5 research outputs found

    Méthodes hybrides basées sur la génération de colonnes pour des problèmes de tournées de véhicules avec fenêtres de temps

    Get PDF
    RÉSUMÉ Un problème de tournées de véhicules avec fenêtres de temps consiste à faire la livraison de marchandise à un ensemble de clients avec une flotte de véhicules ayant un ou plusieurs points de départ appelés dépôts. Chaque client doit être desservi à l'intérieur d'une période prédéfinie, appelée fenêtre de temps. En pratique, on doit pouvoir respecter un grand nombre de contraintes et de caractéristiques complexes telles que des flottes hétérogènes de véhicules, des restrictions sur les routes, etc., en plus de devoir prendre en compte un grand nombre de clients. Il est donc primordial pour les distributeurs d'avoir accès à des outils performants d'optimisation capables de gérer un grand ensemble de contraintes de façon efficace. Dans cette thèse, nous présentons une méthode heuristique pour résoudre un ensemble de problèmes de tournées de véhicules de grande taille avec fenêtres de temps de façon efficace. Les problèmes abordés sont riches dans le sens où ils contiennent des caractéristiques non conventionnelles complexes s'apparentant à des problématiques réelles. La méthode proposée est un hybride entre une méthode métaheuristique de recherche à grands voisinages et une méthode exacte de génération de colonnes, la plus performante à ce jour pour résoudre de façon exacte des problèmes de tournées de véhicules assez contraints. La recherche à grands voisinages est une méthode où l'on vient itérativement détruire (phase de destruction) et reconstruire (reconstruction) des parties d'une solution courante afin d'obtenir de meilleures solutions. Les voisinages, définis dans la phase de destruction, sont explorés dans la phase de reconstruction. Dans notre méthode, les voisinages sont explorés par génération de colonnes gérée de façon heuristique. Une méthode de génération de colonnes sert à résoudre la relaxation linéaire d'un programme linéaire. Elle résout itérativement un problème maître, qui est le programme linéaire restreint à un sous-ensemble de variables, et un ou plusieurs sous-problèmes qui servent à rajouter des variables de coût réduit négatif au problème maître. La résolution se termine lorsque les sous-problèmes ne trouvent plus de variables de coût réduit négatif. Cette méthode est imbriquée dans un algorithme de séparation et évaluation pour obtenir des solutions entières. Plusieurs opérateurs sont définis pour sélectionner des éléments qui seront retirés de la solution courante dans la phase de destruction. À chaque itération, un opérateur est choisi aléatoirement en favorisant ceux qui ont permis d'améliorer la solution courante dans les itérations précédentes. La génération de colonnes sert ensuite à explorer le voisinage ainsi défini (reconstruction). Plusieurs aspects de la génération de colonnes sont gérés de façon heuristique afin d'obtenir de bonnes solutions en des temps raisonnables aux dépens de la certitude de trouver une solution optimale. Les sous-problèmes sont résolus par une méthode de recherche tabou et la génération de colonnes est stoppée après une trop faible amélioration de la valeur de la solution courante de la relaxation linéaire au cours des dernières itérations. Afin d'obtenir des solutions entières, un branchement agressif sur la variable ayant la valeur fractionnaire la plus grande est effectué. Sa valeur est fixée à 1 sans possibilité de retour en arrière.----------ABSTRACT Given a fleet of vehicles assigned to one or more depots, a vehicle routing problem with time windows consists of determining a set of feasible vehicle routes to deliver goods to a set of scattered customers. Every customer must be visited within a prescribed time interval, called a time window. In practice, vehicle routing problems can have many different types of constraints and complex characteristics such as a heterogeneous fleet, restrictions on the routes, etc., while having to serve a large number of customers. Therefore, it is essential for distributors to rely on competitive optimizing tools able to tackle a large number of constraints efficiently. In this thesis, we present an efficient heuristic method for solving a number of large-scale vehicle routing problems with time windows. The problems tackled are rich in the sense that they contain many non-conventional complex characteristics arising in real applications. We propose a hybrid between a large neighborhood search metaheuristic and a column generation exact method, hitherto the most efficient to solve constrained vehicle routing problems exactly. Large neighborhood search is an iterative method where we sequentially remove (destruction phase) and reinsert (reconstruction phase) parts of an incumbent solution in the hope of improving it. Neighborhoods defined in the destruction phase are explored in the reconstruction phase. We propose to explore the neighborhoods by column generation managed heuristically. A column generation method is used to solve the linear relaxation of a linear program. It solves iteratively a master problem, that is the linear program restricted to a subset of variables, and one or many subproblems that attempt to find new negative reduced cost variables to add to the master problem. The process ends when the subproblems cannot find any negative reduced cost variables. This method is embedded within a brand-and-bound algorithm to derive integer solutions. Several operators are defined to select elements that will be removed from the incumbent solution in the destruction phase. At every iteration, an operator is randomly selected favouring those who managed to improve the incumbent solution in the past iterations. Afterwards, column generation is used to explore the neighborhood defined by the operator (reconstruction phase). Many aspects of the column generation approach are managed heuristically in order to obtain good solutions in reasonable time at the expense of ensuring optimality. The subproblems are solved by means of a tabu search algorithm and the column generation is stopped if the value of the solution of the linear relaxation does not improve enough over the last iterations. An aggressive ranching scheme is used to derive integer solutions. Branching is done on the variable with the highest fractional value, which is fixed at 1 without the possibility to backtrack

    The bid construction problem for truckload transportation services procurement in combinatorial auctions : new formulations and solution methods

    Get PDF
    De nos jours, l'évolution du commerce électronique ainsi que des niveaux de la consommation requièrent des acteurs de la chaine logistique et en particulier les transporteurs de gérer efficacement leurs opérations. Afin de rester concurrentiels et maximiser leurs profits, ils doivent optimiser leurs opérations de transport. Dans cette thèse de doctorat, nous nous focalisons sur les enchères combinatoires en tant que mécanisme de négociation pour les marchés d'approvisionnement des services de transport routier par camions permettant à un expéditeur d'externaliser ses opérations de transport et aux transporteurs d'acquérir des contrats de transport. Les mises combinatoires permettent à un transporteur participant à l'enchère d'exprimer ses intérêts pour une combinaison de contrats mis à l'enchère dans une même mise. Si la mise gagne, tous les contrats qui la forment seront alloués au transporteur au tarif exigé. Les défis majeurs pour le transporteur sont de déterminer les contrats de transport sur lesquels miser, les regrouper dans plusieurs mises combinatoires, s'il y a lieu, et décider des prix à soumettre pour chaque mise générée. Ces défis décisionnels définissent le problème de construction de mises combinatoires (BCP pour Bid Construction Problem). Chaque transporteur doit résoudre le BCP tout en respectant ses engagements préexistants et ses capacités de transport et en tenant compte des offres des compétiteurs, ce qui rend le problème difficile à résoudre. Dans la pratique, la majorité des transporteurs se basent sur leur connaissance du marché et leur historique pour fixer leurs prix des mises. Dans la littérature, la majorité des travaux sur le BCP considèrent des modèles déterministes où les paramètres sont connus et se limitent à un contexte de flotte homogène. En plus, nous notons qu'un seul travail à considérer une variante stochastique du BCP. Dans cette thèse de doctorat, nous visons à faire avancer les connaissances dans ce domaine en introduisant de nouvelles formulations et méthodes de résolution pour le BCP Le premier chapitre de cette thèse introduit une nouvelle variante du BCP avec une flotte hétérogène. En partant d'une comparaison des similitudes et des différences entre le BCP et les problèmes classiques de de tournées de véhicules, nous proposons une nouvelle formulation basée sur les arcs avec de nouvelles contraintes de bris de symétrie pour accélérer la résolution. Ensuite, nous proposons une approche heuristique et une autre exacte pour résoudre ce problème. L'heuristique développée est une recherche adaptative à grands voisinages (ALNS pour Adaptive Large Neighborhood Search) et se base sur le principe de destruction puis réparation de la solution à l'aide d'opérateurs conçus spécifiquement pour le BCP traité. La méthode exacte utilise la meilleure solution heuristique pour résoudre notre modèle mathématique avec le solveur CPLEX. Les résultats obtenus montrent la pertinence de nos méthodes en termes de qualités des solutions et des temps de calculs et ce pour des instances de grande taille. Dans le deuxième chapitre, nous nous attaquons à un cas particulier du BCP où le transporteur n'a pas d'engagements existants et vise à déterminer un ensemble de contrats mis à l'enchère profitables à miser dessus. Cette problématique correspond à un problème de tournées de véhicules avec profits (TOP pour Team Orienteering Problem). Nous proposons pour le TOP une heuristique ALNS hybride avec de nouveaux opérateurs ainsi que de nouvelles fonctionnalités tenant compte de la nature du problème. Ensuite, nous comparons les performances de notre méthode avec toutes les méthodes déjà publiées dans la littérature traitant du TOP. Les résultats montrent que notre méthode surpasse généralement toutes les approches existantes en termes de qualité des solutions et/ou temps de calculs quand elle est testée sur toutes les instances de la littérature. Notre méthode améliore la solution d'une instance de grande taille, ce qui surligne sa performance. Dans le troisième chapitre, nous nous focalisons sur l'incertitude associée aux prix de cessions des contrats mis à l'enchère et sur les offres des transporteurs concurrents. Il n'existe qu'un seul article qui traite de l'incertitude dans le BCP cependant il ne permet pas de générer des mises multiples. Ainsi, nous proposons une nouvelle formulation pour le BCP avec des prix stochastiques permettant de générer des mises combinatoires et disjointes. Nous présentons deux méthodes pour résoudre ce problème. La première méthode est hybride et à deux étapes. Dans un premier temps, elle résout un problème de sélection pour déterminer un ensemble de contrats profitables. Dans un second temps, elle résout simultanément un problème de sélection de contrats et de détermination de prix des mises (CSPP pour Contracts Selection and Pricing Problem) en ne considérant que les contrats sélectionnés dans la première étape. Notre méthode exacte résout, avec l'algorithme de branch-and-cut, le CSPP sans présélectionner des contrats. Les résultats expérimentaux et de simulations que nous rapportons soulignent la performance de nos deux méthodes et évaluent l'impact de certains paramètres sur le profit réel du transporteur. Dans le quatrième chapitre, nous nous focalisons sur l'incertitude liée au succès des mises et à la non-matérialisation des contrats. Généralement, le transporteur souhaite avoir la garantie que si certaines des mises ne sont pas gagnées ou un contrat ne se matérialise pas, il n'encourra pas de perte en servant le sous-ensemble de contrats gagnés. Dans cette recherche, nous adressons le BCP avec prix stochastiques et développons une méthode exacte qui garantit un profit non négatif pour le transporteur peu importe le résultat des enchères. Nos simulations des solutions optimales démontrent, qu'en moyenne, notre approche permet au transporteur d'augmenter son profit en plus de garantir qu'il reste non-négatif peu importe les mises gagnées ou la matérialisation des contrats suivant l'enchère.Nowadays, the evolution of e-commerce and consumption levels require supply chain actors, in particular carriers, to efficiently manage their operations. In order to remain competitive and to maximize their profits, they must optimize their transport operations. In this doctoral thesis, we focus on Combinatorial Auctions (CA) as a negotiation mechanism for truckload (TL) transportation services procurement allowing a shipper to outsource its transportation operations and for a carrier to serve new transportation contracts. Combinatorial bids offer a carrier the possibility to express his valuation for a combination of contracts simultaneously. If the bid is successful, all the contracts forming it will be allocated to the carrier at the submitted price. The major challenges for a carrier are to select the transportation contracts to bid on, formulate combinatorial bids and associated prices. These decision-making challenges define the Bid Construction Problem (BCP). Each carrier must solve a BCP while respecting its pre-existing commitments and transportation capacity and considering unknown competitors' offers, which makes the problem difficult to solve. In practice, the majority of carriers rely on their historical data and market knowledge to set their prices. In the literature, the majority of works on the BCP propose deterministic models with known parameters and are limited to the problem with a homogeneous fleet. In addition, we found a single work addressing a stochastic BCP. In this thesis, we aim to advance knowledge in this field by introducing new formulations and solution methods for the BCP. The first chapter of this thesis introduces the BCP with a heterogeneous fleet. Starting from a comparison between the BCP and classical Vehicle Routing Problems (VRPs), we propose a new arc-based formulation with new symmetry-breaking constraints for the BCP. Next, we propose exact and heuristic approaches to solve this problem. Our Adaptive Large Neighborhood Search (ALNS) heuristic is based on a destroy-repair principle using operators designed for this problem. Our exact method starts from the heuristic solution and solves our mathematical model with CPLEX. The results we obtained revealed the relevance of our methods in terms of solutions quality and computational times for large instances with up to 500 contracts and 50 vehicles. In the second chapter, we tackle a particular case of the BCP where the carrier has no pre-existing commitments and aims to select a set of profitable auctioned contracts to bid on. This problem corresponds to a Team Orienteering Problem (TOP). We propose a hybrid ALNS heuristic for the TOP with new operators as well as new features taking into account the nature of the problem. Then, we compare the performance of our algorithm against the best solutions from the literature. The results show that our method generally outperforms all the existing ones in terms of solutions quality and/or computational times on benchmark instances. Our method improves one large instance solution, which highlights its performance. In the third chapter, we focus on the uncertainty associated with the auctioned contracts clearing prices and competing carriers offers. Only one article dealing with uncertainty in the BCP existed but it does not allow to generate multiple bids. Thus, we propose a new formulation for the BCP with stochastic prices allowing to generate non-overlapping combinatorial bids. We present two methods to solve this problem. The first one is a two-step hybrid heuristic. First, it solves a Contracts Selection Problem to determine a set of profitable contracts to bid on. Secondly, it simultaneously solves a Contracts Selection and Pricing Problem (CSPP) by considering only the set of auctioned contracts selected in the first stage. Our exact method solves a CSPP by branch-and-cut without pre-selecting contracts. The experimental and simulation results underline the performance of our two methods and evaluate the impact of certain parameters on the carrier's real profit. In the fourth chapter, we focus on the uncertainty associated with bids success and contracts non-materialization. Generally, the carrier seeks to be assured that if some of the submitted bids are not won or a contract does not materialize, it will not incur a loss by serving the remaining contracts. In this research, we address the BCP with stochastic prices and develop an exact method that ensures a non-negative profit for the carrier regardless of the auction outcomes and contracts materialization. Our simulations of the optimal solutions show that, on average, our approach increases the carrier's profit in addition to guaranteeing its non-negativity regardless of the bids won or the contracts materialization

    Proceedings of the 23rd International Conference of the International Federation of Operational Research Societies

    Full text link
    corecore