1,776 research outputs found

    Planning as Tabled Logic Programming

    Get PDF
    This paper describes Picat's planner, its implementation, and planning models for several domains used in International Planning Competition (IPC) 2014. Picat's planner is implemented by use of tabling. During search, every state encountered is tabled, and tabled states are used to effectively perform resource-bounded search. In Picat, structured data can be used to avoid enumerating all possible permutations of objects, and term sharing is used to avoid duplication of common state data. This paper presents several modeling techniques through the example models, ranging from designing state representations to facilitate data sharing and symmetry breaking, encoding actions with operations for efficient precondition checking and state updating, to incorporating domain knowledge and heuristics. Broadly, this paper demonstrates the effectiveness of tabled logic programming for planning, and argues the importance of modeling despite recent significant progress in domain-independent PDDL planners.Comment: 27 pages in TPLP 201

    The PITA System: Tabling and Answer Subsumption for Reasoning under Uncertainty

    Full text link
    Many real world domains require the representation of a measure of uncertainty. The most common such representation is probability, and the combination of probability with logic programs has given rise to the field of Probabilistic Logic Programming (PLP), leading to languages such as the Independent Choice Logic, Logic Programs with Annotated Disjunctions (LPADs), Problog, PRISM and others. These languages share a similar distribution semantics, and methods have been devised to translate programs between these languages. The complexity of computing the probability of queries to these general PLP programs is very high due to the need to combine the probabilities of explanations that may not be exclusive. As one alternative, the PRISM system reduces the complexity of query answering by restricting the form of programs it can evaluate. As an entirely different alternative, Possibilistic Logic Programs adopt a simpler metric of uncertainty than probability. Each of these approaches -- general PLP, restricted PLP, and Possibilistic Logic Programming -- can be useful in different domains depending on the form of uncertainty to be represented, on the form of programs needed to model problems, and on the scale of the problems to be solved. In this paper, we show how the PITA system, which originally supported the general PLP language of LPADs, can also efficiently support restricted PLP and Possibilistic Logic Programs. PITA relies on tabling with answer subsumption and consists of a transformation along with an API for library functions that interface with answer subsumption

    Tabling with Sound Answer Subsumption

    Get PDF
    Tabling is a powerful resolution mechanism for logic programs that captures their least fixed point semantics more faithfully than plain Prolog. In many tabling applications, we are not interested in the set of all answers to a goal, but only require an aggregation of those answers. Several works have studied efficient techniques, such as lattice-based answer subsumption and mode-directed tabling, to do so for various forms of aggregation. While much attention has been paid to expressivity and efficient implementation of the different approaches, soundness has not been considered. This paper shows that the different implementations indeed fail to produce least fixed points for some programs. As a remedy, we provide a formal framework that generalises the existing approaches and we establish a soundness criterion that explains for which programs the approach is sound. This article is under consideration for acceptance in TPLP.Comment: Paper presented at the 32nd International Conference on Logic Programming (ICLP 2016), New York City, USA, 16-21 October 2016, 15 pages, LaTeX, 0 PDF figure
    • …
    corecore