889 research outputs found

    Systematic literature review of realistic simulators applied in educational robotics context

    Get PDF
    This paper presents a systematic literature review (SLR) about realistic simulators that can be applied in an educational robotics context. These simulators must include the simulation of actuators and sensors, the ability to simulate robots and their environment. During this systematic review of the literature, 559 articles were extracted from six different databases using the Population, Intervention, Comparison, Outcomes, Context (PICOC) method. After the selection process, 50 selected articles were included in this review. Several simulators were found and their features were also analyzed. As a result of this process, four realistic simulators were applied in the review’s referred context for two main reasons. The first reason is that these simulators have high fidelity in the robots’ visual modeling due to the 3D rendering engines and the second reason is because they apply physics engines, allowing the robot’s interaction with the environment.info:eu-repo/semantics/publishedVersio

    Learning robotics: a review

    Get PDF
    Purpose of Review: With the growing interest for STEM/STEAM, new robotic platforms are being created with different characteristics, extras and options. There are so many diverse solutions, that it is difficult for a teacher/student to choose the ideal one. This paper intends to provide an analysis to the most common robotic platforms existent on the market. The same is happening regarding robotic events all around the world, with objectives so distinctive, and with complexity from easy to very difficult. This paper also describes some of those events which occur in many countries. Recent Findings: As the literature is showing, there has been a visible effort from schools and educators to teach robotics from very young ages, not only because robotics is the future, but also as a tool to teach STEM/STEAM areas. But as time progresses, the options for the right platforms also evolves making difficult to choose among them. Some authors opt to first choose a robotic platform and carry on from there. Others choose first a development environment and then look for which robots can be programmed from it. Summary: An actual review on learning robotics is here presented, firstly showing some literature background on history and trends of robotic platforms used in education in general, the different development environments for robotics and finishing on competitions and events. A comprehensive characterization list of robotic platforms along with robotic competitions and events is also shown

    A survey on the design space of end-user-oriented languages for specifying robotic missions

    Get PDF
    Mobile robots are becoming increasingly important in society. Fulfilling complex missions in different contexts and environments,robots are promising instruments to support our everyday live. As such, the task of defining the robot’s missionis moving from professional developers and roboticists to the end-users. However, with the current state-of-the-art, definingmissions is non-trivial and typically requires dedicated programming skills. Since end-users usually lack such skills, manycommercial robots are nowadays equipped with environments and domain-specific languages tailored for end-users. As such,the software support for defining missions is becoming an increasingly relevant criterion when buying or choosing robots.Improving these environments and languages for specifying missions toward simplicity and flexibility is crucial. To this end,we need to improve our empirical understanding of the current state-of-the-art of such languages and their environments. Inthis paper, we contribute in this direction. We present a survey of 30 mission specification environments for mobile robots thatcome with a visual and end-user-oriented language. We explore the design space of these languages and their environments,identify their concepts, and organize them as features in a feature model. We believe that our results are valuable to practitionersand researchers designing the next generation of mission specification languages in the vibrant domain of mobilerobots

    DRAFT-What you always wanted to know but could not find about block-based environments

    Get PDF
    Block-based environments are visual programming environments, which are becoming more and more popular because of their ease of use. The ease of use comes thanks to their intuitive graphical representation and structural metaphors (jigsaw-like puzzles) to display valid combinations of language constructs to the users. Part of the current popularity of block-based environments is thanks to Scratch. As a result they are often associated with tools for children or young learners. However, it is unclear how these types of programming environments are developed and used in general. So we conducted a systematic literature review on block-based environments by studying 152 papers published between 2014 and 2020, and a non-systematic tool review of 32 block-based environments. In particular, we provide a helpful inventory of block-based editors for end-users on different topics and domains. Likewise, we focused on identifying the main components of block-based environments, how they are engineered, and how they are used. This survey should be equally helpful for language engineering researchers and language engineers alike

    An Innovative, Multidisciplinary Educational Program in Interactive Information Storage and Retrieval

    Get PDF
    There exists a large number of large-scale bibliographic Information Storage and Retrieval Systems containing large amounts of valuable data of interest in a wide variety of research applications. These systems are not used to capacity because the end users, i.e., the researchers, have not been trained in the techniques of accessing such systems. This thesis describes the development of a transportable, university-level course in methods of querying on-line interactive Information Storage and Retrieval systems as a solution to this problem. This course was designed to instruct upper division science and engineering students to enable these end users to directly access such systems. The course is designed to be taught by instructors who are not specialists in either computer science or research skills. It is independent of any particular IS and R system or computer hardware. The project is sponsored by NASA and conducted by the University of Southwestern Louisiana and Southern University

    Interactions Between Humans and Robots

    Get PDF

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion
    • 

    corecore