regular Expression program already having complex branches

due to using recursion on the matchhere function and the opaque predicates transforma-

tion increases this complexity. For the Maze program related to the variable that hosts the

maze being a literal string.

FIGURE 5.2: Cyclomatic complexity of the Maze program
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FIGURE 5.3: Cyclomatic complexity of the Regular Expres-
sion program

The Barcoder and Message Service programs have more features and are more complete

programs overall, comparing to the others in the test set. The values for the Barcoder

program on Figure 5.4 show that when the code optimization hits the O2 level, it’s cy-

clomatic complexity is greatly reduced, just as in the Maze program (although starting in

different optimization levels), while on the Message Service program depicted on Figure

5.5 the more optimized a program is, the greater is it’s cyclomatic complexity. This is the

same behaviour observed in the Maze and Regular Expression program, respectively. As

expected, the obfuscation that had the highest complexity was the virtualization and the

transformations that had the same complexity as the programs without obfuscations were

the data encoding, arithmetic encoding, branch encoding, and anti taint analysis.
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FIGURE 5.4: Cyclomatic complexity of the Barcoder pro-
gram

FIGURE 5.5: Cyclomatic complexity of the Message Service
program

Looking at the cyclomatic complexity of the Random Function program on Figure 5.6, it

is evident that the same behaviour of the Maze and Barcoder programs happen, where
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the more optimized a program is, the lower is it’s cyclomatic complexity. Aside from the

virtualization obfuscation, the flatten transformation is the one that increased the com-

plexity the most. This can be attributed to the fact that the Random Function program

contains nested conditional instructions and they are inside while loops (which under the

hood are also conditionals).

FIGURE 5.6: Cyclomatic complexity of the Random Func-
tion program

With these values in mind, we can begin to analyse the coverage results and see if there is

any correlation between this variable and the coverage obtained.

5.2.2 KLEE

The first results we will analyse are the coverage KLEE got for all the programs on av-

erage when run with a timeout of 30 minutes. By examining the average values for all

programs, on Figure 5.7, we note that on average the more a program is optimized, the

less coverage it reaches. If we examine the values one by one, there are cases where the

optimization helped KLEE to achieve a higher coverage result, specially when talking

about the O0 optimization level combined with Souper and the O1 level. Another ob-

servation is that the virtualization transformation did not achieve a good coverage result,

and as we will see later, this transformation is the one that got worst results in all the tests,
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which is expected due to being a transformation that adds a big chunk of code. We can

conclude that no affirmation can be done by this plot, merely by the fact that the values do

not change so often, and sometimes the code optimizations hinders the analysis tools to

achieve higher coverage while on others it helps them to attain better results, where this

is dependent on the obfuscation and code optimization, not existing a common pattern.

FIGURE 5.7: Average coverage of KLEE’s analysis of all pro-
grams, with time limit of 30 minutes

The plots on Figures 5.8 and 5.9 depict the coverage KLEE got for the analysis on the

programs Maze and Regular Expressions, respectively, when run with a timeout of 30

minutes. We can observe that in the case of the Maze program, the difference on coverage

is not significant, except on the virtualization obfuscation. Another curious results is the

flatten transformation, where in this case it achieved a higher coverage when compared

to the programs without obfuscations. This can be attributed to the fact that most of the

Maze program is contained inside a while loop, and the control flattening transformation

substitutes the whole program for a switch case, where every basic block inside program

is put on the same level. Although this might indicate that it should hinder the coverage

obtained, it in fact helps KLEE to analyse the program due to not having the problem of

path explosion that loops have. Another observation is that the programs obfuscated but

without optimizations, excluding Souper, did achieve a higher coverage than the original

program itself.
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The results for the Regular Expressions program are similar to that of Maze, except the

opaque predicates and anti alias analysis obfuscations achieved less coverage. Although

some programs of these transformations, but not limited to, were removed because of er-

roneous behaviour, we can see that the ones that were not removed did not achieve a good

coverage result. This can happen due to the fact that the behaviour of these programs is

also wrong but was not noted when interacting with the program manually. And the

same as before the virtualization transformation was the worst in terms of coverage.

The results of these two programs are not enough to conclude if the obfuscations were

resilient against the optimizations.

FIGURE 5.8: KLEE analysis coverage of the program Maze,
with time limit of 30 minutes and input size of 40 bytes
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FIGURE 5.9: KLEE analysis coverage of the program Reg-
ular Expressions, with time limit of 30 minutes and input

size of 8 bytes

Looking at the Barcoder coverage results on Figure 5.10 the obfuscation which yield the

least coverage was virtualization, as expected, and the code optimization that had the

least coverage was KLEE’s optimize flag. This latter evidence is somewhat peculiar due

to the fact KLEE’s optimize flag only optimizes the program with selected optimizations,

which should not hinder the analysis results, on the contrary.

The opposite happens on the Message Service program. By analysing Figure 5.11 we can

conclude the code optimization that achieved a higher coverage was KLEE’s optimize

flag, with and without Souper, and in some combinations of obfuscations and code opti-

mizations the coverage attained was higher than the programs without obfuscations. This

can be easily spotted by looking at the colors in the heatmap or at the average values for

all obfuscations.

As for the Barcoder program, the code optimizations did not improve the coverage ob-

tained, and a straightforward observation is that the resilience of the obfuscations was

high. But if we also look at the program without obfuscations, we can also see that the

optimizations did not improve it’s coverage, meaning that optimizations might be at fault

here.
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FIGURE 5.10: KLEE analysis coverage of the program Bar-
coder, with time limit of 30 minutes and input size of 5000

bytes

FIGURE 5.11: KLEE analysis coverage of the program Mes-
sage Service, with time limit of 30 minutes and input size of

2500 bytes

For the last coverage results on KLEE’s analysis, we will look at the Random Function

program depicted on Figure 5.12, where the coverage is the same for almost all of the
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programs, only having the virtualization and flattening obfuscations with an slightly de-

creased coverage.

FIGURE 5.12: KLEE analysis coverage of the program Ran-
dom Function, with time limit of 30 minutes and input size

of 20 bytes

As the above discussion showed us, the obfuscations behave differently depending on

the program. This is also true for the code optimizations and for the combinations of

obfuscations and code optimizations.

5.2.2.1 Solver Time

One of the metrics we extracted from KLEE was the time the analysis spent on the solver.

Although this metric alone is not enough to correlate it between the coverage obtained,

we chose it because it can help explain some inconsistent results by the combination of

obfuscations and code optimizations.

By examining the Figures 5.7 and 5.13, it is evident that the time spent on the solver and

the coverage the analysis obtained are not correlated and do not help to explain the overall

coverage results, albeit there is a pattern on the virtualization obfuscation.
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FIGURE 5.13: Average of KLEE’s solver time for all analy-
sis, with time limit of 30 minutes

Nevertheless, it is also necessary to look into each program individually. To confirm the

conclusions of the last paragraph, we can examine the Figures 5.14 and 5.15 which depict

the time spent on the solver for the Barcoder and Message Service programs, respectively.

The evidence for the Barcoder program shows that only when the coverage is very low,

the solver time is very high, albeit this pattern does not happen on all of the analysis that

fit in this condition. If we look at the Message Service program and try to correlate it with

the coverage, we can also conclude the time spent on the solver is not an indicative of

how much coverage it obtained.
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FIGURE 5.14: KLEE solver time for the Barcoder program,
with time limit of 30 minutes and input size of 5000 bytes

FIGURE 5.15: KLEE solver time for the Message Service
program, with time limit of 30 minutes and input size of

2500 bytes

To answer the question of obfuscation resiliency, by examining Figure 5.13 we can confirm

that in most of the obfuscations, the more a program was optimized the more the analysis

spent on the solver. Although this affirmation is not true for the Message Service program,
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which has a peak between the optimization levels O2 and O3 combined with Souper, the

average values of all programs do confirm this conclusion.

5.2.2.2 Time Limit

Do the analysis behave differently when the maximum time for an analysis is higher?

To try and answer this question we can examine Figure 5.16 that shows the coverage ob-

tained on average for all programs but for a maximum running time of 10 minutes instead

of 30. Comparing the Figures 5.16 and 5.7, we notice that just a slightly improvement was

made when comparing the 10 and 30 minutes results, but the differences between the ob-

fuscations were not changed. The Maze and Regular Expression programs did not have

very different results when the time limit was 10 minutes, compared to the 30 minutes

one, so their plots will not be presented.

The program that had more differences in this test was the Message Service program. If

we look at Figure 5.17 and compare it with Figure 5.11, we can see that several programs

without obfuscations did not achieve a higher coverage than programs with obfuscations,

but when looking at the latter figure, in which the analysis ran for 30 minutes, we can see

that some of these programs achieved higher coverage than their obfuscated counterparts.

FIGURE 5.16: Average coverage of KLEE’s analysis of all
programs, with time limit of 10 minutes
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FIGURE 5.17: KLEE analysis coverage of the Message Ser-
vice program, with time limit of 10 minutes and input size

of 2500 bytes

The same happens on the Random Function program, depicted on Figure 5.18, where

when run with a 10 minute limit, the programs without optimizations had a lower cover-

age results than their optimized counterparts. But if we look at the 30 minute limit plot,

on Figure 5.12, we can see that the programs without optimizations achieved the same

results as the optimized ones in most of the programs.
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FIGURE 5.18: KLEE analysis coverage of the Random Func-
tion program, with time limit of 10 minutes and input size

of 20 bytes

With the discussion above we can conclude the more time an analysis has, the more accu-

rate it’s results will be, not just in terms of coverage but in overall equilibrium, and that

this variable is a very important one when it comes to having accurate results.

5.2.2.3 Input Size

In this section we will see the difference the input size has on the analysis. For this we

ran the Barcoder and Message Service programs with a time limit of 10 minutes but with

double the input size, from 5000 to 10000 bytes and from 2500 to 5000 bytes, respectively.

The results are shown on Figures 5.20 and 5.21.
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FIGURE 5.19: KLEE analysis coverage of the Barcoder pro-
gram, with time limit of 10 minutes and input size of 5000

bytes

FIGURE 5.20: KLEE analysis coverage of the Barcoder pro-
gram, with time limit of 10 minutes and input size of 10000

bytes

When comparing the Barcoder programs, Figures 5.19 and 5.20, we notice that there is a

slight change to the results. Overall the coverage achieved is higher when the input is also

higher, but when looking in detail we can observe that some obfuscations had improved

coverage while others had their coverage decreased. The same is true when looking at
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the code optimizations. The contrary is true on the Message Service program, depicted

on Figure 5.21 and comparing it to Figure 5.17, where the bigger the input the lesser is the

coverage achieved, although in a very limited value if we look at the average.

FIGURE 5.21: KLEE analysis coverage of the Message Ser-
vice program, with time limit of 10 minutes and input size

of 5000 bytes

This determines that the input size is not such a bigger factor on the outcome of the anal-

ysis as it is the maximum time an analysis can run, but on some cases if this value is too

big it can hinder the analysis and yield worse coverage results.

5.2.3 AFL++

The second analysis tool used was the AFL++ fuzzer and the same tests for the KLEE sym-

bolic execution framework were executed. On Figure 5.22, the average results obtained

when running AFL++ with the programs in the test set and with a time limit of 30 minutes

are shown. By looking at the plot, we can notice right away that these coverage results

are much higher than in KLEE’s analysis. One explanation to this is that because AFL++

is a fuzzer and does not have a solver to generate new inputs or explore new paths, it’s

speed in finding the available paths in a program is greater. Another curious remark is

that the values are not much different from program to program except on some of them,

whereas on the KLEE’s analysis it was. Overall the same behaviour is detected as in the
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KLEE analysis, where the more a program is optimized the less coverage it obtains, at

least when looking at the average results.

FIGURE 5.22: Average coverage of AFL++’s analysis of all
programs, with time limit of 30 minutes

For the AFL++ analysis on the Maze and Regular expressions programs, depicted on Fig-

ures 5.23 and 5.24 respectively, we can see that little or no difference exists between the

original program and the others.

The Maze and Regular Expressions programs are very small and uncovering most of the

paths including in the obfuscated ones should not be hard. Due to this, in the Regu-

lar Expression program some obfuscations achieved higher coverage than the programs

without obfuscations. This same situation happened on KLEE’s analysis.

Looking at the results, one obfuscation that stood out is the virtualization, due to the fact

that in KLEE’s analysis this transformation yielded very small coverage percentage com-

pared with the other obfuscations. This happens because fuzzers do not have the prob-

lems which symbolic execution have, mainly path explosions and complex constraints

to be solved, which makes the analysis of some obfuscation having the same or better

performance than the programs without obfuscation.
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FIGURE 5.23: AFL++ analysis coverage of the Maze pro-
gram, with time limit of 30 minutes, initial input of 10% of
the KLEE analysis of the original program, with an input

size of 40 bytes

FIGURE 5.24: AFL++ analysis coverage of the Regular Ex-
pression program, with time limit of 30 minutes, initial in-
put of 10% of the KLEE analysis of the original program,

with an input size of 8 bytes
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Now, let’s analyse the results for more complex programs, Barcoder and Message Service,

depicted on Figures 5.25 and 5.26 respectively. The results for the Barcoder program are

on pair with KLEE’s analysis, but the Message Service program achieved a very high

coverage for all programs. One question that arises is why the AFL++ analysis of the

Message Service program attained a much higher coverage percentage compared to the

AFL++ analysis of the Barcoder program, while on KLEE’s analysis these values were on

the same order of magnitude of the Barcoder program. Even if we compare the cyclomatic

complexity of both programs there is no correlation between them.

One of the things we can also notice on these programs is that the virtualization obfusca-

tion achieves the same or better coverage percentage than other obfuscations. Indeed,

most of the obfuscations and code optimizations achieved almost the same coverage.

Again, this is due to the fact fuzzers do not employ other complex software to be able

to find more paths.

Another observation is that only the Barcoder program attained less coverage compared

to the other programs. Even if we look into KLEE’s analysis depicted on the previous

subsection, the Barcoder program had almost the same coverage of the Message Service

program on average, while in the AFL++ analysis this is not true.
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FIGURE 5.25: AFL++ analysis coverage of the Barcoder pro-
gram, with time limit of 30 minutes, initial input of 10% of
the KLEE analysis of the original program, with an input

size of 5000 bytes

FIGURE 5.26: AFL++ analysis coverage of the Message Ser-
vice program, with time limit of 30 minutes, initial input of
10% of the KLEE analysis of the original program, with an

input size of 2500 bytes
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The results for the Random Functions program are shown in Figure 5.27 and all of the

results are either 60% or 70%, and it can also be seen that the programs without optimiza-

tions yielded a higher coverage than those with optimizations. Also, the same happens as

in the other programs, where the virtualization obfuscation was one of the obfuscations

which had higher coverage results.

FIGURE 5.27: AFL++ analysis coverage of the Random
Function program, with time limit of 30 minutes, initial in-
put of 10% of the KLEE analysis of the original program,

with an input size of 20 bytes

5.2.3.1 Time Limit

This test consists in lowering the value of the maximum time the analysis can run and

examining the results to see how much it hampers the coverage obtained. Just as in the

KLEE analysis, we are trying to identify if and how much the time the analysis has to run

has an impact on the coverage.

First, we can look at the average value for the coverage obtained when running the anal-

ysis with a time limit of 10 minutes. The results are present on Figure 5.28 and comparing

them to the Figure 5.22 we can observe that the values are not so different, with an average

coverage of 67% to 69.9%. This means that even the analysis taking the triple the time, it

did not get much further than the 10 minutes limit test, albeit the results were more solid

due to the fact that the programs without optimizations had increased coverage when ran
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with a 30 minute limit. This is the same result that was noticed on KLEE’s analysis and it

shows that in order to obtain accurate results, the time limit is very important.

FIGURE 5.28: Average coverage for the AFL++ analysis of
all programs, with time limit of 10 minutes and initial input

of 10% of the KLEE analysis of the original program

When looking in detail on the analysis, the Maze and Regular Expressions program achieved

very similar results with the limit of 10 or 30 minutes. If we look at the Regular Expres-

sions program depicted on Figure 5.29 we can also observe that behaviour except on the

virtualization obfuscation, where it increased from 65%, with a time limit of 10 minutes,

to 70%, with a time limit of 30 minutes.
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FIGURE 5.29: AFL++ analysis coverage of the Regular Ex-
pressions program, with time limit of 10 minutes, initial in-
put of 10% of the KLEE analysis of the original program,

with an input size of 20 bytes

5.2.3.2 Input Size

In the next tests, we increased the size of the initial inputs while the percentage given to

AFL++ remained the same. The Figure 5.30 depicts the results obtained on average. By

examining it, we can conclude that the coverage obtained has been reduced dramatically,

specially on the programs without optimizations and in the encode branches obfusca-

tion. This means that for fuzzing tools, it is fundamental to define a good size of the

initial inputs given. A curious result is that is it very evident the optimizations aided in

the discovery of new inputs and successively the coverage attained, although the more

optimized a program was it did not mean that it achieved better coverage. One of the

explanations is that the programs without obfuscations contain some instructions that are

slow to execute, hindering the results of the analysis.
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FIGURE 5.30: Average coverage for the AFL++ analysis of
all programs, with time limit of 10 minutes, initial input of
10% of the KLEE analysis of the original program, and input

sizes double of the original

The programs without optimizations and the encode branches obfuscation had very ques-

tioning coverage results compared to the other programs, but our analysis into these val-

ues did not uncover abnormal behaviour on the programs nor in their analysis.

By looking at the analysis of the programs separately, we can see that this issue occurred

on the Message Service program, as can be seen on Figure 5.31. Because this test was only

performed on some of the programs, namely the Barcoder and Message Service programs,

the average values are not the best approach to this type of analysis.
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FIGURE 5.31: AFL++ analysis coverage of the Message Ser-
vice program, with time limit of 10 minutes, initial input of
10% of the KLEE analysis of the original program, with an

input size of 5000 bytes

The plots on Figures 5.31 and 5.32 show the AFL++ analysis of the Message Service pro-

gram with 5000 and 2500 bytes of input, respectively. From these plots we can see that

by doubling the input size the coverage obtained was slightly higher on average, but no

significant increase was obtained.
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FIGURE 5.32: AFL++ analysis coverage of the Message Ser-
vice program, with time limit of 10 minutes, initial input of
10% of the KLEE analysis of the original program, with an

input size of 2500 bytes

In the Barcoder program, the opposite happens, where by doubling the input, the cover-

age obtained was lower. This can be seen by comparing the Figures 5.33 and 5.34, where

the former attained a lower coverage on average. This behaviour where different pro-

grams present different behaviours when analysed was already noticed on some of the

analysis discussed earlier, and this one is no exception.
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FIGURE 5.33: AFL++ analysis coverage of the Barcoder pro-
gram, with time limit of 10 minutes, initial input of 10% of
the KLEE analysis of the original program, with an input

size of 10000 bytes

FIGURE 5.34: AFL++ analysis coverage of the Barcoder pro-
gram, with time limit of 10 minutes, initial input of 10% of
the KLEE analysis of the original program, with an input

size of 5000 bytes
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5.2.4 Final Discussion

An initial observation is that the plots that describe the average results are not the best in

terms of accuracy due to the fact that small or big values in an analysis will undermine the

average results. While examining all of the results obtained, we can state some key find-

ings. One of them is the time an analysis runs is essential to attain accurate results. This

was noted when looking at the tests with a time limit of 10 minutes, where the programs

without optimizations yielded worse results than the others, which was not observed in

the tests that contained a time limit of 30 minutes. Another key finding is that in more

than half of the analysis, the more a program is optimized, the less coverage it obtained,

even with the optimization that KLEE offers which should help the analysis framework to

attain better results. We also noted that for the the AFL++ analysis, the input size is very

important, where a bigger input size does not translate to a higher coverage, which means

that a good input size is needed to achieve good coverage results when running AFL++.

We also saw that the results could not be explained and correlated by the programs cyclo-

matic complexity in both of the analysis tools, neither by the time spent on the solver in

the case of KLEE. The results obtained varied from program to program, obfuscation to

obfuscation, and optimization to optimization, meaning that the results of the analysis is

very dependent on the program being evaluated and a deeper study is needed as to why

this happens.
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Conclusion

This research aimed to answer the question if the obfuscations were resilient to optimiza-

tions, and to what extent. To answer this question, it is evident that optimizations could

not systematically revert the obfuscations applied, and on some cases they aggravated

the analysis of the tools and depending on the program it had different results. This

means that the results do not confirm the empirical sense that optimizations can some-

what revert obfuscations, which means the question cannot be easily answered and a

deep dive into how the analysis tools work and the inner working of the analysed pro-

grams is mandatory to explain this behaviour, meaning that further research is needed.

The research process contained in this thesis, mainly the methodology part, is a contri-

bution on methodologies to test obfuscations and/or optimizations and if the former is

resilient to the latter, including an empirical study using the proposed methodology. Our

perspective is that of one who wants to analyse all possible execution paths in the pro-

gram. We took this approach due to the fact that nowadays software is being more and

more tested by automated analysis tools, e.g., during CI/CD, while also being highly

used when reverse engineering a program, making this framework in line with this new

approach. As discussed on the Chapter 5, the evidence suggests that depending on the

program, the obfuscations and optimizations have different effects on the analysis of the

tools, where in some cases the code optimization increased the coverage obtained, while

on others it was the opposite. Also, no variable that we tested could describe these results.

More than one test was made on each program by changing the execution variables of the

analysis tools and it was found that the variable that has a higher weight in improving

80
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the coverage is the maximum time an analysis runs. It was also found the input size is an

important variable when analysing with AFl++, where a big input does not necessarily

mean greater coverage, on the contrary.

Unfortunately, some of the tools we experimented when making this thesis were still very

immature, being very often not maintained, not supporting the most recent versions of

software and dependencies, and failing to run or throw errors that hinder all of the steps

in this thesis. One example of this is the tools we used initially to lift compiled code back

into LLVM IR to instrumentalize and analyse it with KLEE, but none of them provided

accurate results or failed to run. This includes tools such as retdec [86], mcsema [87] and

revng [88]. Another example is Tigress and Souper which failed to obfuscate or optimize

some programs, respectively, by throwing unknown errors or executing indefinitely. Go-

ing into the optimzations tool set, we observed that some programs failed to retain their

semantic and the same input gave different results depending on the program, meaning

that when mixing obfuscations and optimizations the logic of the program was changed.

Several time spent on the production of this thesis was trying to get all of the tools work

without any errors and all of them supporting the same versions of the underlying soft-

ware, may it be dependencies or OS’s. Very often, the tools being tested were broken, or

did not work reliably, meaning they failed when run on any significant real-world soft-

ware. Another adversity was the interoperability of the tools tested, where the file formats

each one accepted as input and output might differ, which also limited the set of tools we

could choose in order to produce this thesis [89]. Although several tools were tested, the

methodology proposed and respective implementation of this thesis was limited by these

factors.

6.1 Future Work

Further research is needed to determine the causes/effects between obfuscations and op-

timizations on automated analysis tools. One point in what this thesis lacked was the

testing of several obfuscations combined on the same program. Another approach to this

testing would be to let the analysis reach 100% coverage, as done by Banuescu et al. [4],

independent on the time it takes it to be fulfilled. For a detailed analysis, we would also

need to examine individual optimisations triggered by a compiler at each level, and if

possible, examine their effect individually.
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Future work also includes a more comprehensive study on why different programs ex-

hibit different behaviours when some analysis variables are changed, e.g., input size,

time limit, etc., and applying the methodology on this thesis to a more extensive set of

programs while additionally applying different obfuscation techniques for each transfor-

mation. One of the initial approaches of this thesis was to try and lift compiled code into

an intermediate language, e.g., LLVM IR, so that we were not limited to having the source

code of the program, but as experience showed these tools were not outputting the correct

program, making the behaviour change or not even compile to machine code again.

Other metrics for the programs beyond the cyclomatic complexity can be extracted such

as the program length, nesting complexity, data flow complexity, fan-in/out complexity,

data structure complexity and object-oriented design metrics. This was done by Collberg

et al. [3] and can be applied to this framework.

As stated on this chapter, some of the tools tested along the way, e.g., code lifters, Tigress

and Souper, had errors when executed and some programs could not be generated. Also,

some analysis could not be performed due to the generated program having different

semantics, meaning that for the same input the generated program did not have the same

output as the original program. This is due to the fact that we are using these tools in

depth and in an unusual way. This also serves as future work, that is, to use these tools

more extensively to catch all the errors and fix them.
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[15] B. Spasojević, “Using optimization algorithms for malware deobfuscation,” Master’s

thesis, University of Zagreb - Faculty of Electrical Engineering and Computing, 2010.

[Cited on page 7.]

[16] J. H. Suk, Y. B. Lee, and D. H. Lee, “Score: Source code optimization amp; reconstruc-

tion,” IEEE Access, vol. 8, pp. 129 478–129 496, 2020. [Cited on page 7.]

[17] M. Liang, Z. Li, Q. Zeng, and Z. Fang, “Deobfuscation of virtualization-obfuscated

code through symbolic execution and compilation optimization,” in Information and

https://doi.org/10.1145/2991079.2991114
http://shell-storm.org/talks/SSTIC2017_Deobfuscation_of_VM_based_software_protection.pdf
http://shell-storm.org/talks/SSTIC2017_Deobfuscation_of_VM_based_software_protection.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/blazytko
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/blazytko


BIBLIOGRAPHY 85

Communications Security, S. Qing, C. Mitchell, L. Chen, and D. Liu, Eds. Cham:

Springer International Publishing, 2018, pp. 313–324. [Cited on page 8.]

[18] D. Canavese, L. Regano, C. Basile, and A. Viticchié, “Estimating software obfuscation
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