5 research outputs found

    The dark side of the board: advances in chess Kriegspiel

    Get PDF
    While imperfect information games are an excellent model of real-world problems and tasks, they are often difficult for computer programs to play at a high level of proficiency, especially if they involve major uncertainty and a very large state space. Kriegspiel, a variant of chess making it similar to a wargame, is a perfect example: while the game was studied for decades from a game-theoretical viewpoint, it was only very recently that the first practical algorithms for playing it began to appear. This thesis presents, documents and tests a multi-sided effort towards making a strong Kriegspiel player, using heuristic searching, retrograde analysis and Monte Carlo tree search algorithms to achieve increasingly higher levels of play. The resulting program is currently the strongest computer player in the world and plays at an above-average human level

    Temporal Difference Learning in Complex Domains

    Get PDF
    PhDThis thesis adapts and improves on the methods of TD(k) (Sutton 1988) that were successfully used for backgammon (Tesauro 1994) and applies them to other complex games that are less amenable to simple pattem-matching approaches. The games investigated are chess and shogi, both of which (unlike backgammon) require significant amounts of computational effort to be expended on search in order to achieve expert play. The improved methods are also tested in a non-game domain. In the chess domain, the adapted TD(k) method is shown to successfully learn the relative values of the pieces, and matches using these learnt piece values indicate that they perform at least as well as piece values widely quoted in elementary chess books. The adapted TD(X) method is also shown to work well in shogi, considered by many researchers to be the next challenge for computer game-playing, and for which there is no standardised set of piece values. An original method to automatically set and adjust the major control parameters used by TD(k) is presented. The main performance advantage comes from the learning rate adjustment, which is based on a new concept called temporal coherence. Experiments in both chess and a random-walk domain show that the temporal coherence algorithm produces both faster learning and more stable values than both human-chosen parameters and an earlier method for learning rate adjustment. The methods presented in this thesis allow programs to learn with as little input of external knowledge as possible, exploring the domain on their own rather than by being taught. Further experiments show that the method is capable of handling many hundreds of weights, and that it is not necessary to perform deep searches during the leaming phase in order to learn effective weight

    Temoral Difference Learning in Complex Domains

    Get PDF
    Submitted to the University of London for the Degree of Doctor of Philosophy in Computer Scienc

    Tablebase of Contents of the ICCA Journal

    No full text
    corecore