
Temporal Difference Learning in Complex Domains
Smith, Martin C.

The copyright of this thesis rests with the author and no quotation from it or information

derived from it may be published without the prior written consent of the author

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/jspui/handle/123456789/1792

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

http://qmro.qmul.ac.uk/jspui/handle/123456789/1792

Temporal Difference Learning
in Complex Domains

by
Martin C. Smith

Submitted to the University of London
for the Degree of

Doctor of Philosophy in Computer Science

49

)L(14
QUEEN MARY

AND WESTFIELD COLLEGE

UNIVEKSITY OF LONDON

October 1999

(BIBL
LONDON

UNI'v

This work is dedicated to

Bethina

Acknowledgements
I would like to thank my wife Bethina and my parents Margaret and Barry for their

love and understanding throughout my student years. I would also like to thank all at
the QMW Department of Computer Science. Most importantly I would like to thank
my supervisor and friend Don Beal, without whose help, support and encouragement
this thesis would not have been possible.

ABSTRACT

This thesis adapts and improves on the methods of TD(k) (Sutton 1988) that were

successfully used for backgammon (Tesauro 1994) and applies them to other complex
games that are less amenable to simple pattem-matching approaches. The games
investigated are chess and shogi, both of which (unlike backgammon) require
significant amounts of computational effort to be expended on search in order to

achieve expert play. The improved methods are also tested in a non-game domain.

In the chess domain, the adapted TD(k) method is shown to successfully learn the

relative values of the pieces, and matches using these learnt piece values indicate that

they perform at least as well as piece values widely quoted in elementary chess books.
The adapted TD(X) method is also shown to work well in shogi, considered by many

researchers to be the next challenge for computer game-playing, and for which there
is no standardised set of piece values.

An original method to automatically set and adjust the major control parameters used
by TD(k) is presented. The main performance advantage comes from the learning

rate adjustment, which is based on a new concept called temporal coherence.
Experiments in both chess and a random-walk domain show that the temporal

coherence algorithm produces both faster learning and more stable values than both

human-chosen parameters and an earlier method for learning rate adjustment.

The methods presented in this thesis allow programs to learn with as little input of

external knowledge as possible, exploring the domain on their own rather than by

being taught. Further experiments show that the method is capable of handling many
hundreds of weights, and that it is not necessary to perform deep searches during the
leaming phase in order to learn effective weights

Declaration

The work presented in this thesis is my own and is the result of research and

experiments carried out by myself, with the exception of those parts noted below that

are the results of work done in conjunction with my supervisor.

The majority of the program code used for this research was written by myself,
including all of the temporal difference engine. A few sections, such as the interface

for the chess program and parts of the shogi capture search, were written in

collaboration with my supervisor. The various published papers arising from the

work presented in this thesis were written jointly with my supervisor. Appendix E is

a lightly edited version of a co-authored paper resulting from research undertaken

prior to my PhD.

Table of Contents

TABLE OF CONTENTS

ABSTRACT ... i

TABLE OF CONTENTS ..

LIST OF TABLES .. vi

LIST OF FIGURES ... vii

1 INTRODUCTION .. 1

1.1 Aims and Objectives .. 1
1.2 Thesis Structure 2

2 GAME PLAYING PROGRAMS AND MACHINE LEARNING .. 5

2.1 Fifty Years of Computer Chess and Artificial Intelligence ..
5

2.2 The Complexity of Chess and the Challenge of Perfect Knowledge ...
6

2.3 Machine Learning in Games ..
8

2.3.1 Samuel's checkers player ...
8

2.3.2 Neurogammon ..
9

2.3.3 TD-Gammon ...
10

3 TEMPORAL DIFFERENCE LEARNING AND MINIMAX SEARCH 12

3.1 Temporal Difference Learning ..
12

3.2 Comparison with other Learning Methods .. 13
3.3 TD(k) and Games ..

13
3.4 Minimax Search and Alpha-Beta Pruning ... 14

3.4.1 The principal variation ..
16

3.4.2 Other search regimes ...
16

3.5 Applying TD Learning to Complex Game Domains ... 17
3.5.1 Determining weightsfor evaluation terms ... 17
3.5.2 Using the principal position, rather than the game position .. 19

3.6 Learning in the Absence of Expert Knowledge ... 20
3.6.1 Self-play versus online play ..

20
3.6.2 Why is search needed in some domains, but not others? ... 22
3.6.3 Learning in deterministic and non-deterministic games .. 22

4A PLATFORM FOR EXPERIMENTAL WORK ... 24

4.1 The Basic Minimax Search Engine ..
24

4.1.1 The horizon evaluation and quiescence search .. 25
4.1.2 Transposition tables ...

25
4.2 Mul tiple Probes of Transposition Tables ...

26
4.2.1 Hash table saturation ...

26
4.2.2 The transposition table experiment ..

27
4.2.3 The test set used in the experiment ...

27
4.2.4 Search depths

...
28

4.2.5 Experimental issues ..
28

4.2.6 Results ..
30

4.3 Selective Search ...
32

4.3.1 Alpha-beta is not selective search .. 33
4.3.2 Selective search methods ..

33
4.3.3 Search extension heuristics as selective search ... 34

4.4 Search Extension Benefits: Comparison and Quantification .. 34
4.4.1 The performance of search extension heuristics .. 35

iii

Table of Contents

4.4.2 The extension rules and test domain ..
35

4.4.3 The baseline search, horizon evaluation and quiescence search 36
4.4.4 Measuring performance ... 37
4.4.5 The test set ..

38
4.4.6 The search extension heuristics .. 39
4.4.7 Search extension results ... 42
4.4.8 Discussion .. 49

4.5 Benefits of the Preliminary Experiments ... 52
4.6 Shogi and the Shogi-Playing Search Engine .. 52

5 LEARNING CHESS EVALUATION COEFFICIENTS .. 54

5.1 The Relative Value of the Pieces ... 54
5.2 Temporal Difference Learning in Chess .. 55
5.3 The Basic Learning Experiment .. 56

5.3.1 The search engine .. 57
5.3.2 Experimental details ... 57
5.3.3 Basic learning results ... 57
5.3.4 Basic resultsfrOm matches using learnt values ... 59

5.4 Experiments at Various Depths ... 60
5.4.1 Matches at various depths

..
62

5.5 Learning Without Search ... 63
5.6 Discussion ..

64

6 LEARNING IN SHOGI ... 65

6.1 Shogi: One Step Beyond ..
65

6.2 The Relative Value of Shogi Pieces ...
66

6.3 The Shogi-Playing Search Engine ...
67

6.4 Applying Temporal Difference Learning to Shogi ..
67

6.5 Results from Learning ...
68

6.5.1 Weight traces ..
69

6.5.2 Main piece values ...
70

6.5.3 Promotedpiece values ...
71

6.6 Testing Learnt Values in Match Play ...
72

6.7 Variation of Learnt Values with Search Depth .. 75
6.7.1 Scaling variation with depth ..

76
6.7.2 Match results at various depths .. 78

6.8 Learning without Search ..
78

6.9 Discussion ..
79

7 LEARNING MORE COMPLEX WEIGHT SETS ... 81

7.1 Weights for Piece-Square Tables ...
81

7.2 Weights for Pawn Advancement and Piece Centrality .. 82
7.2.1 Weightsforpawn ranks ..

82
7.2.2 Weightsforpiece centrality ..

83
7.2.3 Match results ..

85
7.2.4 Calculating 'average' values ...

85
7.4 Weights for Half-board and Full-board Sets .. 86

7.4.1 Match results using piece-square values .. 90
7.4.2 Ensuring variation in the matches ..

92
7.5 Learning Weights for other Evaluation Terms ... 92
7.6 Learning the 'Steepness' of the Squashing Function ... 94

8 TEMPORAL COHERENCE AND PREDICTION DECAY ... 96

8.1 Control Parameters for TD(X) ..
96

8.2 Temporal Coherence: Adjustments to Learning Rates .. 98
8.3 Prediction Decay: Determining X

.. 100
8.3.1 Setting the temporal discount parameter using prediction decay

................................ 100
8.4 Delta-bar-delta ... 103
8.5 Test Domain One: A Bounded Random Walk .. 103

IV

Table of Contents

8.5.1 Resultsfrom the bounded random walk ...
104

8.6 Test Domain Two: Learning the Values of Chess Pieces ... 109
8.6.1 Resultsfrom single runs ... 110
8.6.2 Resultsfrom the average of 10 runs ... 114

8.7 Discussion ..
116

9 CONCLUSIONS ... 118

9.1 Possible Future Work .. 124

REFERENCES ... 125

APPENDIX A: EXPERIMENTAL DETAILS FROM CHAPTER FOUR 134

A.] Test Positions used in the Transposition Table Experiments .. 134
A. 2 Detailsfrom the Search Extension Experiments ... 135

APPENDIX B: EXPERIMENTAL DETAILS FROM CHAPTER FIVE 138

APPENDIX C: EXPERIMENTAL DETAILS FROM CHAPTER SIX 139

APPENDIX D: EXPERIMENTAL DETAILS FROM CHAPTER SEVEN 141

APPENDIX E: RANDOM EVALUATIONS IN CHESS .. 143

E. I Introduction ..
143

E. 2 The First Experiment ...
143

E. 2.1 Results of the first experiment ..
144

E. 3 Two Additional Experiments ...
145

EA Further Details of the Experiments ..
146

E. 4.1 Handling of the game-terminal positions ...
146

E. 4.2 Draws by repetition ..
148

E. 4.3 Length of games ...
149

E. 5 Numerical Results ..
150

E. 6 Interpretation of the Random Evaluation Results .. 151
E. 7 Why Does the Effect Occur? ...

152
E. 8 Possible Applications of the Effect ..

152
E. 9 Discussion ..

154

List of Tables

LIST OF TABLES

Table 4.1: Average node counts per position for a single probe, by table size 30
Table 4.2: Average individual percentage saving (and standard deviation), by table size 30
Table 4.3: Average individual percentage saving (and standard deviation), by saturation factor 31
Table 4.4: Average number of c-nodes explored (in 1000s) by search depth 44

Table 5.1: Learnt values for each run, averaged over the final 20% of the runs 58
Table 5.2: Learnt values for each run, normalised to pawn =I... 59
Table 5.3: Match results for each trial vs. values (1: 3: 3: 5: 9) ... 60
Table 5.4: Learnt piece values from depths 1,3,5 .. 61
Table 5.5: Learnt piece values from depths 2,4,6 .. 61
Table 5.6: Match results vs. 'standard' at various depths .. 62

Table 6.1: Shogi match results ... 74
Table 6.2: Mini-tournament cross-table ... 75
Table 6.3: Individual learning run match results against YSS values .. 75
Table 6.4: Average piece values (before normalisation) ... 77
Table 6.5: Match results from depths I to 4 .. 78

Table 7.1: The average weights learnt in the pawn ranks plus piece centrality runs 83
Table 7.2: Composite values for piece locations ... 84
Table 7.3: Match results using pawn rank and piece centrality values .. 85
Table 7.4: Percentage 'frequency of occurrence' for each piece location during the learning runs .. 86
Table 7.5: Match results using half-board piece-square values ... 91
Table 7.6: Examples of material advantages and their corresponding predictions 95

Table A. 1: Full results from the search extension experiments .. 137

Table B. 1: Final values for individual chess runs, at various depths .. 138

Table C. 1: Main piece values for each of the five runs (a-e) at depths I to 4 139

Table C. 2: Promoted piece values for each of the five runs (a-e) at depths I to 4 139

Table C. 3: Piece values used in matches ..
140

TableD. I: The pawn rank and piece centrality bonuses used by the weight set Central 141

Table D. 2: Chess piece values learnt using piece-square tables ... 141

Table D. 3: Half-board piece-square values .. 142

Table DA: Full-board piece-square values ... 142

Table E. 1: Comparison of lookahead-random and lookahead-zero at various depths
..................... 150

Table E. 2: Comparison of ctree-randorn and ctree-zero at various depths 150
Table E. 3: Comparison of material-balance random and material balance zero at various depths.. 150

vi

List of Tables

LIST OF FIGURES

Figure3.1: A minimax search tree incorporating alpha-beta pruning ... 15
Figure 3.2: A minimax search tree with perfect move ordering .. 15

Figure 4.1: Individual iteration savings plotted against saturation factor
...

31
Figure 4.2: Average percentage saving by table size, for saturation factor I to 10 32
Figure 4.3: C-nodes to solution (overall) .. 45
Figure 4.4: C-nodes to solution (depths 6-7) ... 45
Figure 4.5: C-nodes to solution (depths 8-9) ... 46
Figure 4.6: C-nodes to solution (depths 10+) ..

46
Figure 4.7: Effective branching factors (depths 6-7)

...
47

Figure 4.8: Effective branching factors (depths 8-9) ...
48

Figure 4.9: Effective branching factors (depths 10+) ..
48

Figure 4.10: Singular detection and null move variants (overall) ...
50

Figure 5.1: Graph showing the conversion of position value into prediction probabilities
56

Figure 5.2: Graph of learnt values from a typical single run ...
58

Figure 5.3: Normalised learnt piece values from 5 runs at search depth 4 ..
59

Figure 5.4: Learnt piece values from depths 1,3,5 ..
61

Figure 5.5: Learnt piece values from depths 2,4,6 ..
62

Figure 5.6: Failure to learn from entirely random play ...
63

Figure 6.1: Typical weight traces (main pieces) ...
69

Figure 6.2: Typical weight traces (promoted pieces) ..
70

Figure 6.3: Normalised piece values for 5 runs (main pieces) .. 71

Figure 6.4: Normalised learnt values for 5 runs (promoted pieces) .. 72

Figure 6.5: Value sets tested in match play (main pieces) ..
74

Figure 6.6 Value sets tested in match play (promoted pieces) ... 74

Figure 6.7: Main piece values learnt at depths I to 4 .. 76

Figure 6.8: Promoted piece values learnt at depths I to 4 ... 76

Figure 7.1: Indexing for the pawn weights ..
82

Figure 7.2: Indexing for the piece centrality weights ..
83

Figure 7.3: Composite pawn rank and piece centrality values .. 84

Figure 7.4: 'Typical' piece values calculated from Tables 7.2 and 7.4 ... 86

Figure 7.5: Indexing for the half-board weights ..
87

Figure 7.6: Pawn piece-square values (half-board) ...
88

Figure 7.7: Knight piece-square values (half-board) ...
88

Figure 7.8: Bishop piece-square values (half-board) ..
88

Figure 7.9: Rook piece-square values (half-board) ...
88

Figure 7.10: Queen piece-square values (half-board) ...
88

Figure 7.11: Queen piece-square values (full-board) ..
88

Figure 7.12: Average relative piece values from half-board and full-board runs go

Vil

List of Tables

Figure 7.13: Piece weight traces from an experiment at MIT (reproduced with permission) 93

Figure 7.14: Various values of steepness and the resulting predictions ..
94

Figure 7.15: Steepness traces converging from different starting points ..
95

Figure 8.1: Fit of the prediction quality temporal decay to observed data ..
102

Figure 8.2: A bounded random walk ... 104

Figure 8.3: Weight movements from a typical run using a fixed a of 0.1 (random walk) 105

Figure 8.4: Weight movements from a typical run using a fixed a of 0.0 1 (random walk) 105

Figure 8.5: Weight movements from a typical run using temporal coherence (random walk) 106
Figure 8.6: Weight movements from a typical run using delta-bar-delta (random walk)

106
Figure 8.7: Performance averaged over 10 runs for the various learning methods (random walk) ... 108
Figure 8.8: Weight trace B compared from three different learning rate methods (random walk)... 109

Figure 8.9: Weight movements from a typical single run using a fixed a of 0.05 (chess) III

Figure 8.10: Weight movements from a typical single run using temporal coherence (chess) 112
Figure 8.11: Weight movements from a typical single run using delta-bar-delta (chess) 113
Figure 8.12: Average weight movements from 10 runs using a fixed a of 0.05 (chess) 114

Figure 8.13: Average weight movements from 10 runs using delta-bar-delta (chess) 114

Figure 8.14: Average weight movements from 10 runs using temporal coherence (chess) 115

Figure 8.15: Progress in the chess domain averaged over 10 runs .. 116

Figure E. 1:
Figure E. 2:
Figure E. 3:
Figure EA:

Percentage scores for lookahead-random playing against lookahead-zero 145
Percentage score for LR v. LZ, CR v. CZ, and MR v. MZ ... 146

Schematics: root-random, lookahead-random, and lookahead zero 148

Average length of games, by experiment 152

viii

Introduction

1 INTRODUCTION

1.1 Aims and Objectives

Temporal Difference learning is a natural method of reinforcement leaming applied to

prediction sequences. Sutton (1988) introduced the TD(k) method which is an

elegant integration of supervised leaming with TD leaming and which enabled
Tesauro's backgammon program (1992,1994) to reach World Championship

standard. The aim of the research presented in this thesis was to adapt and improve

on the methods that were used successfully for backgammon and apply them to other

complex games that are less amenable to simple pattem-matching approaches. The

methods used were designed to be highly game-independent and so are potentially
applicable to a wide range of two-player perfect information games. The games

chosen for investigation are chess and shogi, both of which (unlike backgammon)

require significant amounts of computational effort to be expended on search in order
to achieve expert play. The improved methods were also tested in a non-game
domain.

An important additional aim of the research was for the programs to learn about the

chosen domains with as little input of external knowledge as possible. A primary

objective was for the programs to learn to improve their playing performance by

exploring the domain on their own, rather than by being taught. Hence the focus of
this work is on learning from self-play, without access to any form of expert
knowledge such as well-informed opponents or recordings of play between experts.
This method is of greater potential value for problems where existing expertise is not

available, or where the computer program may be able to go beyond the level of

existing knowledge.

A further aim of the work presented here was to reduce the amount of computational

effort that was involved in learning useful values for the test domains. This aim can
be achieved by either reducing the computational cost of each training sequence, or by

reducing the number of training sequences required. To reduce the cost of each

training sequence (game) investigations were carried out into methods of enhancing

the primary experimental platform to increase the efficiency of the searches it

conducted. These experiments influenced the design of the search engines used in the
learning experiments and resulted in platforms that were both more efficient and more

robust.

I

Introduction

Of equal importance to engine efficiency is the question of the number of training

sequences required for effective learning. Tesauro's world championship standard
backgammon program was trained on 1,500,000 games, but such large numbers of
training games are not feasible in the more computationally demanding domains of
chess and shogi. Research was conducted into methods of automatically setting and
adjusting the major control parameters for the learning algorithm, thus reducing the

numbers of training sequences required.

1.2 Thesis Structure

Chapter two considers the long and illustrious history of game-playing computer
programs. Such programs have been a primary area of interest for research in

artificial intelligence throughout much of the last fifty years. Recently, there has been

renewed interest in games from the Al community, as witnessed by the First
International Conference on Computers and Games (van den Herik and lida 1999),

and a session devoted to games playing programs at the Sixteenth International Joint
Conference on Artificial Intelligence (UCAI'99). Machine leaming techniques for

game-playing programs date back to Samuel (1959), and have recently been attracting
more interest. Chapter two also discusses the history of temporal difference leaming

methods, and in particular their successful application to backgammon.

Chapter three introduces temporal difference learning as a concept, and then describes
Sutton's TD(X) formalism. The methods used in this thesis to apply TD learning to

complex game domains are described, as are the search techniques commonly used in

such domains. We also discuss why this thesis concentrates on learning without

access to expert knowledge, and why lookahead search is required in the chosen test
domains.

The fourth Chapter describes the search platform that was used as the primary test bed

for the experimental work The basic search engine is described, as are a number of

sophisticated enhancements to the basic engine which have the capacity to greatly
improve the efficacy of the search. The work on multiple probes of transposition

tables resulted in a paper published in the International Computer Chess Association

(ICCA) Journal (Beal and Smith 1996). Various selective search techniques are
discussed, and one such set of methods, search extension heuristics, are considered in

detail. A selection of the research described in the search extension section was

published in the ICCA Journal (Beal and Smith 1995). The application of the

methods described in this Chapter to other domains is discussed.

2

Introduction

Chapter five describes extensive experiments using TD(k) to learn the relative values

of chess pieces. Precise details are given of how the temporal difference learning

platform described in Chapter three was combined with the search engine described in

Chapter four. Results from these learning experiments are presented, as are results
from matches designed to verify that the values leamt compared well with hand-rafted

values. The experiments include using various search depths and comparison is made
with programs using little or no search. The research and experimental results
presented in this Chapter led to the publication of two papers, the first published in the
ICCA Journal (Beal and Smith 1997) and the second accepted for publication by
Infonnation Sciences Journal (Beal and Smith 1999c).

Chapter six takes the methods that were successfully applied to chess in the previous
Chapters, and applies them instead to the more computationafly demanding domain of
Shogi. An introduction to the game of Shogi is provided, and the major differences
between shogi and chess are described, and their implications for learning discussed.

Results are presented from a number of experiments that apply TD methods to the
learning of shogi piece values, and also to the learning of more sophisticated

positional features. The research described in this Chapter formed the basis of two

papers, one published in the conference proceedings of the First International

Conference on Computers and Games (Beal and Smith 1998b), and the other accepted
for future publication in the journal Theoretical Computer Science (Beal and Smith

1999a).

The seventh Chapter describes the application of TD methods to learning more

complex weight sets. Results are presented from experiments that successfully learn

weights for a variety of evaluation coefficients, and also for learning one of the
internal parameters of the squashing function described in Chapter three. Some of the

results presented in this Chapter were included in a paper accepted for publication by

Infonnation Sciences Journal (Beal and Sn-tith 1999c).

Chapter eight is the most important Chapter of this thesis. It describes novel

extensions of the temporal difference learning method which automatically set and

subsequently adjust the two major control parameters used by TD(k). The main

performance advantage comes from the learning rate adjustment, which is based on a

new concept we call temporal coherence. Experiments are described which compare

the performance of the temporal coherence algorithm with human-chosen parameters

and with an earlier method for learning rate adjustment. The application of these

parameter-adjusting methods to other domains is discussed. The research and

experimental results described in this Chapter led to a paper presented at the Sixteenth

3

Introduction

International Joint Conference on Artificial Intelligence (IJCAI99) (Beal and Smith

1999b).

The final Chapter presents the conclusions of this thesis, and discusses areas for

possible future work. There then follows a list of references used in the thesis, and

appendices containing experimental details. Appendix E is a lightly edited version of

a co-authored paper (Beal and Smith 1994) resulting from research undertaken prior
to my PhD which turned out to be relevant to issues arising in Chapters 3,5 and 7.

4

Game Playing Programs and Machine Learning

2 GAME PLAYING PROGRAMS
AND MACHINE LEARNING

2.1 Fifty Years of Computer Chess and Artificial Intelligence

Creating a machine with the necessary qualities required for playing chess (which

requires discovering what these qualities are) has been a major interest of many of the

major figures in the history of computing.

Charles Babbage (1792-1871), in his Passages on the Life of a Philosopher (1864),
described the possibility of making his Analytical Engine play chess and formulated

some simple rules (including lookahead) that such a chess playing automaton would
be required to consider.

Alan Turing is often considered as the founding father of artificial intelligence. In his

seminal paper, Computing Machinery and Intelligence (Turing, 1950) he introduced

his "imitation game", which subsequently became known as simply the Turing Test.

This paper mentions chess as one of the domains suitable for the comparison of
human and machine thinking. Turing (1953) subsequently wrote a simple chess

playing program called TUROCHAMP, and simulated by hand its simple one-ply

search plus evaluation. Levy and Newborn (1991) present the moves of a game

played by Turing's program.

Other famous names from the field of Al who produced early chess-playing programs
include Donald Michie, John McCarthy, and Newell and Simon.

Much of the research conducted in the field of game-playing programs can be traced

back to a milestone paper by Shannon (1950) in which he described two possible

strategies for computer chess. The first, which Shannon called "type-A", was

essentially a brute force method consisting of a fullwidth minimax search and static

evaluation. Shannon himself pointed out that such a search would be hugely

computationally expensive because all lines of play would be searched to the same
depth, and in some positions long forcing sequences would need to be considered.
Shannon's "type-B" strategy involved searching some lines more deeply than others
(i. e. selective search) and also introduced the concept of quiescence (see Chapter 3).

After fifty years of progress and innovation, computer chess remains an active

research area. Whilst the best programs are now as strong as the best humans, their

5

Game Playing Programs and Machine Learning

play is far from perfect. The enormous size and complexity of the chess search space
ensures that it will remain unsolved for the foreseeable future.

Whilst there is still an undeniable link between artificial intelligence and computer
chess (most introductory Al textbooks have a section on computer chess), modem
high-performance programs use little by way of AI techniques. The success of
minimax, and in particular alpha-beta pruning, means that most competitive
performance programs rely more on what is sometimes referred to as Brute Force and
Ignorance (BFI). Human expert knowledge is applied to the identification and
weighting of suitable evaluation ten-ns for use by a powerful search engine, and little

success has been had by those who have attempted to model the thought processes of
human masters.

Now that programs have reached the strength of Grandmasters, questions arise about
the limitations of human expert knowledge. The ability for machines to learn about
evaluation functions for themselves, in the context of their own search regimes, is one
obvious next step forward.

2.2 The Complexity of Chess and the Challenge of Perfect
Knowledge

Over the last 100 years, some chess commentators have suggested that Grandmaster

play is approaching perfection. They cite the preponderance of draws of the top level

of play, and wonder if the top players now understand the game so well that they will
only lose by making gross n-dstakes. As long ago as 1928 World Champion

Capablanca wrote:

"Of late we have lost a great deal of the love for the game, because we
consider it as coming to an end exceedingly fast. In effect, if one were
satisfied to draw, we believe that it would not be impossible to draw all
the games. To avoid drawing variations one might have to enter into
inferior lines of play which might lead to disaster against a first-class
opponent. At present there may not be more than one or two players in the
world who might do that, but within ten years there will probably be three
or four. " (Reinfeld 1953, p. 160).

Some have considered increasing the complexity of the game by making the board

larger and adding extra pieces (this was Capablanca's preferred solution). Others

have suggested alterations to the rules or starting position (e. g. former World

Champion Fischer, Pritchard 1994). In the aftermath of the 1997 match in which the

6

Game Playing Programs and Machine Learning

World Champion Gary Kasparov was defeated by the computer Deep Blue, it has
been suggested that chess now holds less challenge for researchers (Pitrat 1998).
Evidence against the propositions that chess play is approaching perfection and that
chess is now less of a research challenge may be obtained from endgame analyses.

With the advent of endgame tablebases constructed by retrograde analysis (e. g.
Thompson, 1987), perfect information about non-trivial chess positions became
available. The play of grandmasters in such endings, once assumed to be near perfect,
was shown not only to be sub-optimal, but in many cases to include mistakes that
might have resulted in won endings being drawn, and draw endings being lost. Even
for the relatively simple 4-man ending of king and queen versus king and rook, the
widely accepted methods (e. g. Keres 1973) were found to be insufficient to assure a
win for the stronger side against perfect defence. Indeed, Grandmaster Walter
Browne was once famously unable to win this ending against a tablebase (Kopec
1990). Despite thorough study of the endgame he struggled in the re-match, requiring
exactly 50-moves to win from a position that would require only 31 moves with
perfect play. Even programs with specialised endgame heuristics (which compare
well with strong human play) find it difficult to make progress against the tablebase
(Walker 1996). Some of the more complicated 5-man endings, e. g. king, queen and
pawn versus king and queen (Roycroft 1986), require optimal play of such a complex
and seemingly method-less nature that they may well be beyond the bounds of human

understanding (Michie 1990). Levy and Newborn (1991) provide an equally baffling
153 ply sequence of optimal play extracted from the king, bishop and knight versus
king and knight tablebase.

The above is not meant to belittle the achievements of great human players, but rather
to highlight the rich complexity of the game, and to suggest that chess is much further
from being 'solved' (in the lay sense) than has often been suggested in the past.
Indeed, the sheer complexity of chess may well have been grossly underestimated.
The fact that mere 5-man endgames are now known to be so complex and
troublesome for humans implies that 32-man endings such as the chess starting

position will remain challenging for the foreseeable future.

7

Game Playing Programs and Machine Learning

2.3 Machine Learning in Games

2.3.1 Samuel's checkers player

The work of Arthur Samuel with his programs that learnt to play checkers (draughts)

was years ahead of its time and was the earliest example of machine learning in

games (Samuel 1959).

Samuel wrote a checkers-playing program for the EBM 701 in 1952, and his first
learning program in 1955. He constructed a checkers program instead of a chess
program because the relative simplicity of checkers made it easier to concentrate on
the learning aspects of the program (Samuel 1959). Samuel's programs used search
methods similar to those described by Shannon (1950) (see section 2.1), incorporating

minimax search with a polynomial evaluation function.

There were two forms of learning used by Samuel's programs, the first of which he

called rote leaming. This consisted of storing every board position reached during

play along with its associated value as determined by the minimax search. If a
previously stored position was encountered during a search its stored value would be

used as its evaluation. This effectively increased the program's search depth, as the

stored value represented the result of one or more previous searches. The stored
values were decremented by a small amount every time the score was backed up a ply
as part of the minimax search. This ensured that the program chose the shortest path
to a favourable position. The rote learning program was trained by a combination of
self-play, play against various humans, and supervised learning from records of

games between human experts. Samuel found that this method resulted in slow but

significant learning, especially in the opening and endgame, and produced a program
that performed like "a better-than-average novice" (Samuel 1959).

A second, more sophisticated, form of learning was used by Samuel (1959) to modify
the parameters of the program's evaluation function. This was a temporal difference

method (although Samuel himself did not use that term) which was a predecessor of
the TD methods used by Tesauro in TD-Gammon (Tesauro 1992). Samuel's program
learrit via self-play, and sought to minimise the difference between successive

evaluations of positions that occurred in the course of these games.

A significant feature of Samuel's temporal difference method was that the learning

did not make direct use of the actual results of games, as the known game-theoretic

values of the game-terminal positions were not used. The adjustments made to the

8

Game Playing Programs and Machine Learning

weights made by the learning process were driven by reducing the difference between

successive evaluations, but because game-ten-ninal positions were not taken into

account, this could be achieved by finding a set of weights that ensured all positions
were evaluated identically. Whilst such a set of weights would satisfy the learning

process, it would be useless for producing improved play. Samuel was aware of this
potential problem, and to alleviate it fixed the weight of the most significant
evaluation feature, piece advantage. This measured the number of pieces the program
had relative to its opponent, giving higher value to kings, and is a powerful heuristic
in checkers which has a high correlation with winning the game. The fixing of this
weight to a large positive constant meant that the program's play was determined by

seeking to maximise the value of this feature. As Sutton (1997) points out, it would
still have been possible for the program to learn a useless set of evaluation weights by

setting the adjustable weights so that they always cancelled out the piece advantage
term.

Samuel's program had a set of 38 carefully chosen weighted evaluation terms, (e. g.
centre control), of which a subset of 16 where used at any one time. In the course of
learning, features which were found not to lead to consistency of evaluation were
replaced by others drawn from the "reserve pool". At times during the learning

process when the program was not improving, Samuel found it useful to reset the
largest weight to zero. His justification was that this prevented the weight set from

settling into locally optimal values. Given that learning was driven only by producing
consistent evaluations, with no regard for the outcomes of the games, it is also
possible that this drastic method helped to prevent the program from adopting weight
sets that produced consistent evaluations that did not correlate with winning the game
(Sutton 1997).

Samuel's program leamt well enough to beat its creator regularly, but its playing
strength did not approach the strength of human masters. Nevertheless, Samuel's

achievement in producing a successful learning program is one of the notable early

successes in the fields of both machine learning and game-playing programs.

2.3.2 Neurogammon

Neurogammon was written by Gerald Tesauro (1989) and was a backgammon-

playing program that was the direct predecessor to Tesauro's TD-Gammon program.
Neurogammon was a multi-layered neural network whose input representation
included both the raw board position and a set of carefully chosen evaluation features

that utilised the knowledge of expert human players. It leamt via supervised learning,

9

Game Playing Programs and Machine Learning

training on a set of expert game records and adjusting its weights using the back-

propagation algorithm (Rumelhart, Hinton and Williams 1986). Neurogammon

reached the strength of a "strong-intermediate" human player, and decisively won the
backgammon tournament at the 1989 International Computer Olympiad (Tesauro
1989).

2.3.3 TD-Gammon

Tesauro's TD-Gammon (Tesauro 1992,1994,1995) was a notably successful
application of machine learning techniques. Learning via self-play, it utilised little
domain specific knowledge, yet learned to play backgammon at a level close to that of
the world's best human players.

TD-Gammon combined Sutton's TD(k) algorithm (Sutton 1988, see Chapter 3) with a
three-layer neural network consisting of a layer of input units, a layer of hidden units,
and an output unit. The input to the network was a representation of a backgammon

position, and the output was an estimate of the probability of winning from that

position.

The initial version of the program, TD-Gammon 0.0, used an input representation
that contained only the raw board information and did not incorporate any specially-
crafted evaluation features. The program learnt only by playing against itself, and
after about 200,000 self-play games its performance was approximately equivalent to
that of Neurogammon. This was a remarkable achievement given that Neurogammon
had required substantial amounts of domain-specific knowledge, both in terms of its

carefully constructed evaluation features and the expert-level games it trained on.

Subsequent versions of TD-Gammon used the same learning methods, but the input

representation included the same set of hand-crafted evaluation features used by

Neurogammon. TD-Gammon 1.0 used 80 hidden weights instead of the 40 used by

the earlier version, and after 300,000 self-play training games was significantly better

than both version 0.0 and Neurogammon.

Version 2.1 incorporated a simple two-ply selective search mechanism. This was not

part of the learning process but was used for move selection during play. After

1,500,00 self-play training games TD-Gammon 2.1 had reached a level of play

comparable to that of the best human players (Tesauro 1995).

The success of TD-Gammon has had a noticeable effect on the play of the world's top
backgammon experts, causing them to revise their thinking about certain types of

10

Game Playing Programs and Machine Learning

position and even to amend the way they play certain opening rolls, the equivalent of
'book' chess openings (Tesauro 1995).

II

Game Playing Programs and Machine Learning

3 TEMPORAL DIFFERENCE LEARNING
AND MINIMAX SEARCH

3.1 Temporal Difference Learning

Temporal difference (TD) leaming methods are a class of incremental leaming

procedures for leaming outcome estimates in multi-step prediction problems. Each

prediction is a single number, derived from a formula using adjustable weights, for

which the derivatives with respect to changes in weights are computable. Whereas

earlier prediction learning procedures were driven by the difference between the

predicted and actual outcome, TD methods are driven by the difference between

temporally successive predictions (Sutton, 1988). Each pair of temporally successive
predictions gives rise to a recommendation for weight changes. Kaelbling et al.
(1996) give a survey of a wider range of reinforcement algorithms, including TD

methods.

Sutton's TD(k) algorithm is based on the following formalism. Let P, ... P, be a set of

temporally successive predictions, indexed from time i to time t. The algorithm
assumes each prediction is a function of a vector of adjustable weights W, so a
prediction at time i could be written as Pi(W). The algorithm further assumes that the

prediction function is differentiable so there exist partial derivatives of the prediction
value with respect to each weight element. T7,, Pi denotes the gradient, or vector of

partial derivatives of prediction P at time i, with respect to weight w.

Using this notation, the weight adjustments for Sutton's TD(X) algorithm can be

expressed as:

t

At= a(p _p V-kVwp w 1+1 tk
k=l

(3.1)

where a is a parameter controlling the learning rate, and A is Sutton's recency

parameter, that introduces an exponential weighting with recency of predictions

occurring k steps in the past.

The process can be applied to any initial set of weights. Leaming performance
depends on A and a, which have to be chosen appropriately for the domain.

TD(X) learning enabled Tesauro's backgammon program to reach master level

(Tesauro 1994). The methods used by Tesauro are discussed later in this Chapter.

12

Game Playing Programs and Machine Learning

TD(k) has some problems however. The learning rate parameter Cris hard to get right.
It needs to be as high as possible for rapid learning, but high rates lead to high levels

of erratic movements, even after optimum values might have been reached. In effect,
high learning rates lead to high levels of noise in the weight movements, and this

means that the process does not produce stable values.

On the other hand, learning rates that are too low can lead to orders of magnitude
more observations being required to reach optimum weight values. Practical

experience with the TD(X) method indicates that very different values of a are
required in different domains, as shown by the different rates used in, for example,
Sutton (1988,1992).

An original method for determining both a and A is presented in Chapter 8.

3.2 Comparison with other Learning Methods

Prediction-outcome learning methods are driven by the difference between prediction-
outcome pairs. For example, one might make a prediction after every move and
compare this prediction with the actual outcome of the game. The resulting error term

can then be used to make adjustments to the prediction. Obviously this method can

only be applied once the result of the game is known.

In contrast, the TD method is driven by an error term generated by the comparison of

successive predictions, and need not wait for the actual outcome of the game. Sutton

(1988) shows that TD methods make more efficient use of their experience than

conventional prediction-leaming methods. They converge faster and produce more

accurate predictions. In addition Sutton shows that TD methods are easier to compute
because they are incremental and do not require a final outcome.

3.3 TD(; Q and Games

Perhaps the most successful application of Sutton's TD(k) method was Tesauro's

backgammon program, TD-Gammon, which used TD(k) to train a three-layer neural

network (see section 2.3).

Schraudolph, Dayan and Sejnowski (1994) used TD(X) to train a neural-network to

play Go on a small 9x9 board via randomised self-play. This met with only limited

success, producing a program that was no stronger than a weak human beginner and

13

Game Playing Programs and Machine Learning

requiring 659,000 training games to reach this standard. The use of carefully
designed network architectures, and knowledge-intensive training strategies (such as

playing training games against a top commercial go program) allowed a subsequent
program to achieve a slightly better standard of play after 3,000 training games. The

program was never scaled up from 9x9 Go to a full-size 19xl9 board, and the far

greater complexity of the l9xl9 game suggests that performance on a conventional
board would be well below that achieved on the much simpler 9x9 board.

3.4 Minimax Search and Alpha-Beta Pruning

All two-player, finite, zero-sum, deterministic, perfect-information games can in

theory be solved by application of the minimax algorithm. In order to solve such

games, minimax requires that all game-terminal positions that might be reached from

the starting position be considered, and their known game-theoretic value (e. g. in

chess one of win, loss or draw) be passed back towards the starting position, assigning

a value to all intennediate positions en-route. Once a game-theoretic value has been

assigned to the starting position, the game is solved. The outcome of the game with

perfect play for both sides is known, as is the sequence of moves required to achieve
that value. In the case of complex games the combination of the game's branching

factor and the distance from the starting position of the game-terminal positions

results in a combinatorial explosion that makes such an approach to solving these

games infeasible.

Given that the game-terminal positions are too far from the root of the search to be

examined exhaustively, it is possible to search only a fraction of the overall game-

space. The same minimax method of 'backing-up' values from distant positions can

used be used in conjunction with an heuristic evaluation of positions at any depth in

the search tree, allowing for the search of arbitrarily sized subtrees, and providing an
heuristically chosen 'best' move. The resulting minimax searches have been found to

be remarkably successful in practice, even when the evaluation used is a crude

estimate. Beal and Smith (1994) demonstrate that minimax search produces better

than random play even when the evaluation function is replaced by a random number

generator (see Appendix E). Minimax search forms the basis of many game-playing

programs, including those discussed in this thesis. [Strictly speaking, minimax search
is usually implemented as 'negamax' (Knuth and Moore 1975), which passes back the

negative of the subtree value. This simplifies the program structure as the search

engine is always trying to maximise this value.]

14

Game Playing Programs and Machine Learning

An examination of the minimax algorithm reveals that there are some sections of the
search tree that need not be considered because they have no effect on the final

outcome of the search. Alpha-beta pruning removes from the search tree those lines of
play that are not relevant to the evaluation of the root position. Figure 3.1 gives an
example of a minimax. search tree, and shows that in this example, alpha-beta pruning
reduces the number of positions for which an evaluation is required from 8 to 7, with
node L being cut off.

Figure 3.1: A minimax search tree incorporating alpha-beta pruning.

The most important method of reducing the size of a search using alpha-beta pruning
is to improve the ordering so that stronger moves are tried before weaker moves, thus

maximising the number of cut-offs that the alpha-beta mechanism is able to make.

Figure 3.2: The same search tree as Figure 3.1, but with perfect move ordering.

Figure 3.2 shows essentially the same search tree as Figure 3.1, but with perfect move

ordering. In this example the number of evaluations required is reduced to 5, with

node P being cut off as well as the entire sub-tree of E-K-L.

15

41536278

62874153

Game Playing Programs and Machine Learning

Most chess playing programs achieve good move ordering by using iterative
deepening in conjunction with transposition tables (see section 4.1). Other methods
for selecting likely good moves include the killer heuristic (Frey 1977) and history
tables (Schaeffer 1983). Typically the remaining moves are sorted so that captures
are tried before non-captures (Slate and Atkin 1977).

In addition to providing information about the move that was found to be best on
previous iterations of the search, the transposition table allows nodes that have

previously been evaluated at the current depth of search to have those values recalled
so that their subtrees need not be searched again. Unlike the move-ordering benefits

of transposition tables, in the chess domain this usually provides only a modest
increase in efficiency, except in some endgame positions where the number of
possible transpositions (the same position reached via different move sequences) can
increase dramatically.

3.4.1 The principal variation

The effect of the full-width minimax search algorithm is to select a sequence of
moves that represents best play by both sides (as defined by the evaluation function).
This line of play is referred to as the principal variation. The evaluation score from

the position at the end of the principal variation (the principal position) is 'backed up'
to the root of the search. Thus from a given position, a minimax search returns a
value that corresponds to the evaluation of the position at the end of the principal
variation.

3.4.2 Other search regimes

Over the years very many modifications have been made to the conventional minimax

plus alpha-beta search regime applied to chess. Examples of the more successful

enhancements are MTD (Plaat et al. 1994) and the popular Principal Variation Search

(Marsland 1983). A number of best-first search methods have been proposed,
including SSS* (Stockman 1979) and Berliner's famous B* algorithm (1979). A

discussion of selective search is included in Chapter 4.

The experiments reported in this thesis were conducted using the basic iteratively-

deepened depth-first, minimax plus alpha-beta algorithm, in an attempt to keep the

method as game-independent as possible. Most of the methods presented here could
be easily adapted to fit other, more specialised, search regimes.

16

Game Playing Programs and Machine Learning

3.5 Applying TD Learning to Complex Game Domains

In order to use temporal difference methods, the evaluation score for the position
selected by each move is regarded as a prediction of the final outcome of the game.
To be more precise, it is the evaluation score from the position at the end of the
principal variation (the principal position) which is 'backed up' to the root of the
search, and used as a prediction to be compared with future values.

3.5.1 Determining weights for evaluation terms

Central to all heuristic search, whether single-agent or adversarial, is an evaluation
function. This estimates the distance to goal in single-agent searches, or the value of a
game-state in competitive (zero-sum) tasks. The function is typically a polynomial
formed from linearly weighted evaluation terms:

n

V(X) wici (3.2)

where c is a vector of n evaluation terms computed for the state x.

Setting the weights for evaluation terms has always been a significant problem,
although often overshadowed by other concerns.

Game playing programmers have tried many schemes for automatically determining

appropriate weights. Hrnkrantz (1996) gives a good summary of learning in game
playing, including weight-learning algorithms.

Recently, one of the IBM programmers of Deep Blue, the program/hardware
combination that defeated the human World Champion in a match in 1997 published a
method to optimise linear discriminants for master-level moves (Anantharaman
1997). His method utilises the move-choice decisions of master players, aiming to
obtain similar decisions. The learning optimises a linear combination of Pscore and
Mscore, where Mscore is the number of move choices that agree, and Pscore the

number of positions which the discriminant and chess master agree are worse than the

move chosen. The end result is that the method determines evaluation weights for
Deep Blue's evaluation function.

However, methods that do not require existing human expertise are required in

unfamiliar domains, or if the method is aimed at levels of expertise which exceed
human abilities.

17

Game Playing Programs and Machine Learning

To apply TD(X) to game-playing there are some important requirements of the

prediction function that need to be considered. The first of the requirements is that
the function for predicting the game outcome should integrate smoothly with end-of-
game values. This implies that the value for checkmate should be close to that for
being heavily ahead in the summation of evaluation terms. Moreover, an additional
pawn advantage when heavily ahead in material should have little effect on the
prediction, whereas the gain of a pawn in an otherwise level position should have a
relatively large effect on the prediction.

Another related requirement is that the prediction values should approximate the

utility of the game result. For games such as chess and shogi, the utility is 1 for any
win, 0 for any loss. (This contrasts with games such as bridge and backgammon,

where winning a game brings a variable amount of reward.)

The foregoing requirements can be met by using a squashing function, which converts
from the conventional polynomial evaluation function typically used in game-playing
programs, to a probability of winning. It is convenient to use a standard sigmoid
squashing function. The prediction P, the probability of winning from a given position

x, is determined by using the function:

P(X) = S(V(X)) (3.3)

where v is the evaluation value of position x. In typical games programs the

evaluation function is often a polynomial (3.2).

S is defined by:

S(V) =I I
(3.4)

The sigmoid function (3.4) has the advantage that it has a simple derivative:

dS
= S(l - S)

dv
(3.5)

Therefore the partial derivative of the prediction with respect to an individual weight

Wi is:

as
=

as av
= S(l - S)ci (3.6)

awi av awi

18

Game Playing Programs and Machine Learning

The derivative of S appears in classical supervised-leaming procedures as well as
TD(k). The effect of the derivative in the weight adjustment formula is that weights
receive adjustment in proportion to their effect on the prediction. On other words,
weights that have little influence on the prediction are adjusted less than weights to

which the prediction is more sensitive.

The function S can be elaborated to include an additional parameter to adjust the
'steepness' of the sigmoid. Section 7.6 describes some experiments to determine the

usefulness of this modification.

3.5.2 Using the principal position, rather than the game position

An important aspect of applying TD(k) to minimax search is selecting the correct

position to use in the computation of weight adjustments. When performing minimax

search to make move choices, the evaluation score from the position at the end of the

principal variation (the principal position) is backed up to the root of the search.

Let 9P 92,93 - gn be the positions of game G.

Let hjý h2Y h3 - hn be the principal positions identified by the minimax searches from
9P 92,93... gn-

Thus

S(v(hi)) (3.7)

At the end of the game, the outcome is defined by the rules of the game, thus g,, = h,,

= (0 10.5 111 where 10 10.5 1 11 means one of the values 0,0.5, or 1.

It is the value from the principal position that is the prediction of the final outcome of

the game, to be compared with future values by the temporal difference method.
Consequently, the computation of partial derivatives must be performed with

evaluation terms calculated at the principal position hi , not at the position in the

game gi.

There is a minor technical issue that arises here. In some positions, the principal

position may be selected from an equivalence class of positions with equal scores, due

to the existence of more than one move with the best score at some nodes along the

principal variation. To be precise, in such cases the principal variation is selected

from a principal tree. The selection will be determined by the move order at those

nodes with multiple best moves. In such cases, the partial derivative at Pi may be

19

Game Playing Programs and Machine Learning

multi-valued. It is possible to define an algorithm that either disregards these cases,
or examines all the principal positions of the equivalence class and computes the sum
of all the partial derivatives. However, the simpler approach of accepting an arbitrary
choice of principal position in these cases works well in practice.

3.6 Learning in the Absence of Expert Knowledge

A major aim of the research presented in this thesis was for the leaming to occur with
as little input of expert domain-specific knowledge as possible. The primary
consequence of this is that all our training takes the form of self-play games, where
the learning program plays against an identical version of itself. We chose not to aid
the learning by playing training games against well-informed opponents, nor by

replaying recordings of games between experts. The objective was for the programs
to learn to improve their playing performance by exploring the domain on their own,
rather than by being taught. In addition, all of the leamt weights were leamt 'from

scratch' without any domain-specific knowledge being represented in their initial

values. These knowledge-free methods are of greater potential value for problems
where existing expertise is not available, or where the computer program may be able
to go beyond the level of existing knowledge.

3.6.1 Self-play versus online play

The method of applying TD(X) to minimax searches described in Chapter 3 was first

published (Beal and Smith 1997) in the ICCA Journal. The same method was later

reported to be successful in improving weights for a complex chess evaluation
function consisting of positional terms as well as piece values in the program
KnightCap (Baxter, Trigell and Weaver 1998) that was trained by playing games on
the Free Internet Chess Server (FICS, fics. onene t. ne t) against human opponents.
The program's blitz rating rose from Elo 1650 to 2150 after 308 games in one

experiment, and after approximately 900 games in a second experiment. The rise of
500 rating points is good, but the final rating of 2150 for blitz chess (at which

computers traditionally excel) is well below that achieved by conventional chess-

playing programs.

Baxter et al. made use of online play against expert human opponents, whereas our

experiments focus of learning in the absence of any domain specific knowledge and

so training occurs via self-play. Training games against human experts require the

availability and co-operation of both the experts and the chess server operators,

20

Game Playing Programs and Machine Learning

whereas self-play is completely self-contained and requires no human input

whatsoever. Baxter et al. (1998) report that they found self-play to be ineffective for
learning when compared with on-line play against human opponents. However, they
used only a purely deterministic move choice for their self-play games, and so found
that training produced a large number of substantially similar games (Baxter et al.
1997). The little variation that occurred was accounted for by changes in the
evaluation weights between games. This method of self-play is clearly inferior to the
randomised move choice used in the experiments reported in this thesis, and so the
conclusion of Baxter et al that self-play is insufficient for adequate leaming must be

called into question. Indeed, our TD minimax methods in conjunction with self-play
have been used successfully in the world-class competitive chess program Cilkchess
(see section 7.5).

The quality of the garnes produced by play against human experts is one reason why
online play produces faster (in terms of number of games played) learning than self-
play. Baxter et al. note that an important feature of play against different human

opponents is that their program is forced into positions that it evaluates highly but

subsequently discovers are losing. These are precisely the types of position that
learning programs need to see to learn rapidly and they occur more frequently when
the program is being beaten by human experts than in the course of randomised self-
play. Thus online play is learning by being taught as opposed to learning by

exploration which is the focus of this thesis. The methods of this thesis are designed

to be as domain-independent as possible, and so suitable for application to games (e. g.
Shogi) for which large numbers of online human 'teachers' may not be available.
There is also the theoretical question of how learning is to proceed once the program's
level of play exceeds that of the best human players. For the domain of chess such a

problem may well become a reality in the foreseeable future.

Baxter et al. comment that they found it necessary to provide piece weights as initial

knowledge in order to obtain good performance. The perfon-nance of a program that

was not seeded with carefully chosen 'intelligent' material weights was greatly
inferior, achieving a rating of only Elo 1300 after 1000 games. In contrast, the

experiments presented in this thesis achieved excellent performance gains without any
knowledge being represented in the starting weights.

Baxter et al. also observe that another reason for the rapid rate of improvement of

their program was that 0 the non-material weights were initialised to zero, rather

than small random values. The means that "small changes in these parameters could

cause very large changes in the relative ordering of materially equal positions. Hence

21

Game Playing Programs and Machine Learning

even after a few games [the program] was playing a substantially better game of
chess. " (Baxter, Tridgell and Weaver 1998 pg. 93). Experiments with random
evaluations (Beal and Smith 1995) showed that even a set of randomly chosen
positional weights would perform better than a set of all-zero weights (see Appendix
E). Thus Baxter et al. were starting from a low-performance initial state, with easy
initial improvements possible.

3.6.2 Why is search needed in some domains, but not others?

In some games domains the use of search algorithms is not required to produce expert
level play. In backgammon, pattern matching techniques have proved themselves
capable of producing extremely strong programs (see Chapter 2).

In domains such as chess and shogi the tactical complexity of the games makes a
successful program that did not use search in some way inconceivable. Chess

programs have very successfully used full-width minimax search with alpha-beta
pruning (see section 4.1), and top commercial shogi programs rely on deep searches
to avoid costly tactical errors and to detect mating sequences (Rollason 1999).

Other game domains have features that make the use of search, especially full-width

search, impractical. The most notable of these is Go, where the high branching factor

makes full-width search prohibitively expensive, and the lack of an obvious core
evaluation term (such as piece count in chess) makes static evaluation of positions
problematic. Nevertheless, search is used extensively in Go for calculating local

tactical sequences, and the top commercial Go programs are increasingly turning
towards selective search techniques for calculating global board sequences (Reiss
1999).

3.6.3 Learning in deterministic and non-deterministic games

Randornisation of the move selection during self-play in deterministic games such as

chess and shogi is necessary to ensure that as large a section of the state space as

possible is explored during leaming. Such randomisation is not required in

backgammon, because the stochastic nature of the die rolls naturally result in a large

amount of variability in the positions reached during training games.

Leaming in non-deterntinistic games such as backgammon is also made easier
because the true expected outcome of a position given perfect play by both sides is a

real-valued function with a great deal of smoothness and continuity (Tesauro 1995).

22

Game Playing Programs and Machine Learning

This means that small changes in the position produce small changes in the

probability of winning. In deterministic games such as chess and shogi the outcome

given perfect play (the game-theoretic value) is discrete (win, lose, draw) and
therefore much more likely to be discontinuous and lack smoothness, with the result
that such a function is much harder to learn.

23

A Platform for Experimental Work

4A PLATFORM FOR EXPERIMENTAL WORK

This Chapter describes the minimax search platform that was used as the primary
platform for our experimental work, and then goes on to investigate improvements to
the basic engine.

As all other programmers of sophisticated minimax search engines have discovered:
(a) the construction of an efficient and robust engine is a non-trivial problem; and (b)

minimax search is very good at concealing obscure errors and bugs. Hence these

preparatory experiments served not only as worthwhile research in their own right
(both sections 4.2 and 4.4 were published in the ICCA Journal), but also as a
development and testing ground for the engine that was to become the primary

vehicle for the learning experiments presented in Chapters 5 through 8.

Section 4.2 reports on experiments with increasing transposition table efficiency;

section 4.3 discusses issues related to selective search; and section 4.4 describes

experiments with heuristic rules for search efficiency.

Chapters 5 to 8 concerning the learning algorithms can be read more or less

independently from this Chapter. A reader with limited time who wishes to focus on

the learning algorithms only could proceed directly to Chapter 5.

4.1 The Basic Minimax Search Engine

The basic search engine used for most of the experiments in this thesis is similar to

that described by Slate and Atkin (1977) in their famous program Chess 4.5, which
became a standard model for many subsequent programs. It uses a full-width

iteratively deepened search, with alpha-beta pruning and a captures-only quiescence

search at the full-width horizon (Marsland 1992). Methods other than full-width

search (i. e. selective search) are discussed in section 4.3. The search was made more

efficient by the use of a hash table that stores previous iteration results and detects

transpositions (a transposition table). A simple method for improving the efficacy of

transposition tables is investigated in section 4.2. An additional enhancement to the

move ordering (thus improving the effectiveness of alpha-beta, see section 3.4) was

provided by the implementation of a history table (Schaeffer 1983) which was used

instead of the killer heuristic (Marsland 1992).

24

A Platform for Experimental Work

Various different evaluation functions were used for scoring positions. In some of the

experiments we did not use a full positional evaluator, but only material scores.

4.1.1 The horizon evaluation and quiescence search

The searches all used a captures-only quiescence search at the search horizon. The

quiescence tree consisted of all capture moves, with the side to play having the option
of 'standing pat' instead of being forced to make an unfavourable capture. Pawn

promotions are considered to be captures as they alter the material balance. The
leaves of this capture tree are then scored according to the evaluation function.

4.1.2 Transposition tables

Conventional game-playing programs using minimax search will sometimes

encounter the same position more than once, via a different sequence of moves. These

transpositions can be detected by the use of a transposition table, thus avoiding
duplicating search effort by repeating what has already been calculated. In addition,

when using iterative deepening the transposition table can be used to aid move-

ordering, thus increasing the number of alpha-beta cut-offs (see section 3.4) and

reducing the size of the search tree.

Transposition tables are implemented as hash tables according to Zobrist (1970). The

hash values are calculated incrementally as part of the move-making process, and the

n least significant bits of the hash value (the hash index) are used as an index into a
hash table of size 2. The remaining bits (the hash key) are used to distinguish

between different positions that generate the same hash index. The hash key is stored
in the table along with information about the position, including a move and a value
(Marsland 1986).

If two different positions encountered during the search process generate the same

hash values, then both the index and key for these two positions will be the same.

This is a potentially serious problem, but the frequency of such false-match errors can

be reduced to negligible proportions by increasing the number of bits in the hash

value.

Hash collisions (Knuth 1973) occur when two positions generate the same hash index

but different hash keys. There are then two positions competing for a single entry in

the table, and a replacement scheme is needed to determine which entry is kept, and

which discarded. In such cases, information is lost and the search becomes less

25

A Platformfor Experimental Work

efficient. Transposition tables are usually made as large as memory capacity will
allow, but they are rarely large enough to store the entire search tree. Typically (and

especially with very fast processors or relatively small memories) only a fraction of
the values encountered can be stored, resulting in numerous hash collisions. Under

these conditions, search efficiency varies considerably with the choice of replacement
scheme used to decide which entries are kept. In the next section we examine a
simple method for reducing hash collisions, based on multiple probes of the table.

4.2 Multiple Probes of Transposition Tables

Hyatt, Gower and Nelson (1990) describe making up to eight probes of the
transposition table in conjunction with a specialised replacement rule. This section
describes experiments to investigate the performance of varying numbers of probes
over a range of table and search sizes. The results show that considerable efficiency
savings can result from the use of multiple probes, which can be of the order of 15%

when the ratio of nodes searched to table size is high. These results also suggest
significantly better performance than a two-level system (Breuker, Uiterwijk and Van
den Herik, 1994).

4.2.1 Hash table saturation

If the hash table is sufficiently large for all the nodes encountered in the search to fit

comfortably inside the table, then the number of collisions will be relatively small.
When the number of nodes in the search exceeds the number of entries in the table,

the table becomes saturated. We define the saturation factor of a table as the number

of nodes in the search divided by the number of entries in the table.

We examine a simple method for improving decisions about which entries are

retained in the table, based on multiple probes of the table. Once the table becomes

saturated (saturation factor >1), the multiple probes allow us to consider a number of

entries for replacement, and replace the least important entry (as determined by the

replacement scheme). With a saturated table, one is not trying to locate a vacant slot
(there will be few if any), but rather trying to ensure that the most important

(expensive to reproduce) entries are not replaced. If the saturation factor of the hash

table is less than 1, the multiple probes help to find unoccupied entries in the table.

The main benefits of multiple probes occur when the table is highly saturated.

26

A Platformfor Experimental Work

4.2.2 The transposition table experiment

This section examines the performance of a simple multiple-probe scheme, using
varying table sizes, on a number of chess middle-game positions. Multiple probes of
the table are shown to perform significantly better than the conventional single probe.

The evaluation function used in these experiments consisted of a material and a
positional component. The positional component was restricted to the sum of piece-
square table values and was dominated by the material component. The contents of
the piece-square table were derived from centre control and mobility, and were
calculated at the root of the search.

All positions visited during the full-width portion of the search were considered for
inclusion in the transposition table. Positions visited during the captures-only
quiescence search were not stored in the table. The table was used both to detect

transpositions, and to aid move ordering as part of the iterative deepening process.

Each entry in the table contained: the hash key; the value of the position; a boundflag
indicating whether the value represents an exact value, or an upper or lower bound;

the best move from the position; and the depth of the full-width subtree searched to

produce the entry.

4.2.3 The test set used in the experiment

There are a large number of test sets of positions that are readily available. The

ma ority of these sets (e. g. Lang and Smith, 1993) are 'problem' positions where the i

task is to find the best/winning move. The experiments presented in this Chapter are

concerned not with issues of move selection (indeed, the move chosen from a given

position is identical with every scheme), but rather the efficiency with which the

choice is made.

Breuker et. al. (1994,1996) give a test set comprising many successive positions from

a small number of games. In their experiments they measure the effects of the

transposition table persisting from move to move, and so successive positions are

required. In our experiments we wished to have a greater variety of positions and so

chose each position from a different game. '

For comparison purposes we tested the 18 position test set given by Breuker et. a]. (1994). The results were very
similar to those presented in this paper.

27

A Platfonn for Experimental Work

The test set used in this section comprises 30 middlegame positions (see Appendix A)

and was derived from 30 different games at the 10th VSB tournament, 1996. This
tournament featured 10 Grandmasters, including Kasparov, Kramnik and Anand, with
an average ELO grade of 2679. Each test position is the White to play position after
Black's 20th move. Of these 30 positions, 3 were searched to depth ten, 18 to depth

nine, 8 to depth eight, and I to depth seven. The test set is also available online at
http: //www. dcs. qmw. ac. uk/-martins/research/vsb. txt

4.2.4 Search depths

The maximum search depth of each position was set to ensure that the maximum
saturation factor was kept within an order of magnitude across the test set, for a given
hash table size. (If all of the positions had been searched to the same depth, the
average cost in terms of node-counts would have been dominated by the positions
with the largest branching factors, and hence the largest saturation factors.)

Of course, because iterative deepening was used, positions that were searched to
depth 10 were also searched to depths I through 9, and these results were used to
calculate savings at lesser saturation levels (see Table 4.3).

4.2.5 Experimental issues

To understand the results and the impact of our experiment we identify and discuss

some important issues below.

4.2.5.1 Measure of computational cost
We used the number of nodes visited during the search as our measure of

computational cost. This includes both interior and leaf nodes, and all nodes visited
during the quiescence search.

4.2.5.2 The replacement scheme
As noted in section 4.1.2 above, when a hash collision occurs it is the replacement

scheme that determines which position is kept and which is discarded. (We say the

replacement scheme determines priority for a position.) We used the traditional, basic

scheme where the priority of a position is set by the depth of the subtree searched
beneath that position (Marsland 1986, Hyatt et al. 1990). This scheme is based on the
idea that deeper subtrees usually take more computational effort to reproduce than

those searched to a shallower depth. If both competing positions have subtrees of

equal depth, the new position replaces the old position in the table.

28

A Platform for Experimental Work

4.2.5.3 Multiple probes of the table
Standard implementations of transposition tables make a single attempt to place the

new entry into the table. We examined a simple multiple-probe scheme, whereby N

probes of consecutive entries in the table are made in order to find an entry with a
lower priority that may be overwritten.

Efficient implementation of multiple probes of the hash table typically need only
execute a single memory-read-and-compare operation for each probe. This means
that even 8 or 16 probes use only a tiny percentage of the average time spent making
move and processing a position.

When a new position (the candidate position) is considered for inclusion in the
transposition table, the hash index of the position is used to find the corresponding
entry in the table. This entry, plus its N-I immediate successors, are examined and
the entry with the lowest priority score is chosen (the potential victim). The potential
victim then has its priority score compared with that of the candidate position, and if

the candidate position is of equal or higher priority then it replaces the victim in the

table. We examined the performance of 1,2,4,8, and 16 probes. (n. b. I probe is

equivalent to the commonly used single-probe method).

4.2.5.4 Two-level transposition tables (Twin)

Breuker et al. (1994) describe a two-level transposition table, based on a very similar

scheme proposed by Ebeling (1986). This transposition table has two table positions

per entry. The first table position is handled using the depth-only replacement scheme.
When a first table position is overwriten, it is moved into the second table position. If

the new position does not replace the first able position (using the depth-only

replacement scheme), then it is always stored in the second table position, and so

replaces any other position that might be there. Breuker et al. (1994) call this

replacement scheme TwoDEEP. In the results that follow, we refer to this scheme as

Twin.

4.2.5.5 Time Stamping

We did not address the issue of entries persisting from move to move, and the hash

table was cleared before each test position.

4.2.5.6 Table Sizes

To assess the effects of transposition table size on our results, we conducted our

experiments using six different table sizes, ranging from 16K (IK=1024) to 1024K

entries.

29

A Platform for Experimental Work

4.2.5.7 Move ordering
In order to measure the effect of move ordering on our results, we performed some

experiments with the history heuristic disabled. The average search cost per position

was more than doubled, but the savings achieved by the multiple-probe schemes were

only marginally greater. From this we infer that move ordering does not play a

significant part in our results, and that programs using more sophisticated move-

ordering techniques than ours would still benefit from the use of multiple
transposition-table probes.

4.2.6 Results

All of our results are compared to a baseline of conventional single-probe searches.
Therefore, we first present the baseline node counts (Table 4.1), and then the

percentage savings for the various multiple-probe schemes (Table 4.2).

16K 32K 64K 128K 256K 512K 1024K
34,760,717 30,083,815 25,943,307 22,299,509 19,572,931 17,374,383 15,853,931

Table 4.1: Average node counts per position for a single probe, by table size.

Table 4.1 shows the average search cost (measured in nodes per position) using a

single probe, for each of the seven table sizes. From this Table we can see a reduction
in search cost per doubling of table size of the order of 12%. Ebeling (1970) reported

a 7% reduction per doubling. The difference may well be due to the greater hash

table saturation factors included in our experiments.

16K 32K 64K 128K 256K 512K 1024K
P=2 11.6% (5.2) 10.4% (4.6) 10.7% (5.9) 12.7% (6.4) 13.4% (5.5) 12.3% (5.1) 10.5% (4.2)
P--4 14.9% (6.2) 12.9% (5.6) 14.0% (7.6) 17.1% (8.8) 18.1% (6.2) 15.2% (5.7) 12.5% (4.8)
P=8 15.9% (6.2) 13.8% (6.5) 15.4% (8.1) 19.4% (9.2) 19.6% (6.4) 15.9% (6.0) 13.0% (4.8)
P= 16 15.9% (6.4) 14.3% (7.1) 15.9% (8.4) 20.6% (9.5) 19.9% (6.6) 16.0% (6.0) 12.5% (5.4)
ITwin 1 0.3% (12.5)1 3.5% (5.1)1 3.8% (4.2)1 1.7% (5.1) 1 1.8% (4.0)1 1.7% (4.3) 1 0.8% (6.6)1

Table 4.2: Average individual percentage saving (standard deviation), by table size.

Table 4.2 shows the averages of the individual percentage saving compared with a

single probe, for each of the multiple-probe schemes (P = 2,4,8,16 and Twin), and

across all table sizes. Shown in brackets are the standard deviations of these savings.

We can see that substantial benefits may be obtained by using a multiple-probe

scheme, and that the more probes used, the greater the saving. Using 4 or more

probes instead of a single probe results in savings greater than those achieved by

doubling the size of the table. There is a diminishing return, so that 16 probes

perform only slightly better than 8 probes. The results from the Twin scheme showed

30

A Platform for Experimental Work

less saving than expected, but are within one standard deviation of those obtained by

Breuker, Uiterwijk and Van den Herik (1996).

0 to 0.1 0.1 to 1 1 to 10 10 to 100
P=2 0.1% (0.2) 1.8% (2.2) 6.7% (4.4) 10.8% (5.8)
P=4 0.1% (0.2) 1.9% (2.3) 8.0% (5.1) 13.9% (7.3)
P=8 0.1% (0.2) 1.9% (2.3) 8.4% (5.4) 15.0% (7.7)
P=l6 0.1% (0.2) 1.9% (2.3) 8.4% (5.6) 15.4% (7.9)
iTwin 1 0.1% (0.2) 1 1.3% (1.8) 1 0.8% (3.6) 1 0.0% (5.0) 1

Table 4.3: Average individual percentage saving (standard deviation), by saturation factor.

Table 4.3 combines results from all search iterations completed during the

experiments, across all table sizes grouped into saturation factor bands: 0 to 0.1; 0.1 to
1; 1 to 10; and 10 to 100. The average of the individual percentage savings compared
to a single probe (and their standard deviations) are shown. From this Table we can

see that the savings increase as the saturation of the table increases.

40%

30%

20%

10%

0%

-10%

%%

he P...,

'o4
10 Saturation Factor

Figure 4.1: Individual iteration savings made by eight probes (P=8) compared to a single
probe, plotted against saturation factor (all table sizes are included).

Figure 4.1 is a scatter plot of the savings made using 8 probes versus the saturation

factor (on a logarithmic scale), combining results from all table sizes. Greater savings

than those shown were achieved when the saturation factor was in excess of 100, but

as this level of saturation was only reached with table sizes of 128K and below (tiny

by the standards of modem computers), these results have been excluded.

31

A Platform for Experimental Work

Saturation Factor 1 to 10

12%

10%

8%
co U)
(D
cm 6%
V

2 4%
a) Cl-

2%

(\0/
_I /0

16K 32K 64K 128K 256K 512K 1024K
Table Size

Figure 4.2: Average percentage saving by table size, for saturation factor range I to 10.

From Figure 4.2 we can see that within a given saturation band (in this case I to 10),

greater savings occur as the table size increases (i. e. greater savings are made with
large searches using large tables than with small searches using small tables).

These results of this section show that a simple multiple-probe transposition table

method can reduce average tree sizes (and hence computational effort) by 2 to 15

percent, and that this method works well for a range of hash table sizes. Moreover,

the benefits to be gained from such a method are shown to increase with the saturation
of the table, and are larger for deeper searches. As a result of these experiments, a
multiple probe scheme was incorporated as standard into the search platform used for

all subsequent experiments reported in this thesis.

4.3 Selective Search

The majority of chess programs use a fixed-depth full-width search as their primary

search regime, and the branching factor for the resulting search tree is on average

around 35. The use of alpha-beta pruning in conjunction with good move-ordering

techniques can reduce this figure to an effective branching factor in the region of 6 to

8. Although this is a substantial improvement it does not avoid the problem of

combinatorial explosion, but merely delays it. For this reason, chess programmers
have always been interested in investigating methods of reducing the size of the

search tree, and in doing so allowing deeper searches in a given amount of time.

32

A Platform for Experimental Work

To reduce the size of a search tree, a large number of different selective search
techniques have been attempted. Extreme forms of tree pruning were practised in the
early days of computer chess, such as Bernstein's program of 1957 which used a
plausible move generator to select the best 7 moves in any position, and then only
searched these (Beal 1989). Such harsh methods were shown to be ineffective once
full-width search became popular.

Over the years there have been numerous attempts to construct knowledge-based

chess playing programs. For example, George and Schaeffer (1991) report using a
chess advice system to enhance their more conventional chess playing program. Such
knowledge-based systems have yet to prove successful, and the bulk of research in

computer chess is still based on search methods sometimes referred to as BFI (Brute
Force and Ignorance).

Other domains (e. g. Go) have game trees with branching factors so great that brute-
force search is not a feasible approach. Selective search methods represent one
possible approach to solving this problem and represent a step away from the
'ignorance' of brute-force methods, introducing a modicum of knowledge into the

search in an attempt to improve its performance.

4.3.1 Alpha-beta is not selective search

It should be noted that selective search consists of pruning methods fundamentally
different to that of alpha-beta. Alpha-beta is performing exactly the same
computation as full-width minimax search, it is just pruning off branches of the tree
that are irrelevant to the computation. This is sometimes referred to as a backward-

pruning of the tree. Selective search techniques on the other hand perform a different

computation to full-width minimax search. Of course, selective searches often
themselves use alpha-beta pruning, but as Beal (1989) points out, the issue at stake is

which tree should alpha-beta be used on: "what shape and size should the search tree
be, or in other words, which moves should be considered for searching" (Beal 1989,

pg. 67).

4.3.2 Selective search methods

It is clear that the major problem with forward-pruning of the search tree is that a

good move might be excluded from the search. To avoid this happening at an early

stage in the search (where of course it is most harmful), numerous selective search

methods have been tried. A few examples of such methods are given below.

33

A Plaformfor Experimental Work

Taperedforward pruning (e. g. Marsland 1986) uses a shallow full-width search, after
which only the N-best moves at each node are considered, with N decreasing as the
search deepens.

Best-first search is a form of selective search that is closer to the methods used by
human chess players. Berliner (1979) suggested the B* algorithm, which estimates
pessimistic and optimistic bounds for a position, and Palay (1983) later modified B*
to replace these bounds with probability distributions which were found by shallow
depth-first searches. This modified B* was tested on the 300 positions from
Reinfeld's Win at Chess (1945) and solved 81% of them (Palay 1983). The major
problem with best-first searches is that the tree needs to be stored as it is searched.
These techniques are unlikely to become popular among computer chess programmers
unless a method can be found to guide the search and prevent the tree from growing
exponentially as the search deepens (Kaindl et al. 1986).

4.3.3 Search extension heuristics as selective search

It is possible to view selective search from two perspectives. On the one hand we can
regard it as forward-pruning branches of the search tree, throwing away what is not
wanted and continuing the search along the remaining branches. Techniques such as
tapered-forward pruning seem best thought of in this fashion. On the other hand, we
can equally well think of selective search extending the search down certain carefully

chosen branches, whilst stopping short down others. The selection of which moves to

extend is what search extension heuristics are concerned with.

4.4 Search Extension Benefits: Comparison and Quantification

This section considers several search extension rules and one pruning rule that have

been described in the literature. An experiment was performed to see how effective

each rule was in isolation and in various combinations. This experiment was

perfon-ned on a fixed test set of positions, and results were measured using node

counts. The emphasis of the work was to make repeatable measurements on well-
defined tasks, for future comparison with other search extension rules. In the chosen

test domain chosen some extension rules were strongly advantageous compared with
fixed-depth search, but disadvantageous in combination with others. Notably,

singular extensions were strongly beneficial if added to a fixed depth search, but

detrimental if added to a search already using check extensions, recaptures and null

moves.

34

A Platform for Experimental Work

4.4.1 The performance of search extension heuristics

Over the past thirty years there have been numerous papers on computer chess that
describe search extension rules used in various chess programs. Most of them report
on performance improvements obtained within a particular program containing many
other heuristics. More often than not, they do not give the games or set of positions
on which they were tested. Although many valuable ideas have been successfully
conveyed this way, experiments using well-defined test sets and simpler, well-
specified programs have the advantage that the research community can more readily
compare results and explore the circumstances in which different heuristics do well or
poorly.

This section reports on an experiment to examine, on a well-defined test domain,

three search extension rules and one pruning rule that have appeared in the literature.
They were examined singly, including variants using alternative definitions, and in

many combinations.

The goal of search extension mechanisms (and of 'forward' pruning rules) is to obtain
better cost-effectiveness from searches by searching deeper down some lines than

others, using some selection criterion to determine which moves are favoured. In this

sense, search extension rules and 'forward' pruning rules all produce selective

searches. (As noted in section 4.3.1, alpha-beta pruning is a separate matter, and can

always be operated within the tree determined by the selection rules, no matter what
the shape of the selected tree).

Selective searches can be compared with fixed-depth searches by examining the effort

required to make significant discoveries. Clearly, for the same total effort to do a
fixed-depth search, a selective search will search deeper down some lines and stop
before the fixed-depth horizon down others. If the selection rule is beneficial, the

selective search will, averaged over a large number of positions, consume less effort

than the fixed-depth search to make the same discoveries.

4.4.2 The extension rules and test domain

For our experiment we chose to examine three simple-to-specify extension rules and

one pruning rule that have been reported in the literature, and are commonly used in

chess programs. They were: (1) check extension - moves out of check are not

counted towards depth; (2) singular extensions - moves which are the only way to

obtain the best minimax value; (3) capture or recapture extensions - if a move is a

qualifying capture or recapture it does not count towards depth. The pruning rule (4)

35

A Platform for Experimental Work

was a form of null-move pruning. It was tested on its own, and in various
combinations with the extension rules. All of the rules were tested in more than one
variant using alternative definitions.

We examined how effective these different rule combinations are at bringing
tactically significant variations within the scope of a given search effort. For this
purpose we selected as a test domain 563 positions where a tactical combination was
present, at varying depths, taken from the book 1001 Winning Chess Sacrifices and
Combinations (Reinfeld 1995). The positions to be used for our experiment were
selected by performing an iterative-deepening full-width fixed-depth search on every
WCSAC position, and retaining for the test set all those which had a well-defined
tactical solution and could be solved in less than 36,000,000 nodes of search effort.
(The positions selected are given in Appendix A, and are also available online at
http: //www. dcs. qmw. ac. uk/-martins/research/wcsac563. txt)

This choice was intended to ensure that all positions in the test set would be solved by
all variants of the searches. This meant we could use average effort-to-solution as our
criterion of effectiveness rather than number-of-positions-solved. Effort-to- solution
was preferred over number-solved, because effort-to-solution gives credit for all
reductions in search effort, and makes a useful comparison between alternative
regimes that solve a given problem.

4.4.3 The baseline search, horizon evaluation and quiescence search

The baseline search used in these experiments consists of a full-width search as
described in section 4.1.

The searches all used a simple captures-only quiescence search as the horizon

evaluation. The quiescence tree consisted of all capture moves, with the side to play
having the option of 'standing pat' instead of being forced to make an unfavourable
capture. Pawn promotions are considered to be captures because they alter the

material balance. The leaves of this capture tree are then scored according to the

material balance at that position. For these experiments we did not use a full

positional evaluator, but only material scores.

For the purposes of this experiment, we regarded the whole quiescence search as
being a 'horizon evaluation'. The various search extension rules being investigated

were only applied in the main part of the search - they were not applied within the

quiescence search.

36

A Plaform for Experimental Work

4.4.4 Measuring performance

The 'gold-standard' method for measuring performance is for the program to play a
large number of rated tournament or match games, and measure its performance on
the internationally recognised ELO rating scale. To obtain a useful rating by this
method would be extremely time-consuming, especially if dozens of putative program
enhancements need to be compared in various combinations. Other methods of
evaluation are required. Two other commonly used techniques are playing a modified
version of a program against a copy of its old unmodified self, (e. g. Anantharaman et
al. 1988), and measuring the program's performance by testing its ability to predict
moves made by human Grandmasters (e. g. Marsland and Rushton 1973). Both of
these approaches have been found to be problematic (Berliner et al. 1989;
Anantharaman 1991a, 1991b).

The most commonly used method for measuring the performance of a chess program
is to provide a set of chess problem positions, and see how well it performs in trying
to find the solution. There are a number of such test sets available, ranging in size
from the 24-position Bratko-Kopec test to the suite of 5,500 test positions described
by Lang and Smith (1993) that were optically scanned from a number of chess books.

The test-sets approach suffers from potential difficulty in comparing results. Results
have often been given in terms of number of positions solved within a given effort
budget, usually CPU time. However, this does not discriminate well between

algorithms which solve nearly all the test, and does not discriminate at all between

algorithms which solve the complete set. Moreover, measuring CPU time, whilst the
best choice for determining competitive effectiveness for given hardware, does not
allow comparisons between algorithms on different hardware, and hence between

algorithms past and present. For these purposes, node counts are preferable.

Ye and Marsland (1992) used a hit ratio combining number of position solved with

node counts. This discriminates between algorithms which solve all or nearly all the

test set, but it is not clear how an effort limit can be set so that solving one extra

problem is weighted fairly against a reduction in the effort overall.

Bearing in mind all these considerations, we chose to measure total-effort-to-solution

for a specific test set, preferably one widely available or used already by other

researchers. We avoided the problem of assigning effort- to-solution to situations

when the algorithm cannot find a solution within an affordable time for the

experiment by allowing the test set to consist only of positions solvable by all variants

of the search algorithms.

37

A Platformfor Experimental Work

The effort of finding the solution to a problem is taken to be the number of capture-
tree positions (c-nodes) visited during the search, up to and including the iteration in

which the correct move was found. This definition counts whole iterations only (the

search has to prove there was no better move, not merely prefer it for a while), and to

qualify as solved the search had to identify the correct move with the correct amount
of gain.

4.4.5 The test set

We obtained problems from 1001 Winning Chess Sacrifices and Combinations
(Reinfeld 1955). This (WCSAQ test set is available in machine-readable form, (Lang

and Smith 1993) with the target move specified along with each position.

To ensure that our test set consisted only of solvable positions and that each position
had a well-defined solution, a preliminary program scanned all 1001 problems and
selected positions that satisfied the following constraints:

(a) There had to be a single move that was tactically better than all its alternatives,

and this move had to match the solution given by Reinfeld (1955). In cases

where the best move found by the program differed from that given by the book

(suggesting either multiple solutions or an error in the book), the position was

excluded from the test set.

(b) The fixed-depth search had to return a stable evaluation for the target move. We

defined stability as the search returning an evaluation that remained at the same

value over 3 consecutive iterations, once the Reinfeld move had been found.

This value was recorded as a target gain that had to be found by a search, as

well as the target move to count as a solution of the problem.

(c) The position had to be such that all the search algorithms could find the

specified target move, within a predetermined limit of 36 million capture-tree-

generation nodes (c-nodes). This number is arbitrary and was chosen to allow

the experiment to complete in reasonable time on the machines used.

Any problem that was solved by the fixed-depth search within the first three iterations

(i. e. a problem of depth 1,2 or 3) was excluded, as these were regarded as being too

simple to be of much interest.

The final test set consisted of 563 problems, of which 206 were of depths 4-5 (as

measured by the fixed-depth search); 176 were of depths 6 or 7; 136 were of depths 8

38

A Platform for Experimental Work

or 9; and 45 were of depth 10 or greater. Of these 563 problems, 99 had a solution
that led directly to checkmate. These positions are detailed in Appendix A.

4.4.6 The search extension heuristics

Search extension heuristics can be domain-specific or domain-independent. Other

things being equal, domain-independent heuristics are more useful. Two of the
heuristics investigated here are domain-independent and, although the others are
domain-specific, they are potentially applicable to a wide range of other games.

The extension heuristics were implemented so that they were applied at all levels of
the main search tree. This means that any given path down the search tree may be

extended more than once, and in some cases many times. All extensions are exactly
one ply, in other words if an extension is applicable that move does not count towards
depth. To prevent the search from being extended explosively, each move is only
extended by one ply, even if more than one extension rule calls for its extension.

4.4.6.1 Check extensions
Check extensions extend the search down lines containing checks. This heuristic is

known to be widely used in chess programs. We implemented it in two forms. In the

first, moves out of check are not counted towards depth (e. g. Levy et al. 1989). In the

second, it is the checks themselves that are not counted towards depth.

We found the two versions of the rule to have very similar performance effects,

provided that the first tests for eligible moves at depth 0 (i. e. test for in-check before

the node is declared to be a horizon node). From the programming point of view, this
interferes with a uniform definition that depth-0 nodes are always horizon nodes, but

it is still straightforward to program. It is arguable that the first definition is

marginally more natural from a human perspective, whereas the second happens to

have a cleaner mathematical description. After establishing that the performance

effects were similar, we used the first form when testing rule combinations.

4.4.6.2 Capture extensions
The simplest form of capture extensions is to extend on all captures, i. e. no captures

count towards depth. We initially included this in the experiment, but found that the

effect was surprisingly bad. The cost to solution increased for nearly all positions in

the test set, often by more than a factor of ten. We therefore eliminated this extension

rule from the main experiment as it would have required excessive computer time to

obtain detailed numbers.

39

A Platform for Experimental Work

4.4.6.3 Recapture extensions
A more refined idea is to extend only on selected recaptures (e. g. Berliner 1989). The

basic idea is to extend only on captures (including promotions) that return the value of
the current search to the root value stored by the previous iteration. In intuitive terms,

this will have the effect that each pair of captures making a level exchange of material
(i. e. capture and recapture) will receive an extra ply (from the recapture) whereas

meaningless sacrificial sequences will not be extended.

Berliner (1989 p. 287) gives a rule which can be paraphrased as: "We know the

expected value of the search from the previous search. A recapture is any capture that

produces an evaluation within a quarter-pawn window of the expected value. " Our

experiment uses material-only evaluation, so the rule requires a recapture to achieve
the material score exactly. Our results (given in Table 4.4 and the Figures 4.3 to 4.9)
fail to show a consistent benefit, although the overall average is slightly positive.

The above rule does not say whether the evaluation after the capture means the
backed-up value from the search subtree that follows, or a static evaluation, or some
other evaluation (e. g. capture tree or equivalent). We tried many variations on this

theme in an attempt to identify a version that showed a clear benefit, but were unable
to find a version better than the one reported in Table 4.3. Our best rule requires both

the static evaluation and the subtree-search result to achieve the expected root result.
Under our version of the recapture rule, a move is considered a recapture if it is a

capture or a pawn promotion, and the static material balance after it equals the stored

root value R, and the search after the recapture returns a value of R.

The search used to detect recaptures is identical to the main search. Thus, there is

opportunity for numerous recursive levels of recapture detection. A separate node

count was maintained to establish the cost of the recapture detection search (this cost
is included in the total count reported). The results show that these overhead nodes

are a relatively small proportion of the search effort.

4.4.6.4 Recapture variations
We examined the performance of the recaptures rule without the static material

balance requirement, and found that the number of extensions became excessive in

many positions, and the resulting combinatorial explosion led to a greatly degraded

performance.

We also examined other methods for detecting suitable recaptures, including use of

the current search bounds for a recapture-detection search, and also performing just a

40

A Platform for Experimental Work

capture-tree search below each candidate move instead of a full search of depth d-2.
These methods performed less well than our chosen criteria for recapture detection,

and are not included in the results presented here.

4.4.6.5 Singular extensions
Singular extensions are a domain-independent heuristic, first described by
Anantharaman et al. (1988). The concept is that a move is singular if there is no other
move that achieves the same result. In practice, a move is described as singular if a
search of that move to a certain depth returns an alpha-beta value significantly better
than that returned by any of the other moves from a search of equal depth. In the
context of our material-only evaluation, we define significantly better as simply
meaning greater.

At a search depth d, the move m that is to be tested for singularity is that move which
was previously found to be the best from the current position by a search of depth d-

r. This move and its value v are usually available from the hash table. We then
perform a search of depth d-r to verify that none of the alternative moves has an
alpha-beta value equal or greater than v.

Note that we are not required to establish an exact value for these moves, only to
verify that they all have values less than v. This enables us to use a minimal search
window of [v - 1, v], thus maximising the number of alpha-beta cutoffs in the search.
If v is an upper bound, then the position is what Anantharaman et al. (1988) call a
fail-low node, and as the position was rejected by the earlier search, the move m is not
tested for singularity.

The singular-detection search is performed in a manner identical to that of the main
search. The extension rules that are operating in the main search are also employed in

the singular detection search. This means that any given singular detection search
may recursively spawn other singular detection searches lower in the tree.

We implemented two versions of singularity detection in the context of our full-width

search, one which tested for the singularity of a move with a search at the current
depth -I (i. e. r= 1) and the other at depth -2 (r = 2). We found that d-I performed

significantly better than d-2, despite the fact that it incurred a much higher cost for

detecting singularity. These two variations are shown in the results as SingEx(l) and
SingEx(2) respectively.

if, when testing for singularity, a move is found that produces a value of greater or
equal value to the previous-best move, then we refer to that move as a singular

41

A Platformfor Experimental Work

extenninator. This singular exterminator is stored in a separate entry in the hash

table, and in subsequent iterations can be recalled to be the first move tried in

singularity detection, thus reducing the average cost of singular detection searches just

as trying the previous-best move from earlier iterations reduces the average cost of
regular searches.

4.4.6.6 Null moves
Null move pruning is another domain-independent heuristic that has been found to be

an effective pruning method in many programs. The basic idea is to obtain, at low

cost, a lower bound on the search value by performing a reduced-depth search after
making a null move. There are several variants reported in the literature. Beal (1989)
describes a radical approach called null-move quiescence which applies the same
search depth to null moves at all levels in the tree. Goetsch and Campbell (1990)
describe a more popular form in which the search depth after the null move is one less

than after regular moves. Donninger (1993) describes a similar technique, but allows
recursive application of null moves.

For these experiments we tried null move at reduced depths I and 2, and allowed

recursive application. They appear as Null (1) and Null (2) respectively in the result
tables.

4.4.7 Search extension results

In this section we present the results for the various rules and rule combinations, with

a breakdown according to the depth of the problem.

4.4.7.1 Search efficiency
The hash table had space for 256k entries. Although not large by modem standards,

this ensured running without virtual-memory paging on the machines used for the

experiment, and was sufficient for all but the largest searches to complete without

significant loss of efficiency due to hash table saturation. The search engine used

was the same as the one described in section 4.1, and so the results are derived from

reasonably efficient search implementations.

4.4.7.2 Results for each rule and rule combination

We first compared every variant of the extension and pruning rules with the baseline

fixed-depth search. We then carried forward one version of each rule into various

combinations with other rules. Table 4.4 lists the results for each rule on its own, and

also the results for rule combinations. Overall results are given in the last column,

42

A Platfonn for Experimental Work

with a breakdown according to the problem depths in the columns headed 4,5 6,7 8,9

and 10+. The numbers are average tree sizes for each problem, measured in

thousands of c-nodes.

The first line in the Table (no extensions) shows an average size of 739,000 nodes.
This is the largest entry in the Table, which means all the extensions produced some
benefit. The first section of the Table shows each rule applied separately. Here it can
be seen that check extensions are the most effective, reducing the average tree size to
89,000 or 84,000 depending on which definition of check extension was used.

It can also be seen from Table 4.4 that tree sizes increase as expected with increasing

depth of problem, averaging around an order of magnitude increase for each depth

band of 2 ply. It should be noted that the figures for depth band 10+ are more erratic,
being based on fewer positions. Line two of the Table gives the number of positions
in each depth category.

Looking at the combinations, it can be seen that the best combination overall is

checks, recaptures and null-move pruning (average 31,000 nodes) and the simpler

checks and null-move pruning is second best with 47,000 nodes overall.

43

A Platform for Experimental Work

Depth of search (in ply) 4,5 6,7 8,9 10+ all

Number of positions (see 4.4.5): 206 176 136 45 563

Extension(s) applied:

None 5 58 938 6,164 739
Checks (1) 2 17 256 262 89
Checks(2)* 2 16 234 271 84
Recapts 6 65 1,012 4,936 661
SingEx (1) 6 55 789 1,880 360
SingEx (2)* 6 86 1,286 2,115 509
Null (1)* 4 33 381 3,029 346
Null (2) 4 23 198 915 130

Checks+Recapts 2 20 180 149 62
Checks+SingEx 2 23 178 403 83
Checks+Null 2 9 141 116 47
Recapts+SingEx 6 69 976 1,412 372
Recapts+Null 4 26 259 991 151
SingEx+Null 7 38 344 736 156
Checks+Recapts+SingEx 3 26 265 344 101
Checks+Recapts+Null 2 11 75 105 31
Checks+SingEx+Null 3 17 120 358 64
Recapts+SingEx+Null 6 48 422 552 163
Checks+Recapts+SingEx+Null 3 20 145 340

_
L__ 70JI

* These extension heuristic variants were not carried forward into combinations.

Table 4.4: Average number of c-nodes explored (in 1000s), by search depth and by the
extension(s) applied. (Appendix A contains a fuller table giving node counts
for singular and recapture detection components as well.)

4.4.7.3 The bar chart view, and variation with depth of problem
It is easier to see the relationship between these numbers using bar charts. Figure 4.3

presents the last column of Table I as a bar chart. Here we can see, for example, the

relative disappointment of re-capture extensions on their own, and easily identify the

best rule combination (which includes re-captures) of Checks, Recapts and Null. It

should be noted that the total length of the bar represents the search cost. The shading
distinguishes between main search and auxillary searches to detect singular moves

and recapture moves. All nodes count as part of the search effort.

Figures 4.4 to 4.6 show bar charts for the various depths of problems, in order to see

whether the relationship between rule combinations looks the same with deeper

problems as when averaged over all depths. It can be seen that the checks, recaptures

and singular extensions show greater relative advantage on the deeper problems,

whereas null-move pruning stays about the same. These differences between problem
depths are mainly a consequence of the exponential nature of the search trees, which

cause increasing numerical changes as extensions or pruning operate on larger and
larger subtrees. This continual exponential change means that node counts and

ordinary averages are an inconvenient method of comparison.
44

A Platform for Experimental Work

None

Checks

Recapts

SinglEx

Null

Checks+Recapts

Checks+SingEx

Checks+Null

Recapts+SingEx

Recaps+Null

SingEx+Null

Checks+Recapts+SingEx

Checks+Recapts+Null

Checks+SingEx+Null

Recapts+SingEx+Nuil

Chc k. +Rc pt. +Sing Ex +Null

0

1 129,510

62,259

82,947

910

C-nodes to solution

100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000

738,960

372,378

M Main search
13 Singular detection nodes

'0 Recapture detection nodes]

Figure 4.3: C-nodes to solution (overall).

3

C-nodes to solution
0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000

68,813

37,974

E Main search
[I Singular detection nodes
0 Recapture detection nodeE

11 48,230

Chck. +Rcpt. +SingEx+Null M L11- I11 19,983

Figure 4.4: C-nodes to solution (depths 6-7).

45

A Platform for Experimental Work

None

Checks

Recapts

SingEx

Null

Checks+Recapts

Checks+SingEx

Checks+Null

Recapts+SingEx

Recaps+Null

SingEx+Null

Chec ks+Rec apts+SingEx

Checks+Recapts+Null

Checks+SingEx+Null

Recapts +SingEx +Null

Chc k. +Rc pt. +Sing Ex +Null

0 200,000

C-nodes to solution
400,000 600,000 800,000 1,000,000 1,200,000

,-- ----4- -
fjýýJ;

]IJIM M 938,020

259,312

343,603

264,912

145,299

19 Main search

Figure 4.5: C-nodes to solution (depths 8-9).

0

C-nodes to solution

1,000,000 2,000,000 3,000,000 4,000,000 5,000,000 6,000,000 7,000,000

6,163,974

4,935,880

13 Main search
11 Singular detection nodes
o Recapture detectio

Figure 4.6: C-nodes to solution (depths 10+).

46

A Platform for Experimental Work

The relative performance of these rules with depth of problem is important, because

our experiment was limited to depths somewhat smaller than typical searches in

present-day programs. This was because of decisions to obtain search effort counts
for inefficient as well as efficient searches, and to require 2 additional plies of search
depth after the problem was solved in order to give confidence of a stable evaluation
and genuine solution.

A better way to assess how the performance of the extensions varies with depth of
problem is to examine average branching factors instead of node counts. Section
4.4.7.4 discusses one way to obtain approximate branching factors. Although
branching factors also vary slightly with depth of problem, they are very stable
compared with node counts.

4.4.7.4 Effective branching factors

Another way of presenting these results is to introduce an effective branching factor

(EBF). The EBF is a measure of the size of the search tree solving a position, namely
the branching factor of a uniform tree having the same number of nodes and reaching
the same maximum depth. EBFs are potentially more useful than node counts in

estimating the scaling effect of selective search rules when applied to problems of

greater depth.
Effective Branching Factor

1.00 1.50 2.00 2.50 3.00 3.50 4.00

None

Checks

Recapts

SingEx

Null

Checks+Recapts

Checks+SingEx

Checks+Null

Recapts+SingEx

Recaps+Null

SingEx+Null

Checks +Recapts+Sing Ex

Checks +Rec apts +Null

Checks +Sing Ex+Null

Rec apts +Sing Ex+Null

Chc k. +Rc pt. +Sing Ex+Null

47

Figure 4.7: Effective Branching Factors (depths 6-7).

A Platform for Experimental Work

Effective Branching Factor

1.00 1.50 2.00 2.50 3.00 3.50 4.00

None

Checks

Recapts

SingEx

Null

Checks+Recapts

Checks+SingEx

Checks+Null

Recapts+SingEx

Recaps+Null

SingEx+Null

Checks+Recapts+SingEx

Checks+Recapts+Null

Checks +Sing Ex+Null

Rec apts +Sing Ex+Nu 11

Chc k. +Rc pt. +Sing Ex+Nu 11

Effective Branching Factor

2.50 3.00 3.50 4.00

None

Checks

Recapts

SingEx

Null

Checks+Recapts

Checks+SingEx

Checks+NuII

Recapts+SingEx

Recaps+Null

SingEx+Null

Checks+Recapts+SingEx

Checks +Rec apts +Null

Checks +SingB< +Null

Rec apts +SingFx +Null
Chc k, +Rc pt. +Sing Ex +Null

Figure 4.9: Effective Branching Factors (depths 10+).

3.30

2.85

48

Figure 4.8: Effective Branching Factors (depths 8-9).

0.00 0.50 1.00 1.50 2.00

A Platformfor Experimental Work

In the EBFs; presented in Figures 4.7 to 4.9 an adjustment has been made to reduce the
distortion caused by relative lack of alpha-beta cutoffs in very shallow searches. At

the first ply of search, no alpha-beta cutoffs are possible, so every move has to be

searched. This means that the EBF for ply I will be much higher than for subsequent
plies, and problems solved in fewer iterations will have a disproportionately high EBF

using this method of calculation.

In order to compensate for this approximately, we calculated the average number of
legal moves for every position in the test set, which came to 40. The effect on the
EBF of the first iteration was then reduced by calculating the root to solution depth

minus one:

d-1 _C
,
io-- i co (4.1)

where d is the depth to solution, and c is the total number of c-nodes.

The resulting EBF Figures 4.7 to 4.9 provide an alternative way of interpreting the

results. They show that the reduction in EBF achieved by the rules and rule
combinations are remarkably independent of depth of problem. For example,

comparing the no extensions versus check extensions for depths 6,7 and depths 10+

we see that the no-extensions branching factor drops slightly from 3.84 to 3.38

(presumably due to increasing opportunities for transpositions to occur in deeper

searches), but that the reduction in branching factor due to adding check extensions is

very stable, moving only from 1.24 to 1.22. It is not safe to draw too much from these
figures, as the EBFs are an approximate measure only. However, it does give some
indication that the performance of these rules will be similar (in branching factor

terms) when tested on deeper problems than those in our test set.

4.4.8 Discussion

4.4.8.1 Alternative rule definitions

Singular extensions were tried in two versions: (1) with the singularity test using

searches one ply fewer than the regular search; and (2) using searches two plies
fewer. The search using two plies less is computationally much cheaper, but also

much less accurate.

49

ýTý-T

I

ý-Il

A Platformfor Experimental Work

C-nodes to solution
400,000 500,000 600,000

360,176

508,793

345,690
-- M Main search

ý-13 Singular detec
-
tioný

Figure 4.10: Singular detection and null move variants (overall).

Figure 4.10 shows that testing using I-ply depth reduction produces better results,
even though nearly 70% of the total effort goes into testing for singularity. With 2-

ply reduction, the cost of singularity detection reduces to 40% of the total, but that
total is 40% larger due to less effective extension decisions.

Singular extensions using depth-I searches were carried forward into combinations
with other rules, as was null-move pruning using depth-2 searches.

Similarly, null move pruning was tried in two versions: (1) with the null-move
searched using one ply fewer than the main search; and (2) two plies fewer. The

shallower the search depth after the null move, the cheaper the test, but the greater the

risk that threats will be overlooked, resulting in a need for greater depth in the main

search before the position is evaluated correctly. Figure 4.10 shows that for null-

move pruning on our test set, 2-ply depth reduction saved more than it cost, with the

total effort reduced to 40% of the I -ply version.

4.4.8.2 Effects of each rule independently

Figure 4.3 shows that all the rules tested have beneficial effects when added to the

baseline fullwidth search. These range from recaptures, which averaged a 10%

reduction, to check extensions, which produced a large 88% overall reduction in tree

sizes.

The breakdown according to depth category (Table 4.4) shows that check extensions,

singular extensions, and null moves have large gains in all depth categories.
Recapture extensions are not consistently beneficial: they showed a net loss on depth

categories up to depths 8,9, and only a (relatively modest) gain for depths 10+.

The 10+ depth category has to be treated with some caution, since it consists of fewer

problems than the others - only 45 positions compared with 136 in depth category 8,9.

50

A Platformfor Expetimental Work

Check extensions and singular extensions show increasing benefit with problem
depth. Null move pruning shows variation with depth but no consistent trend.

The extent and consistency of the check extensions might appear surprising, since
only 99 of the 563 problems are checkmate problems. The others involve material
gain only. The advantage in these cases comes from lines that use checks to make
double attacks or undermine defences. In any case, these results suggest that check
extensions deserve their widespread use in chess programs.

4.4.8.3 Extensions in combination
Figure 4.3 shows that singular extensions added to a fixed-depth search produced an
overall reduction of about 30%. Figure 4.3 also shows that adding singular extensions
to a search already including check extensions only produced a further reduction of
7%. Table 4.4 shows that this reduction came mainly from problems of medium
depth (8,9) with increases in effort when adding singular extensions to check
extensions on shallower and deeper problems.

Singular extensions produced even less advantage on searches already combining
check extensions with other rules. In particular, adding singular extensions to a
search using check extensions, recapture extensions and null move pruning resulted in

considerably worse performance in all depth categories.

The augmentation of check extensions with a rule similar to singular extensions was
reported as beneficial as a specialised aid to detecting mating sequences in the

quiescence search (Beal 1984). This used the special case of singular 'out-of-check'

moves which have close to zero-cost detection, and therefore might be expected to

show more net benefit.

One factor that would perhaps reduce the measured benefit of singular extensions in

our experiment compared with results reported by Anantharaman, Campbell and Hsu
(1988), is that they reduced the cost of singularity detection by not testing moves at
the root which, as they have the largest sub-trees, have the highest cost to test. We

performed singularity detection at all nodes, including the root.

Considering the extent of variation between problems, our overall conclusion is that

singular extensions added no significant advantage to searches that already included

check extensions. In contrast, null-move pruning shows a benefit in all combinations
tested.

51

A Platform for Experimental Work

Table 4.4 and Figure 4.3 show that recapture extensions achieved a benefit when
added to fixed-depth search, when added to check extensions alone, and when added
to an existing combination of check extensions and null-move pruning, but a loss

when added to every other combination. The benefit or loss from recapture
extensions was relatively small and varied with depth category. The overall
conclusion has to be that no significant advantage or disadvantage was observed.

4.4.8.4 Overall comments regarding search extensions
The experience with singular extensions and check extensions is a reminder that

performance advantages from selective search techniques are always highly sensitive
to the combination of co-existing selection rules and the choice of tests. It is

necessary to perform thorough tests with all combinations before concluding any

overall utility from any selection rule.

It is perhaps surprising that the singular extension and recaptures rules we have

examined do not show clearly decisive benefits, since they have been used in many
chess programs. Of course, the experiments reported here have been limited to
tactically decisive problems with material-only evaluations. Singular extensions and
recapture extensions might have been expected to work well on tactical sequences, so
part of the result is unexpected.

4.5 Benefits of the Preliminary Experiments

The investigation of search engine improvements in sections 4.2 to 4.4 was

worthwhile (and resulted in two publications). As a result of this experience we

obtained not only the more sophisticated engine containing the search enhancements,
but also simple robust versions of the search engine and tools for collecting and

processing search statistics. After this early work, we were able to conduct the

published learning experiments using the simplest feasible engine that was robust and
had been well tested.

4.6 Shogi and the Shogi-Playing Search Engine

The search-related methods described in this Chapter are all essentially game-
independent. As a result, many of the above techniques would be useful in the

construction of programs to play other games.

52

A Platform for Experimental Work

In addition to conducting experiments in the well-established domain of chess, we

also investigated shogi, another complex game that is considered by many researchers
to be the next challenge beyond chess for computer game-playing (Matsubara, Eda

and Grimbergen, 1996). The features of shogi that provide this challenge and the

results of experiments conducted in this domain are described in detail in Chapter 6.

53

Learning Chess Evaluation Coefficients

5 LEARNING CHESS EVALUATION COEFFICIENTS

This Chapter introduces the main topic of this thesis - learning evaluation coefficients
in a complex domain. The methods for utilising temporal difference leaming in

complex game domains detailed in Chapter 3 are combined with the chess-playing
platform described in Chapter 4. We describe experiments where we attempt to learn

the relative values of chess pieces. The leaming is obtained entirely from a series of
randomised self-play games, without access to any form of expert knowledge. The
leaming system does not benefit from seeing the play of a well-informed opponent
against it, nor does it examine games played by experts. The only chess-specific
knowledge is provided by the rules of the game. We show that we are able to learn

suitable piece values, and that these values perform at least as well as piece values
widely quoted in elementary chess books.

A combination of machine-learning methods, including TD learning, was earlier used
to learn chess piece values (Levinson and Snyder 199 1), and coarse-grained piece

values (Christensen and Korf 1986).

The same method of applying TD(k) to minimax. as described in Chapter 3 and first

published by Beal and Smith in 1997, was later reported to be successful by Baxter,

Tridgell and Weaver (1998). They improved weights for a complex chess evaluation
function consisting of positional terms as well as piece values, when playing online

against knowledgeable opponents (see section 3.6), but they provided piece weights

as initial knowledge in order to obtain good performance.

5.1 The Relative Value of the Pieces

Probably the first heuristic to be taught to most beginners is the value of the pieces:

that knights and bishops are worth about three pawns; rooks about five pawns; and the

queen about nine pawns (the king is not given a value as it cannot be captured). Thus

under this scheme, it would be considered a fair exchange to trade a rook for a bishop

and two pawns, or a queen for two bishops and a knight.

This simple numerical scheme provides a crude evaluation of how 'good' (i. e. likely

to lead to victory) a given position is. Such a scheme (or others very similar) provides

the backbone for the evaluation function of almost all chess-playing computer

54

Learning Chess Evaluation Coefficients

programs', including IBM's Deep Blue. For high performance play the basic scheme
is augmented with numerous, often very elaborate, additional scoring terms.

The material-only scheme forms one of the simplest examples of evaluation functions

described in section 3.4.1. The experiments presented in this Chapter are concerned

with finding suitable weights for each of the five piece types: pawn, knight, bishop,

rook and queen.

5.2 Temporal Difference Learning in Chess

The TD learning process is driven by the differences between successive predictions

of the probability of winning during each game. Throughout the course of a single

game, a record is kept of the value returned by the search after each move, and the

corresponding principal position (see section 3.5.2).

In principle, TD(X) weight adjustments can be made after each move or at any

arbitrary interval, but for game-playing tasks the end of every game is the most

convenient point to actually alter the evaluation weights. The update rule for applying

weight adjustments at the end of each game is:

T

w<--w+lAw,
t=l

where T is the time index at the end of the game.

As described in section 3.4, a sigmoid squashing function is used to convert the

evaluation score of the principal position (i. e. the leaf of the principal variation) into a

prediction of the final outcome of the game. We sometimes refer to these predicted

outcomes as prediction probabilities as they are in the range 0- 1-

The use of this squashing function ensures that weights having little effect on the

prediction are adjusted less than weights to which the prediction is more sensitive.

55

Learning Chess Evaluation Coefficients

1
P(win)

0.77

0.5

+2
0
ý <- 0v (value of position) +. -ý

Figure 5.1: Graph showing the conversion of position value into prediction probabilities
(including an example using piece values learnt in Run A from section 5.3).

Figure 5.1 shows the conversion of position value into prediction probability. The

example score of 2 pawns (using pawn = 0.60 from Run A in section 5.4) is converted
into a probability of winning of 0.77. Of course, the resulting probabilities for any
given material advantage will vary according to the piece values that have been learnt.

For example, using the values from Run B, 2 pawns advantage converts into a

probability of winning of 0.74.

5.3 The Basic Learning Experiment

As outlined in section 3.5, the piece values being leamt are used to evaluate the leaves

of a minimax search tree, and temporal difference leaming is used to adjust these

values over the course of a series of games.

We attempted to learn suitable values for five adjustable weights (pawn, knight,

bishop, rook and queen). To demonstrate that the values learnt are reasonable, we

played matches between two programs that differed only by one using the piece

values learnt during the experiments and the other using values given in many

elementary chess books of pawn=l, knight and bishop=3, rook=5 and queen=9. The

programs using the learnt values consistently score well over fifty percent in matches

of this sort.

56

Learning Chess Evaluation Coefficients

5.3.1 The search engine

The search engine used in the experiments was described in section 4.1. The piece
values being learnt (those for pawn, knight, bishop, rook and queen) were used as the

evaluation function. The material balance for a position was calculated as the sum of
all the values of the side to move's remaining pieces, minus the sum of all the values
of the opponent's remaining pieces.

5.3.2 Experimental details

The games reported on in this section were played using a four-ply fixed-depth

search. At the start of each leaming experiment the piece values were all initialised to
1. For these experiments we used Tl)(ý,) control parameters of a= 0.05 and A=0.95.

To prevent the same games from being repeated, the move lists were randomised.
This has the effect of selecting at random from all tactically equal moves, and has the

added benefit of ensuring that a wide range of different types of position are
encountered. It should also be noted that these experiments have learnt values within
a material-only evaluation function. We would expect the material values learnt to be

at least slightly different if the evaluation function included positional scoring terms
(see Chapter 7).

5.3.3 Basic learning results

We conducted five runs (A-E) of 10,000 games each. Each run differed only in

choice of the initial seed for the random number generator, ensuring that each

consisted of entirely different game sequences.

57

Learning Chess Evaluation Coefficients

12

11

10

9

8

7

6

5

4

3

2

1

0

Queen

Rook

Bishop

Knight

Pawn

0 2000 4000 6000 8000 Games 10000

Figure 5.2: Graph of learnt values from a typical single trial (Run A). The absolute values have been
normalised so that the average value of a pawn over the last 2,000 games is fixed at 1.

Figure 5.2 shows the evolution of the piece values for a single run over 10,000 games.
From the graph it can be seen that the value of the queen is quickly established to be

greater than that of the other pieces, and that after a few hundred games the relative

ordering of the pieces has been established. There are a few minor fluctuations,

where the value for knight is briefly above that of bishop, but these are quickly

remedied. The four other runs (B-E) differed from this only in the choice of the

random number seed, and they all produced learning traces very similar to those

shown here.

Table 5.1 shows the piece values learnt. To avoid fluctuations in the weights due to

noise from the stochastic component of the search engine, these values were

calculated by averaging over the last 20% of games in each of the five runs.

Pawn Knight Bishop Rook Queen
Run A 0.60 1.66 2.02 2.75 6.61
Run B 0.58 1.49 1.93 2.92 6.43
Run C 0.53 1.60 1.93 2.81 6.79
Run D 0.58 1.56 2.02 2.81 6.64
Run E 0.57 1.47 1.78 2.92 6.36

Table 5.1: Learnt values for each trial, averaged over the final 20% of the runs.

The absolute values of the weights could conceivably drift to be all very large, or all

very small. What matters most, however, are their values relative to one another,

because when the leamt piece values are used by a playing program, the value of the

58

Learning Chess Evaluation Coefficients

pieces relative to each other determines move choice. (Thus the same games would
be played with pieces values of 2: 4: 6: 8: 10 as with 1: 2: 3: 4: 5) Table 5.2 presents the

results normalised so that pawn equals one, allowing direct comparison between the

runs.

Pawn Knight Bishop Rook Queen
Run A 1.00 2.76 3.36 4.57 11.00
Run B 1.00 2.56 3.31 5.00 11.01
Run C 1.00 3.01 3.62 5.29 12.76
Run D 1.00 2.71 3.50 4.87 11.51
Run E 1.00 2.58 3.13 5.13 11.17

Table 5.2: Learnt values for each run, normalised to pawn=l.

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Figure 5.3: Normalised learnt piece values from 5 runs at search depth 4

From Figure 5.3 we can see that similar piece values were leamt by each of the five

runs, and that the relative values of the pieces in each case are similar to the widely

quoted values taught to human beginners. By 'similar'we mean similar in the context

of piece values being leamt by self-play from zero initial knowledge. In this context,

the play is dominated by relative orderings of pieces and piece combinations, rather

than numerical totals.

5.3.4 Basic results from matches using learnt values

To verify that the final values were reasonable, five matches were played between two

identical search engines, one using the values (1: 3: 3: 5: 9) and the other using the

newly learrit weights from one of the five runs.

59

Pawn Knight Bishop Rook Queen

Learning Chess Evaluation Coefficients

A match consisted of 2,000 games, alternating black and white. Games that ended in

mate were scored as I point for the winning side. Games that ended in a draw

according to the laws of chess (stalemate, repetition, insufficient material) were
scored as 1/2 point for both sides. Games that were unfinished after 400 ply (200

moves each) were scored as win for one side only if both programs' evaluation
functions agreed that side was ahead on material, otherwise the game was scored as a
draw.

Played Won Lost Drawn Percent.
Run A 2,000 1,116 782 102 58%
Run B 2,000 1,117 766 117 59%
Run C 2,000 1,114 777 109 58%
Run D 2,000 1,112 781 107 58%
Run E 2,000 1,117 762 121 59%

Table 5.3: Match results for each trial vs. values (1: 3: 3: 5: 9).

From Table 5.3 we can see that each of the five runs produced final piece values that

perfon-ned better than the elementary textbook values. Moreover, the performance of
each set of learrit values was very similar, suggesting that the choice of seed for the

random number generator does not play a significant part in the leaming process.

5.4 Experiments at Various Depths

We repeated the basic experiment with five other search depths for the chess program.
The runs contain a lot of internal variety because the chess playing program chooses

randon-Ay between materially-equal values, producing a variety of games for any

given set of material values. This variety enables the leaming process to achieve

values that reflect values averaged over all positions. Nevertheless, to confirrn that

the results were not critically dependent on the random choices, we again ran each
depth experiment with five different random-number seeds.

60

Learning Chess Evaluation Coefficients

Depth I Depth 3 Depth 5
Pawn 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Knight 1.86 (0.09) 1.75 (0.10) 2.14 (0.12)
Bishop 2.11 (0.15) 2.31 (0.08) 2.49 (0.13)
Rook 3.34 (0.20) 3.88 (0.20) 4.06 (0.32)
Queen 7.26 (0.64) 8.08 (0.19) 8.11 (0.35)

Table 5.4: Learnt piece values from depths 1,3,5

Depth 2 Depth 4 Depth 6
Pawn 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Knight 2.75 (0.22) 2.72 (0.17) 2.91 (0.08)
Bishop 3.52 (0.33) 3.38 (0.19) 3.49 (0.09)
Rook 4.84 (0.35) 4.97 (0.27) 5.08 (0.09)
Queen 11.04 (0.55) 11.49 (0.74) 10.68 (0.28)

Table 5.5: Learnt piece values from depths 2,4,6

Tables 5.4 and 5.5 shows the average values learrit at depths 1,3,5 and 2,4,6

respectively. In both cases the values are normalised to pawn=1 for ease of

comparison. The absolute values learnt in each run are presented in Appendix B.

It is a well known feature of minimax searches to fixed depths that there are often
fluctuations of behaviour with the parity of ply (Beal and Smith 1995). This is

probably caused by evaluations being biased either towards or against the player to

move. The direction of bias, and its magnitude, depend on the nature of the

evaluation function and the characteristics of the game. This makes comparison of

values leamt at even depths of search with those learnt at odd depth problematic. For

this reason, the results are presented in two sections: depths 1,3,5 and depths 2,4,6.

9

8

7

6

5

4

3

0
Pawn Knight Bishop Rook Queen

Figure 5.4: Learnt piece values from depths 1,3,5.

61

Learning Chess Evaluation Coefficients

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Pawn Knight Bishop Rook Queen

Figure 5.5: Learnt piece values from depths 2,4,6.

In Figures 5.4 and 5.5 the standard deviation from the different random seeds is

shown as a vertical line embedded in the top of each bar. The Figures show that the
learnt values vary a little from run to run, and with search depth, but that the average
value for each type of piece is quite close to the standard values often told to
beginners.

5.4.1 Matches at various depths

As in the basic experiment we ran matches between the leamt values and the 1: 3: 3: 5: 9

values to determine whether the leamt values are better, worse, or equivalent to the
human values as told to beginners. The matches were conducted using a fixed search
depth equal to that used to determine the learnt values (i. e. the depth 4 matches used
the values leamt at depth 4 in conjunction with a search depth of 4-ply for both sides).

Table 5.6 shows that the leamt values are clearly superior at all depths.

Depth Win Loss Draw Sco
,
re

1 1,003 828 169 54%
2 1,052 899 49 54%
3 1,028 644 328 60%
4 1,117 777 106 59%
5 1,053 552 395 63%
6 1,147 665 188 62%

Table 5.6: Match results vs. 'standard' at various depths.

This result has to be interpreted with the caveat that the superiority is only shown

under the particular conditions of this experiment. The program evaluated positions

using material alone, and the optimum material values might be different if positional

62

Learning Chess Evaluation Coefficients

terms are included in the evaluation. (In Chapter 7 we consider learning larger weight
sets, including some positional terms, and find that the material weights learnt in this

context are similar.)

Further evidence of ply-parity effects can been seen in the number of drawn games
shown in Table 5.6. Matches that used even depths of search tended to produce fewer
drawn games than those conducted using odd search depths.

5.5 Learning Without Search

Given that learning from a depth I search produces adequate results, this begs the

question as to whether search is needed at all. In order to demonstrate that some level

of search is required for successful learning, we conducted experiments whereby the

program attempted to learn from games played with no search at all, and with the

moves chosen entirely at random. These runs failed to learn any useful values, even
after 10,000 games. Given that there was no feedback of any kind from the piece
weights into the move selection, this result is not surprising. Figure 5.6 presents the

weight traces from one such run.

6

5

4

3

Pawn

Bishop

Queen

Knight

Rook

0 2000 4000 6000 8000 10000
Games

Figure 5.6: Failure to learn from entirely random play.

Beal and Smith (1994) observe that random play is very different from random

evaluations, and demonstrate the counter intuitive result that a deep minimax search

on random evaluations produces play vastly superior to the random selection of

moves. A lightly edited version of this paper is contained in Appendix E.

63

Learning Chess Evaluation Coefficients

We also investigated search regimes that invested less computational effort than the
depth I plus quiescence search described above, namely a quiescence-only search and
one that used I ply search without quiescence. Both the quiescence-only and I-ply-

no-quiescence runs learnt much more slowly and erratically than depth 1 plus
quiescence, and had not approached stable values by the end of the runs. We interpret

these results as being due to the quality of play being too poor to inforrn the leaming.
When an advantage was obtained by one side, the subsequent play was not good
enough to consistently convert that advantage into a win. Inspection of a few sample
games lent support to this interpretation.

5.6 Discussion

The experiments presented in this Chapter demonstrated the use of temporal
differences to learn relative piece values that are at least as good (under our test

conditions) as the widely-quoted values in elementary text books. These values were

successfully leamt without any domain-specific knowledge being supplied.

The same method could be applied directly to many other two-person, perfect
information games, e. g. checkers and Chinese chess. Chapter 6 describes the

application of these methods to the game shogi. As well as learning piece values, the

same method could be used to optimise weights for other evaluation function terms,

such as mobility, centre control etc. This topic is addressed in Chapter 7.

64

Leaming in Shogi

LEARNING IN SHOGI

The previous Chapter presented results from the application of Temporal Difference
leaming in the chess domain. To widen our testing beyond chess alone, we also
investigated shogi - another complex game that has some similarities to chess, but

also major differences that make it harder to create programs that play it. This
Chapter reports on experiments to determine whether sensible values for shogi pieces
can be obtained in the same manner as for chess pieces. As was the case with the
chess experiments presented in Chapter 5, the leaming is obtained entirely from

randomised self-play, without access to any form of expert knowledge. The piece
values are used in a simple search program that chooses shogi moves from a shallow
lookahead, using pieces values to evaluate the leaves, with a random tie-break at the
top level. Temporal difference learning is used to adjust the piece values over the

course of a series of games. The resulting leamt piece values were tested in matches
against hand-crafted values, including a set of values used by the 1997 World
Computer Shogi Champion.

6.1 Shogi: One Step Beyond

Shogi is a traditional Japanese board game, and considered by many researchers to be

the next challenge beyond chess for computer game-playing (Matsubara, lida and
Grimbergen, 1996). In Japan the game has a very high profile, with top shogi

professionals being regarded as national celebrities. Shogi belongs to the same family

of games as western chess and Chinese-chess (Xiangqi), the most noticeable
differences being that in shogi captured pieces are not eliminated from the game, but

kept in hand by the capturing player, and may later be returned (dropped) on almost

any vacant square. A further significant difference from western chess is that all

pieces apart from the king and gold are eligible for promotion once they reach the

promotion zone (the last three ranks of the board). Pawns, lances, knights and silvers

may all promote to golds upon entering the promotion zone, whereas rooks and
bishops promote to more powerful pieces. An introduction to the rules of shogi and

some elementary strategic advice is given by Fairbaim (1989)

The re-introduction of captured pieces in shogi means that there is no loss of material

as the game progresses. This makes the division of the game into stages (e. g.

opening, middlegame and endgame) less feasible, and also means that it is extremely

rare for a game not to end with a win for one side. The introduction of piece drops

65

Learning in Shogi

also causes the game tree to have a much larger branching factor than chess, making
the game much less amenable to full-width searching techniques.

The final frontier for computer game playing programs is likely to be Go (also known

as Wei chi in Chinese and Badduk in Korean). With its average branching factor in

excess of 200, and games typically taking over 200 moves for completion, the size of
its search space is significantly greater than either chess or shogi. But what makes Go

such a challenge is the lack of a natural evaluation function, such as material. Despite

considerable effort in the field (Miiller 1999), the best Go playing program has only

reached the strength of a weak human amateur.

6.2 The Relative Value of Shogi Pieces

Sensible values for chess pieces are fairly widely known. However, the choice of

suitable values for shogi pieces is a problem for game programmers, because shogi

experts prefer not to allocate values to the pieces. Unlike the situation in chess, there
is no generally-agreed standardised set of values for shogi pieces that is given as

advice for beginners. Hence shogi programmers have more need for machine
learning to generate material values for use in evaluation functions.

Note that in Shogi, unlike chess, the value of a piece is not the same as the change in

the material balance when a piece is captured. For example, when capturing an

opponent's promoted rook the change in material balance needs to take into account
both the loss of the promoted rook to the opponent, and also the gaining of a rook in

hand for the capturing side. The adjustable weight associated with rooks represents

the value of a rook, and does not represent the effect of a rook capture, which would

change the material balance by twice that value.

The focus of this work is on learning from self-play alone, with no knowledge input.

This is of greater potential value for problems where existing expertise is not

available, or where the computer program may be able to go beyond the level of

existing knowledge.

The experiments presented in this Chapter were designed to discover whether the

same TD technique that had performed well in the chess domain would perform as

satisfactorily in the more demanding domain of shogi, and whether it would yield

sensible values for shogi pieces.

66

Leaming in Shogi

6.3 The Shogi-Playing Search Engine

The shogi experiments used a search engine derived from the chess platform
described in Chapter 4. This included a fixed-depth, iteratively-deepened full-width

search, with a captures-and-promotions-only quiescence search at the full-width
leaves. To prevent undue search effort being expended in the quiescence search, it

was limited to a depth of eight plies. (We performed some test runs with an unlimited
quiescence search, and obtained essentially identical results, but at much greater
computational cost.) As in the chess engine described in Chapter 4, null-move
pruning was used in the main search to reduce the size of the search tree, and the

search was once again made more efficient by the use of a transposition table. A

similar evaluation function to that used in the basic chess experiments described in

Chapter 5 was used, and consisted of the material score only. To ensure variations in

the games the move choice at the root was made randomly from the best of the

materially-equal moves.

The thirteen piece values being learnt (seven main piece types and six promoted
types) were used by the evaluation function. The material balance for a position was

calculated as the sum of all the values of the side to move's pieces (including pieces
in hand), minus the sum of all the values of the opponent's pieces. It would be

possible to learn separate values for pieces on the board and those in hand, and further

discrimination would be possible depending on the quantity of each piece type held in

hand. In order to simplify the experiments a single value was used for each piece type

both on the board and in hand.

6.4 Applying Temporal Difference Learning to Shogi

The experiments were designed to test the TD methods described in Chapter 3 to the

task of learning suitable piece values for a shogi-playing program. Many leaming

runs were performed to explore the behaviour of the TD(X) method using a variety of

search depths. Suitable values for the leaming rate, and values for X, were determined

by some preliminary test runs. All games were played using the shogi engine

described in section 6.3, with a main search varying in depth between one and four

plies. To prevent the same games from being repeated, the move lists were

randomised, resulting in a random choice being made from all tactically equal moves.

This has the added benefit of ensuring a wide range of different types of position are

encountered.

67

Learning in Shogi

During each game a record was kept of the value returned by the search after each

move, and the corresponding principal position. These values are converted into

prediction probabilities by the squashing function given in equation (3.4), and then

equations (3.1) and (5.1) are used to determine adjustments to the weights at the end
of each game.

Once again the experiments learn values for the pieces entirely from randomised self-
play. This method has the advantage that it requires no play against well informed

opponents, nor is there any need for games played by experts to be supplied. The

piece weights are learnt 'from scratch', and do not need to initialised to sensible
values. The only shogi-specific knowledge provided is the rules of the game. Whilst

each learning run consists of several thousand games, this represents a relatively short

amount of machine time, and the entire run can be completed without any external
interaction.

In the experiments reported here we used a value for X of 0.95, and a variable value of
a that decreased during each learning run, from 0.05 to 0.002. At the start of each run

all weights were initialised to 1, so that no game-specific knowledge was being

provided via the initial weights.

6.5 Results from Learning

We present results from five separate learning runs of 6,000 games each. The learning

runs were identical except that a different random number seed was used in each one,

ensuring that completely different games were played in each. We shall refer to these

learning runs as Run A through Run E

68

Learning in Shogi

6.5.1 Weight traces

8

7

Figure 6.1: Typical weight traces (main pieces).

Rook

Bishop

Silver
Gold

Knight

Lance

Pawn

Figure 6.1 shows the weight traces for un-promoted pieces for a typical learning run
(Run Q of 6,000 games. A decaying learning rate was used for the first half of the

run, decreasing from 0.05 to 0.002. Once the learning rate reached 0.002, it remained
constant for the remainder of the run. Very similar results were achieved using a
fixed learning rate of 0.002, but the runs required more games to achieve stable

values.

From Figure 6.1 we can see that the relative ordering of the main pieces has been

decided after about 4,000 games, and that pieces remain in that relative order for the

remainder of the run. During the last 2,000 games there is still considerable drift in

the values. Some random drift is to be expected as a result of the random component

included in the move choice. We averaged the values over the last 2,000 games in

order to obtain values for testing against other weight sets.

69

0 2000 4000 Games 6000

Learning in Shogi

Rook

Bishop

0
0 2000

Pawn

Knight

Silver
Lance

4000 Games 6000

Figure 6.2: Typical weight traces (promoted pieces).

Figure 6.2 shows the weight traces for promoted pieces from Run C. Comparing
Figures 6.1 and 6.2 we can see that the promoted piece traces appear more stable than
the main piece traces. This is because adjustments to the promoted piece types occur
less frequently during the course of a game. Indeed, some games may not contain a
single instance of a given promoted piece type. There is no trace for gold, because

they do not promote.

6.5.2 Main piece values

Figure 6.3 shows relative values for the seven main piece types, from each of the five

leaming runs. To avoid fluctuations in the weights due to noise from the stochastic

nature of the game-playing process, these values represent the average over the last

2,000 games in each of the five runs.

It is the relative values of the pieces that governs move selection, not the absolute

values. Normalising the values so that rook=5 enables us to readily compare the

values from the five runs'.

In chess, one often refers to the values of pieces in terms of pawns, e. g. "A knight is worth three 4ý
pawns". In shogi, there is no such commonly used metric. However, in certain rare situations
(Fairbairn 1989) the rules of shogi state that rooks are to be scored as five points each, and all other
pieces as one point each. We chose the five-point rook score as our reference value for normalising.

70

Learning in Shogi

6

5

4

3

Figure 6.3: Normalised learnt values for 5 runs (main pieces).

From Figure 6.3 we can see that each of the five runs has learrit the same ordering of
the pieces (pawn, lance, knight, silver, gold, bishop, rook). In addition, the relative
magnitude of the learrit values is fairly consistent across the five runs.

6.5.3 Promoted piece values

Figure 6.4 shows the normallsed relative values for the six promoted piece types
(golds do not promote). The values for promoted bishops and rooks are substantially
more that for their un-promoted counterparts.

When promoted, pawns, lances, knights and silvers all promote to piece types that

move in exactly the same way as a gold. Despite this it can be seen from Figure 5 that

the learrit values for these promoted types differ considerably. This might be due to in

part to low numbers of promotions in the games, which leads to higher run-to-run

variance and to end-of-run values which are not yet settled.

In particular, the value learnt for promoted pawns is consistently greater than those
learnt for promoted lances, knights, or silvers. This is probably partly because the act

of promoting a pawn has the additional benefit of making all empty squares in that
file available for the subsequent dropping of a pawn in hand. (The rules of shogi

prohibit dropping a pawn into a file that already contains a friendly un-promoted

pawn.)

Another issue that might affect values of promoted pieces is the value to the opponent
if they are captured. For example, a promoted pawn gives the opponent only a lowly

pawn in hand, whereas a captured promoted silver gives the opponent a silver in hand.

71

Pam Lance Knight Silver Gold Bishop Rook

Learning in Shogi

Thus the promoted pawn is more expendable than a promoted silver, even though
their capabilities on the board are the same.

9

8

7

6

5

4

3

Figure 6.4: Normalised learnt values for 5 runs (promoted pieces).

6.6 Testing Learnt Values in Match Play

To test the effectiveness of the leamt values in our domain, a number of matches were

played between identical search engines using various different piece values. The

search engines were the same as those used for the learning experiments, but the piece

weights were fixed to a given set of piece values and were not adjusted during the

match.

Each match consisted of 2,000 games, alternating Black and White (Sente and Gote).

Games that ended in mate were scored as I point for the winning side. Games that

were unfinished after 600 ply (300 moves each) were scored as 1/2point for each side.

We ran two set of matches. The first was effectively a mini-tournament to compare

the average values from all five learning runs wIth values obtained from other

sources. The second set compared each of the five sets of leamt values with the best

of the values from other sources.

Since there is no general ly- agreed set of values in shogi for comparison, the shogi

leamt value set was tested in match play against three other value sets: Beginner;

Gnu-derived; and YSS. The values used in each of these sets are presented in table

form in Appendix C.

72

Pawn Lance Knight Silver Gold Bishop Rook

Learning in Shogi

The Beginner piece values were decided by a shogi beginner (but experienced game
programmer), guided by advice from Leggett (1966).

The Gnu-derived piece values were derived from those used by the widely available
program Gnu Shogi (Mutz 1994). This program uses four different sets of piece
values, depending on the stage of the game, as determined by various heuristics. In

order to achieve a direct and straightforward comparison with other value sets we
chose to ignore these game stages. Whilst it might have been possible for us to devise

a weighted combination of the four sets, for the sake of simplicity we chose to define

the Gnu-derived values simply as their average.

The YSS piece values are those published on the WWW by the author of YSS 7.0,

winner of the 7h World Computer Shogi Championship (Yamashita 1997).

The evaluation functions of Gnu Shogi and YSS also contain more sophisticated
positional terms, e. g. king safety. In both programs, piece values are fundamental and
typically the largest component of the overall evaluation score for a position.
(Positional factors can also reward material possession indirectly. We ignored this

secondary effect for these value sets.) It is possible that optimum material values for

a search using positional terms are different from those for a material-only search.
However, we found in experiments in chess not yet published that the material values
leamt in conjunction with positional scores for piece-square combinations were

similar to those learned for material-only. We believe the optimum values for a

program using sophisticated positional scores in addition to the material scores would
be fairly close to our learnt values. The aim of the matches was primarily to
demonstrate the adequacy of the method, rather than claim superiority of our values in

all contexts.

The Leamt piece values are the average of the values presented in Figures 6.3 and 6.4.

73

Learning in Shogi

6

5

4

3

2

1

0

9

8

7

6

5

4

3

Pawn Lance Knight Silver Gold Bishop Rook

Figure 6.6: Values sets tested in match play (promoted pieces).

Figures 6.5 and 6.6 show the pieces values used in the matches, again normalised to
rook=5.

Side I Side 2 Games Win Loss Draw %
Learnt vs. Beginner 2,000 1,206 718 76 62%
Learnt vs. Gnu 2,000 1,170 766 64 60%
Learnt vs. YSS 2,000 1,071 871 58 55%
YSS vs. Beginner 2,000 1,113 835 52 57%
YSS vs. Gnu 2,000 1,146 784 70 59%
Gnu vs. Beginner 2,000 1,018 911 71 53%

Table 6.1: Shogi match results.

Table 6.1 gives details of the matches played in the mini-toumament, and Table 6.2

shows the cross-table of results. The Learnt values performed better than any of the

other value sets under our test conditions, scoring 55%, 60% and 62% against the
YSS, Gnu-derived, and Beginner value sets respectively.

74

Pawn Lance Knight Silver Gold Bishop Rook

Figure 6.5: Value sets tested in match play (main pieces).

Learning in Shogi

Learnt YSS Gnu Beginner
Learnt x 55% 60% 62%
YSS 45% x 59% 57%
Gnu 40% 41% x 53%
Beginner 38% 43% 47% x

Table 6.2: Mini-toumament cross-table.

The Learnt values were the average of the five learning runs. To verify that each of
the individual learning runs learnt reasonable weights, each was pitted in a match
against the YSS values, which performed the best of the three non-leamt sets. Table
6.3 shows the results from these matches, and shows that each of the five learning

runs produced values that beat the YSS values under out test conditions.

Games Win Loss Draw Percent
Run A 2,000 1,062 871 67 55%
Run B 2,000 1,044 888 68 54%
Run C 2,000 1,009 915 76 52%
Run D 2,000 1,070 852 78 55%
Run E 2,000 1,004 925 71 52%

Table 6.3: Individual learning run match results against YSS values.

The shogi piece values were learnt from self-play without any domain-specific
knowledge being supplied. Although shogi experts are traditionally reluctant to

assign values to the pieces, we believe that our learnt values would be recognised by
human experts as reasonable for use in a shogi program.

6.7 Variation of Learnt Values with Search Depth

Figure 6.7 shows the average piece values learnt at each of the four depths,

normalised so that rook=5. The standard deviation from the five different random

seeds is shown as a vertical line embedded in the top of each bar. This Figure shows
that the values learnt for the main piece types are fairly consistent across search
depths, with the relative ordering of the pieces being the same in every case. The raw

results used to construct this Figure are given in Appendix C.

75

Leaming in Shogi

6

5

4

3

M Depth I E] Depth 2 IM Depth 30 Depth 4

Pawn Lance Knight Silver Gold Bishop Rook

Figure 6.7: Main piece values learnt at depths 1-4, normalised to rook=5.

The search depths used for leaming runs refer to the main search prior to the
quiescence search. Thus 'depth V means I ply of main search followed by the
quiescence search. The results show that the values are fairly consistent over search
depths from depth I upwards.

10
9 E] Depth 1 Depth 2 E] Depth 3 [3 Depth 4
8 ýE
7

6-
Unprornoted rook value 5..................

4-

3

2

0
Pawn Lance Knight Silver Bishop Rook

Figure 6.8: Promoted piece values learnt at depths 1-4, normalised to rook=5.

6.7.1 Scaling variation with depth

Table 6.4 gives the average piece values (before normalisation) for each of the four

depths, for both the main and promoted piece types. Golds never promote, and so
have no entry in the promoted section. Comparing the depth 2 values with those from

depth 4, it can be seen that the absolute values obtained using better quality of play

76

Learning in Shogi

(depth 4) are greater than from the lesser depth2 . The same scaling variation with
depth can be seen when comparing depths I and 3. Note that although the absolute

values differ from depth 2 to depth 4, the relative values (which determine move

choice) are very similar, as can be seen in Figure 6.7.

Pawn Lance Knight Silver Gold Bishop Rook
Main Depth 1 0.08 0.17 0.21 0.34 0.38 0.47 0.60

Depth 2 0.12 0.29 0.30 0.48 0.57 0.72 0.94
Depth 3 0.13 0.28 0.33 0.64 0.77 0.92 1.25
Depth 4 0.13 0.29 0.34 0.57 0.67 0.82 1.09

Promoted Depth 1 0.22 0.12 0.14 0.24 - 0.94 1.08
Depth 2 0.73 0.52 0.55 0.65 - 1.32 1.66
Depth 3 0.70 0.32 0.50 0.23 - 1.68 2.02
Depth 4 0.71 0.60 0.69 0.77 - 1.35 1.66

Table 6.4: Average piece values (before normalisation).

The fact that the relative values vary little with an increase in search depth is

encouraging for the use of this method by competitive shogi programs, which
typically operate with a search depth greater than four plies. The computational cost

of such searches makes learning runs of thousands of games at those depths

infeasible, but these experiments show that shallower searches may well be able to

produce results that are useful at deeper depths. It appears that some of the promoted

piece values have not yet stabilised. For example, one would expect the value of a

promoted pawn to be greater than that of a gold. Although they move in an identical

manner, when a promoted pawn is captured the opponent gains in hand a less valuable

piece than when a gold is captured. From Table I it can be seen that whilst this is the

case at depths 2 and 4, it is not the case at depths I and 3. A likely explanation is that

promoted pieces appear on the board much less frequently than the main piece types

and captures involving promoted pieces occur with a much lower frequency than

those involving the main pieces (it is the material imbalances resulting from captures

that drive the learning process). Comparisons such as the example above (the choice

of capturing promoted pawn or gold) do not occur sufficiently often in runs of 6000

games for the learning process to come to an informed decision. It is precisely

because such positions occur so infrequently that the slight inconsistencies in values

of promoted have only a minor effect on the match results presented below, in which

the values of the main piece types play a dominant role.

2 We do not compare values from odd and even depths as it is well known that search evaluations oscillate with

odd and even depths and this effect interacts with the scaling variation.

77

Leaming in Shogi

6.7.2 Match results at various depths

The value sets Beginner, Gnu and YSS and the format of the matches were as
described in section 6.6.

The matches were conducted using a fixed search depth equal to that used to
determine the learnt values (i. e. the depth 4 matches used the values learnt at depth 4
in conjunction with a search depth of 4-ply plus quiescence for both sides).

YSS Gnu Beginner
Depth 1 51% 52% 55%
Depth 2 54% 59% 62%
Depth 3 58% 64% 76%
Depth 4 55% 60% 66%

Table 6.5: Match results from depths 1-4

The results of the matches played are given in Table 6.5. Full details of the matches
can be found in Appendix C. The leamt values from depths 1-4 consistently
perfon-ned better than any of the other value sets under our test conditions, scoring
51%, 54% and 58% and 55% against the YSS value set, which was the best of the
opponent value sets. The YSS and Gnu value sets were selected by their authors for

use in their particular programs, yet are being tested in the context of our search
regime. Thus these results indicate the adequacy of the leamt values, rather than
superiority over the other values under all conditions.

6.8 Learning Without Search

Shogi is a game domain, like chess, for which it appears that a significant amount of
computational effort must be invested in tactical search in order to achieve high levels

of play (Rollason 1999). Despite the fact that deep searches are required for highly-

skilled play, our experiments show that relatively shallow searches, even as shallow
as one-ply full-width plus quiescence, are sufficient for learning good material values.
As in the chess domain, this invites the question as to whether or not search is

required at all for successful learning, the implication being that if search is not

required, the computational cost of the learning sequences would be greatly reduced.

In Chapter 5.5 we showed that in the chess domain there was a minimum level of

search (in that case one-ply plus quiescence) that was required for effective leaming.

Similar experiments were conducted in shogi. We performed leaming runs that used

no search at all, a quiescence-only search, and one that used 1 ply search without

78

Learning in Shogi

quiescence. As with chess, we found that random move selection failed to produce
any sensible learning, producing weight traces similar in nature to those shown in
Figure 5.4.. The quiescence-only and I-ply-no-quiescence runs leamt slowly and
erratically, and had not approached stable values by the end of the runs. We conclude
from these experiments that for shogi, as for chess, there is a minimum quality of play
that is required to inform the learning process

6.9 Discussion

This Chapter described the application to shogi of the TD learning for minimax
searches described in Chapter 3. The shogi piece values were leamt from self-play
without any domain-specific knowledge being supplied. Although shogi experts are
traditionally reluctant to assign values to the pieces, we believe that our learnt values
would be recognised by human experts as reasonable for use in a shogi program. The

values learnt using various depths of search all performed well in matches under our
test conditions, and the consistency of the relative values across the search depths
indicates that a one-ply plus quiescence search is already sufficient to learn reasonable
values. This is encouraging for the potential application of this method to the learning

of weights for use by deep-searching, high-performance programs. It indicates that
the learning process can use much shallower, faster searches than the playing
program, and thus obtain values from large numbers of training games in a reasonable
time.

It should be noted that these experiments have learnt material values within a
material-only evaluation function. We would expect the material values learnt to be

somewhat different if the evaluation function included positional scoring terms. Also,

our results were obtained using a specific set of search parameters (selectivity,

quiescence details, etc). These could influence the optimum values, although we

would expect changes to search parameters to have less effect on learnt values than

additional evaluation terms. The method could be applied to any other set of search

parameters, and other search engines. It is also applicable to learning an appropriate

weight for positional evaluation tenns, and we expect it to be useful in learning

weights for more sophisticated evaluation functions in both chess and shogi.

Significantly, the shogi experiment was in a domain where human expertise was

unable to provide the knowledge required. In such domains, computer methods that
learn from their own experiences are highly desirable. The values learnt in the shogi

79

Leaming in Shogi

experiment are already of some interest to commercial shogi programmers (Rollason

1999).

80

Leaming More Complex Weight Sets

7 LEARNING MORE COMPLEX WEIGHT SETS

In this Chapter we consider the application of our methods to more complex weight
sets, including one used by a high-performance competitive program. Chapter 5

reported results from programs that use material piece counts, plus a random tie-
breaker, to choose moves. This achieves a low level of play compared with expert
humans. (Nevertheless, as can be seen from Figure 5.3, the learrit chess values
correspond fairly well with expert human judgements.) Performance programs
typically have far more evaluation terms, incorporating a variety of positional terms,

each requiring an appropriate weight to be determined.

7.1 Weights for Piece-Square Tables

In many games the value of a piece can vary according its location on the board. In

games such as chess and shogi, control of the centre of the board is important,

whereas in games like go and othello, the comers of the board have increased value.
A standard component of typical chess programs is piece-square tables. In the piece-

square tables a separate adjustment weight can be given for each square that a piece

might be on. In order to test TD learning on larger weight-sets, we ran experiments to
learn piece-square weights.

Of the many possible 'positional' evaluation features, we chose piece-square tables as
being one of the most domain-independent. Other positional evaluation features for

chess, such as pawn structure or king-safety, are less easily applicable to other game
domains. Piece-square tables have the additional attraction of allowing the relatively

simple introduction of a large number of new weights to the learning process,

allowing us to verify that our learning methods are able to cope with significant

numbers of weights without being swamped.

Learning a full set of piece-square values results in the addition of 64 new weights for

each of knight, bishop, rook and queen, and 48 new weights for pawns (which never

occupy ranks I or 8). This increases the number of adjustable weights to be leamt

from 5 to 309.

As intermediate steps between learning a small weight set (piece values alone) and

sets as large as 309 weights (piece-square tables), we tried sets of 27 weights (pawn

ranks plus piece centrality 'rings', i. e. radial distance from the centre), and 157

81

Leaming More Complex Weight Sets

weights ('half-boards'). Half-board weight sets were created by reflecting the board

so that squares in files a-d shared a weight with the mirrored square in files e-h,
resulting in only 32 weights per piece type. TD learning produced successful weight
values for all these weight sets. As might be expected, the half-board and full-board

weight sets produced the best playing perfonnance.

7.2 Weights for Pawn Advancement and Piece Centrality

7.2.1 Weights for pawn ranks

Many games such as chess, draughts and shogi include rules allowing for the

promotion of pieces to more powerful piece types once they have advanced
sufficiently far up the board. In such games, advancing pieces eligible for promotion
towards their 'promotion zone' can be a powerful strategy. As an initial step beyond

material only learning, we learnt values rewarding (or punishing) pawn advancement
in chess. In this simple experiment we ignored files, and adjusted a single weight for

every rank it was possible for a pawn to be on (ranks 2-7). This resulted in 6 pawn-

rank weights being leamt, in addition to the 5 material weights, for a total of II

adjustable weights.

1 1

7 7 71 7 7 7 7 7

6 6 61 6 6 6 6 6 :)
5 5 51 5 5 5 5 5 5

4 4 41 4 4 41 4 4

3 3 31 3 3 31 31 3

2
,2

2 2 2 2 2 2

Figure 7.1: Indexing for the pawn weights.

Figure 7.1 shows the indexing for the pawn advancement weights, using the in the

range 2-7 (ranks I and 8 never contain pawns). As might be expected, the program

quickly leamt that advancing pawns up the board was advantageous. Of course, the

primary reason that pawn advancement is beneficial is the possibility of promotion to

a highly valued queen once the final rank is reached.

82

Leaming More Complex Weight Sets

7.2.2 Weights for piece centrality

As a simple measure of centrality, we divided the board into four 'rings' as shown in
Figure 7.2. Four separate weights representing centrality were maintained for each of
the piece types: knight, bishop, rook and queen, resulting in 16 additional weights.
This results in a total of 27 weights, (5 piece values, 6 pawn ranks, 16 piece centrality
weights),.

2 2 2 21

4

2 1,2

11

2 3 3 3 3 13 1 3 2 1 1 1

1 2 3 4 4 3 2 1

1 2 3 4 4 3 2 1

1 2 3 3 3 3 2 1

1 2 2 2 2 3 2 1

11 1 1 11 1 1 1 1

Figure 7.2: Indexing for the piece centrality weights.

We conducted 6 learning runs at search depth 4, using different random number
seeds. Each run consisted of 10,000 games. The search engine was that used for the

experiments in Chapter 5, except for inclusion of the additional terms in the

evaluation function.

Pawn Knight Bishop Rook Queen
Piece values 0.83 1.58 1.72 2.43 4.52

Pawn ranks Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7
Pawn -0.33 -0.31 -0.25 -0.17 0.25 0.63

Piece centrality Ring I Ring 2 Ring 3 Ring 4
Knight -0.17 0.15 0.21 0.40
Bishop -0.04 0.25 0.25 0.27
Rook 0.15 0.40 0.46 0.47
Queen 0.58 0.75 0.83 0.78

Table 7.1: The average weights learnt in the pawn ranks + piece centrality runs.

Table 7.1 shows the average weights learrit over the six runs. As they stand, these

raw weights are hard to compare with other weight sets, especially as one needs to

combine the weights for value of a piece and its location. One way to simplify this is

to add the piece value weights into the positional weights, resulting in a single term

It is a well known feature of chess that king centrality is detrimental in the opening and middlegame, 4D
but beneficial in the endgamc. The evaluation function used in these experiments does not distinguish
between stages of the game, and so no attempt was made to learn a weight for king centrality.

83

Learning More Complex Weight Sets

for each piece location. Table 7.2 and Figure 7.3 present such values, normalised so
that the value of a pawn on the 2nd rank equals 1.

Pawn ranks Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7
Pawn 1.00 1.06 1.17 1.33 2.18 2.96

Piece centrality Ring I Ring 2 Ring 3 Ring 4
Knight 2.86 3.51 3.62 4.01
Bishop 3.39 3.98 3.98 4.02
Rook 5.21 5.72 5.84 5.86
Queen 10.31 10.67 10.82 10.72

Table 7.2: Composite values for piece locations, normalised so that a pawn on rank 2=1.

12- -
11 - El Pawn rank
10- El Ring 1

9- Ring 2

8-
cu Ring 3

'a) 7- Ring 4
C)
. (I) 6 a-

5-

4-

3

2-

[2 ff34
567 4
F5

0 Pawn Knight Bishop Rook Queen

Figure 7.3: Composite pawn rank and piece centrality values, normalised so that a pawn on rank 2=1.

Figure 7.3 shows the composite pawn rank and piece centrality values leamt using
search depth 4. Similar results were obtained at other search depths. This Figure

shows clearly how pawn advancement is valued. A pawn on the seventh rank (one

square away from promotion) is valued at approximately three times that of a pawn on
its starting square, and more than a knight on the edge of the board. From the Figure

we also can see that pieces generally perform better when stationed in the centre of
the board. This is especially true for knights, whose mobility can be maxii-mised only

in the central two rings. It is interesting to note from Table 7.2 that a knight on one of
the four central squares is valued slightly higher than a bishop that is not in the centre

of the board.

84

Leaming More Complex Weight Sets

7.2.3 Match results

The learnt weights were tested in match play against two separate opponents, None

and Central. None consisted of the piece weights for depth 4 as presented in Chapter
5, with no additional positional terms. Central consisted of None augmented by pawn
rank and piece centrality values suggested by a computer chess expert (see Appendix
D).

Match Win Loss Draw Score
Leamt vs. None 1,847 106 29 94.0%
Learnt vs. Central 1,190 716 94 61.9%
Central vs. None 1,846 113 40 93.3%

Table 7.3: Match results using pawn rank and piece centrality values.

7.2.4 Calculating 'average' values

Comparing these results with those of Chapter 5 (e. g. Figure 5.3), we can see that
these values are very similar to those learnt in the absence of any positional terms.
One slight difference is that the values are slightly higher, e. g. a rook is worth
between 5.21 and 5.86 pawns depending on its location, compared with the value of
4.97 learnt in Chapter 5. What needs to be remembered is that the values presented
here are normalised so that a pawn on the second rank (i. e. its starting square) has a

value of one. Pawns that have advanced up the board have a higher value. In order to
directly compare the values of this section with those of Chapter 5, we would need to

select a method of normalisation so that the value of 'an average pawn' is set to 1.

Simply averaging the values for each of the pawn ranks would be unsatisfactory as

pawns only infrequently reach ranks 6 and 7.

One way to attempt such a calculation, in order to make these results more

comprehensible for human chess players, is to count how often each piece type

appears in each of its specified locations during the course of the learning and

compute an average value weighted by 'frequency of occurrence'.

85

Learning More Complex Weight Sets

Pawn ranks Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7
Pawn 40.7% 27.2% 23.6% 6.5% 1.6% 0.5%

Piece centrality Ring I Ring 2 Ring 3 Ring 4
Knight 22.6% 23.8% 36.9% 16.7%
Bishop 37.4% 30.5% 22.8% 9.3%
Rook 65.1% 15.8% 14.7% 4.4%
Queen 38.9% 31.3% 25.5% 4.3%

Table 7.4: Percentage 'frequency of occurrence' for each piece location during the learning runs.

Table 7.4 presents location counts, expressed as percentageS2, for the learning runs
described above. These values enable us to calculate a weighted average of the piece

values in Table 7.2, resulting in 'typical' values for each piece type. Figure 7.4

presents these new piece values.

11

10

9

8

7

6

5

4

3

2

1

0
Pawn Knight Bishop Rook Queen

Figure 7.4: 'Typical' piece values calculated from Tables 7.2 and 7.4.

7.4 Weights for Half-board and Full-board Sets

The half-board set of weights produced similar weight patterns to the full-board

weight-set, except for the queen weights, which were significantly asymmetric. To

illustrate typical weight values, we present here results from the half-board weight

sets. For comparison, we also show the queen weights from the full-board weight-set.

The values presented are the average of 20 different runs, each consisting of 10,000

games.

2 The percentage figures are rounded to one decimal place and might not sum to exactly 100%.

86

L-eaming More Complex Weight Sets

29J 361 311 32 321 311 30 291

251 261 271 28 281 271 26 25

211 221 231 24 24 231 22 21

171 18 1191 20 20 19 118 17

13 14 15 16 16 15 14 13

9 10 1111 12 12 11 1101 9

5 61 7
18

8 71 6
15

11121314141312111

Figure 7.5: Indexing for the half-board weights

Figures 7.6 through 7.11 give a graphical representation of the piece-square values
learnt for pawn, knight, bishop, rook and queen respectively. (The numerical details

are given in Appendix D.) The Figures are presented from White's point of view, but

the same values also apply to Black pieces, with the board inverted.

It is interesting to note that the weight sets in Figures 7.6 to 7.11 clearly represent

some elementary chess knowledge.

87

Learning More Complex Weight Sets

¬

1 :

2

i, iguttw i. u. rawit pi"c-bquaic vaiur-N kiiaii-uuzuu)

5

2

0

Figure 7.7: Knight piece-square values (half-board)

Figure 7.8: Bishop piece-square values (half-board) Figure 7.9: Rook piece-square values (half-board)

-rr

8

Figure7.10: Queen piece-square values (half-board) Figure 7.11: Queen piece-square values (full-board)

88

Leaming More Complex Weight Sets

In Figure 7.6, we see that pawn advancement is generally rewarded, with pawns on
the seventh rank receiving a significant benefit. The largest bonus is reserved for

pawns on a7 and h7, perhaps because pawns on these squares are the hardest to

prevent from queening. Of the initial pawn double-advance moves that are possible,
we see that e2-e4 and d2-d4 are the most favoured, as is the case in human play. This

reflects both the control of the centre that these moves entail, and also the resulting
increase in mobility of queen and bishop, aiding development.

Figure 7.7 shows that it is desirable to position knights in the centre of the board, with
e6 and d6 being particularly favourable. There is a chess-player's proverb "a knight

on the sixth is like a nail in the knee" that describes the effect that a knight in such a
position can have on the opponent's mobility.

Comparing Figure 7.8 with Figure 7.7, we can see that bishop centrality is desirable
but less significant than the centrality of knights. In other words, the value of a knight

varies much more with its position on the board than does the value of a bishop.

Figure 7.9 shows clearly that rooks can be considered well-placed when occupying
the central files, and even more so when advanced to the seventh rank to harass the

opponent's pawns and perhaps threaten the king. In all Figures, advancement of
pieces into the opponent's camp is rewarded, and this is particularly noticeable in the

case of rooks. Again, this information resembles advice typically given to human

beginners.

Figure 7.10 shows the half-board piece-square values for the queen. Centrality, and

advancing into the opponent's territory, are again rewarded. Comparison with the
full-board values shown in Figure 7.11 indicates that the queen scores more highly on
the opponent's king-side, with threats against P being especially important. In the
full-board runs the queen was the only piece type that demonstrated a significant

preference for one side of the board. With all other piece types, the half-board results

were very similar to those produced by the full-board runs.

Figures 7.6 to 7.11 clearly contain human-understandable chess knowledge, and as

such compare very favourably with the piece-square weights presented by Baxter,

Tridgell and Weaver (1998) (see section 3.6) which show little in the way of

recognisable chess knowledge. For example, their piece-square tables for rooks (the

only piece type for which they present learnt piece square tables) show only a heavy

penalty for rooks on their starting squares which they suggest is a way for their

program to encourage castling.

89

Leaming More Complex Weight Sets

It should be noted that piece-square tables respond to average positions of enemy

pieces. This is also true of much elementary chess knowledge. For example, the
desirability of moving rooks to the seventh rank is partly due to the opponent's pawns
tending to be positioned there, and the opponent's king being stationed on the back

rank. More complex evaluation terms that relate to enemy piece positions can be

expected to produce stronger playing programs. Such terms are beyond the scope of
this experiment, but suitable values for them could be learrit using methods presented
here.

12

11

10

9

8

7

6

5

4

3

2

1

0

Figure 7.12: Average relative piece values from half-board and full-board runs.

Figure 7.12 shows the average piece values from the half-board and full-board runs,

and includes the standard deviation over the 20 trials. From the Figure we can see

that both sets of runs learned very similar piece values (full numerical details are

provided in Appendix Q.

7.4.1 Match results using piece-square values

The leamt piece-square values were tested by playing matches against other value

sets. The match results are presented in Table 7.5.

When introducing a new term into an evaluation function used by minimax search, it

is natural to try to assess the improvement the new term makes to the performance of

the program by playing two versions of the program against each other. One side's

evaluation function includes the new term, suitably weighted, and the other side's

does not. Surprisingly, this does not necessarily reveal whether the new term is an

asset. Even if the new term is entirely random, it might still improve the perfon-nance

90

Pawn Knight Bishop Rook Queen

Leaming More Complex Weight Sets

of the program (see paper Random Evaluations in Chess in Appendix E). A better

method is to play the new program against a version with a random term that is given
the same weight as the new term. This will help to determine whether or not the new
evaluation term is measuring anything worthwhile, or is no better than noise.

With the above in mind, the learrit half-board values were pitted in a match against a
program that had random values allocated to its piece-square values. This program
we called Random. Both programs used the same piece values. The random numbers
were chosen in a range similar to those found in the leamt values, and a different

random seed was used for each game in the match. The learnt piece-square values
won the match decisively, scoring 93%.

To demonstrate its significance, Random was played against another program, again
using the same piece values, but with all piece-square values set to zero (Zero).
Random beat Zero, scoring 71 %. If the new tenns had been compared with Zero, the
apparent advantage would have been overestimated (Table 7.5 shows that Learnt

scored 97% against Zero, compared with 93% scored against Random).

The above matches demonstrate clearly that having piece-square tables is better than

not having them, but does not indicate the absolute standard reached. To help assess
whether the learnt values are better than those that might be chosen by expert humans,

we played a match pitting the learnt values against alternative values for piece
centrality and pawn-advancement (Central), suggested by a computer chess expert.
In this match the leamt values again won decisively, scoring 74%.

Match Win Loss Draw Score
Learnt vs. Random 1,848 127 25 93%
Learnt vs. Zero 1,916 53 31 97%
Random vs. Zero 1,359 517 124 71%
Learnt vs. Central 1,449 475 76 74%
I-Central vs. Central 1,167 704 129 62%
Learnt vs. LCentral 1,114 691 195 61%

Table 7.5: Match results using half-board piece-square values.

The Central piece-square set contained 6 different pawn advancement values, one for

each rank, and 4 different values for the other pieces, measuring distance from the

centre. Using the methods described above, we leamt replacement weight values for

this set, called LCentral. The LCentral set scored 62% in a match against Central,

indicating that in this simplified environment also, learnt values perform better than

our human-chosen values.

91

Leaming More Complex Weight Sets

Against the LCentral set, the learnt values scored a convincing 61 %, demonstrating

that the half-board values contain more useful chess knowledge than just pawn

advancement and piece centrality.

7.4.2 Ensuring variation in the matches

In order to ensure that each match consisted of 2,000 different games, the scores
backed-up to the first ply of search (where the move choice is made) were randomly
varied by a small amount (1/10th pawn). This ensured that a wide variety of games
were played, and helped to reduce the danger that the self-play games were restricted
to a small section of the possible game space. Other methods of variation were tried,
including starting each game with a ballot of randomly-chosen moves, and these other

methods produced similar match results to those presented above. The figure of
1/10th of a pawn was chosen arbitrarily. Other values were used and produced

similar results.

The chess experiments seem to show that it is not necessary to perform deep searches
during the learning phase in order to learn effective weights, and that the method is

capable of handling large numbers of weights.

The piece-square weights learnt performed better than the suggestions of a human

expert, which suggests TD learning is capable of outperforming human expertise,

providing that suitable evaluation terms can be identified.

7.5 Learning Weights for other Evaluation Terms

The success of our methods in learning both piece values and piece-square values

suggests that such methods may well be useful for setting the weights in high-

performance competitive programs.

Don Dailey at MIT has applied our methods to his Grandmaster strength program

01kchess (http: //supertech. 1cs -mit) which recently achieved a creditable fourth

place in the 1999 World Computer Chess Championship (ICCA Journal, vol. 22, no.

3), only 1/2 point behind the winner. He reports the successful learning of a large

number (over 200) of positional evaluation weights alongside piece values

themselves, and that the performance of his program when using these weights (which

have been leamt from scratch) compares well with its performance using carefully

hand-tuned weights, scoring approximately 61% in a match between the two

92

Learning More Complex Weight Sets

programs. It was intended to use these learnt weights during the World
Championship, but due to a programming error discovered at the last minute, it was
necessary to revert to the inferior hand-tuned weights. With Don Dailey's permission
we reproduce a piece weight trace from a learning run conducted over in excess of
3,000 games. Comparing these results with our own material-only results in Chapter
5 it can been seen that Figure 7.13 is remarkably similar to our own Figure 5.2,
indicating that the introduction of over 200 additional positional terms has not had a
severely detrimental effect upon the learning of the piece weights themselves.

500

450

400

350

300

250

200

150

100

50

Bishop
............ - I. - a

................
Knight

0
0 500 1000 1500 2000 2500 3000 3500

Figure 7.13: Piece weight traces from an experiment at MIT (reproduced with permission).

On a more general note, it is reassuring to find the weight traces produced by a
different researcher, using an entirely different search engine, bear a striking

resemblance to those we present in Chapters 5 and 8. Don Dailey's experiments were

also conducted using selfplay, and the Grandmaster strength performance of his

program Cilkchess suggests that online play against strong opponents is not required
for successful high-level learning as some have suggested (Baxter, Trigell and
Weaver 1988).

..................................
PawQ

................... ILL.. -LIN*

93

Leaming More Complex Weight Sets

7.6 Learning the 'Steepness' of the Squashing Function

A possible modification of the squashing function described in Chapter 3 allows
adjustment of the 'steepness' of the sigmoid. In this section we describe a small
experiment to investigate how useful this might be. The sigmoid squashing function
(3.4) can easily be modified to include an additional parameter:

S(V) =1
1+ e-cov

where co controls the 'steepness' of the sigmoid.

Figure 7.14 shows the effect that varying this steepness parameter has on the

conversion of evaluation scores into prediction probabilities.

1

0.9

0.8

0.7

c 0.6

0.5

0- 0.4

0.3

0.2

0.1

0

-10 -8 -6 -4 -2 02468

v (value of position)

Figure 7.14: Various values of steepness and the resulting predictions.

The experiments of the preceding Chapters effectively used a steepness of 1, as the

parameter co was not used. Table 7.6 shows how the conversion of evaluation score v
(using example values from Table 5.1) into predictions vary according to the value of

the steepness parameter Co.

10

94

Learning More Complex Weight Sets

Advantage v 0) = 0.1 0) = 0.5 0) =I o) =2 0)= 10
I Pawn 0.60 0.515 0.574 0.646 0.769 0.998
2 Pawns 1.20 0.530 0.646 0.769 0.917 1.000
I Knight 1.66 0.541 0.696 0.840 0.965 1.000
I Bishop 2.02 0.550 0.733 0.883 0.983 1.000
I Rook 2.75 0.568 0.798 0.940 0.996 1.000
I Queen 6.61 0.659 0.965 0.999 1.000 1.000

Table 7.6: Examples of material advantages (from Run A in Table 5.1) and
their corresponding predictions using various steepness values.

The introduction of a steepness parameter has the effect of scaling the absolute values
of the pieces, but should have little effect on the normalised final values. We

experimented with allowing this parameter to be leamt along with the piece weights,
but found that the final normalised piece values were very similar. Figure 7.15 shows
the trace of the steepness parameter over two runs, A and B. Both runs were
conducted using the same random seeds, but in A the steepness parameter was
initialised to I and in B it was initialised to 0.5

U)

Cl)

1 Started at 1.0

Started at 0.5

/

0.5

0 1000 2000 3000 Games 4000
0

Figure 7.15: Steepness traces converging from different starting points.

From the Figure we can see that the first few hundred games played were very
different, but that once the steepness values have almost converged, and

correspondingly so have the piece values, then the games played were identical. This

of course is to be expected once the relative piece values are the same, given that both

runs used identical random number seeds. This experiment suggests that the selection

of the steepness parameter is not an important factor in the learning runs, and that

steepness : P, -- I is equivalent to scaling the weights.

95

Temporal Coherence and Prediction Decay

TEMPORAL COHERENCE AND
PRIMICTION DECAY

This Chapter presents the most important contribution of this thesis. We describe an
extension of the temporal difference leaming method, designed to greatly improve the

efficiency of the leaming by reducing the number of trials required. The standard
form of the TD(?,) method as described in Chapter 3 has the problem that two control

parameters, leaming rate and temporal discount, need to be chosen appropriately.
These parameters can have a major effect on perfon-nance, particularly the leaming

rate, which affects the stability of the process as well as the number of observations
required. Our novel extension to the TD(k) algorithm automatically sets and

subsequently adjusts these parameters. Most of this section was published (Beal and
Smith 1999b) in the Proceedings of the Sixteenth International Joint Conference on
Artificial Intelligence (IJCAI-99).

It is our aim in introducing these new methods to significantly speed up the leaming

process. The main performance advantage comes from the learning rate adjustment

which is based on a new concept that we call Temporal Coherence (TC). The

experiments reported in this Chapter compare the TC algorithm performance with
human-chosen parameters and with an earlier method for learning rate adjustment, in

both a simple random-walk state-learning task and in the complex game domain of
Chapter 5. In both task domains the learning occurred without any initial domain-

specific knowledge. The results show that in both domains our method leads to better

learning (faster and less subject to the effects of noise) than the selection of human-

chosen values for the control parameters and the comparison method.

8.1 Control Parameters for TD(k)

Two major parameters that control the behaviour of the TD(, X) algorithm are the

learning rate (or step-size), a, and the temporal discount parameter, A (see equation

3.1 in Chapter 3).

The choice of these parameters can have a major effect on the efficacy of the leaming

algorithm. Selection of the leaming rate parameter a is particularly hard to get right.

It needs to be as high as possible for rapid leaming, but high rates lead to high levels

of erratic movements, even after optimum values may have been reached. In effect,

96

Temporal Coherence and Prediction Decay

high learning rates lead to high levels of noise in the weight movements, and this
means that the process does not produce stable values.

On the other hand, learning rates that are too low can lead to orders of magnitude
more observations being required to reach optimum weight values. Experience with
the TD(k) method in practice has shown that very different values of a are required in
different domains, as shown by the different rates used in, for example, Sutton (1988,
1992).

In practical problems, the control parameters are often determined somewhat
arbitrarily or else by trying a number of values and 'seeing what works' (e. g. Tesauro
1992). This was the method we used for the experiments of Chapter 5. Another

widely used method is to use a leaming rate that decreases over time. This was the
method we used in Chapter 6, in an attempt to reduce the computational cost of our
experiments in shogi. However, such systems still require the selection of a suitable
schedule, and in Chapter 6 we found it necessary to try a number of different

schedules and choose the one that seemed to work best in that particular domain.

Sutton and Singh (1994) describe systems for setting both a and X, within the
framework of Markov-chain models. These methods assume relatively small
numbers of distinct states, and acylic graphs, and so are not directly applicable to

more complex real-world problems. Jacobs (1988) presented the 'delta-bar-delta'

algorithm for adjusting (x during the learning process. We compared the performance
of delta-bar-delta with our algorithm on two sample domains. More recently,
Almeida et al. (1998) and Schraudolph (1998) have presented other methods for (X

adaptation in stochastic domains and neural networks respectively.

We describe a new system which adjusts a and X automatically. This system does not

require a priori knowledge about suitable values for learning rate or temporal
discount parameters for a given domain. It adjusts the learning rate and temporal
discount parameters according to the leaming experiences themselves. We present

results to show that this method is effective. In our sample domains the new methods

yielded better learning performance than our best attempt to find optimum choices of
fixed a and X, and better learning performance than delta-bar-delta.

97

Temporal Coherence and Prediction Decay

8.2 Temporal Coherence: Adjustments to Learning Rates

Our system of self-adjusting learning rates is based on the concept that the learning

rate should be higher when significant learning is taking place, and lower when
changes to the weights are primarily due to noise. Random noise will tend to produce
adjustments that cancel out as they accumulate. Adjustments making useful
adaptations to the observed predictions will tend to reinforce as they accumulate. As

weight values approach their optimum, prediction errors will become mainly random
noise.

Motivated by these considerations, our Temporal Coherence (TC) method estimates
the significance of the weight movements by the relative strength of reinforcing
adjustments to total adjustments. The learning rate is set according to the proportion
of reinforcing adjustments as a fraction of all adjustments. This method has the
desirable property that the leaming rate reduces as optimum values are approached,
tending towards zero at optimum values. It has the equally desirable property of
allowing the learning rate to increase if random adjustments are subsequently
followed by a consistent trend.

Separate learning rates are maintained for each weight, so that weights that have
become close to optimum do not fluctuate unnecessarily and thereby add to the noise
affecting predictions. The use of a separate learning rate for each weight allows for

the possibility that different weights might become stable at different times during the
learning process. For example, if weight A has become fairly stable after 100

updates, but weight B is still consistently rising, then it is desirable for the learning

rate for weight B to be higher than that for weight A. An additional potential

advantage of separate learning rates is that individual weights can be independent

when new weights are added to the learning process. If new terms or nodes are added
to an existing predictor, independent rates make it possible for the new weights to

adjust quickly, whilst existing weights only increase their learning rates in response to

perceived need.

The TC learning rates are determined by the history of recommended changes to each

weight. We use the term 'recommended change' to mean the temporal difference

adjustment prior to multiplication by the leaming rate. This detachment of the

learning rate enables the TC algorithm to respond to the underlying adjustment
impulses, unaffected by its own recent choice of leaming rate. It has the additional

advantage that if the learning rate should reach zero, future learning rates are still free

to be non-zero, and the leaming does not halt.

98

Temporal Coherence and Prediction Decay

The recommended change for weight wi at timestep t is defined as:

t

rt =(P -P -kVwip
i, t+j f

)IV
k

k=l

The actual change made to weight wi after each game is:

end-I
Awi =c ai Y. ri, (8.2)

t=l

where cý- is the individual learning rate for weight wi, and c is the learning rate for the

whole process

For each weight we are interested in two numbers: the accumulated net change (the

sum of the individual recommended changes); and the accumulated absolute change
(the sum of the absolute individual recommended changes). The ratio of net change,
N, to absolute change, A, allows us to measure whether the adjustments to a given
weight are mainly in the same 'direction'. We take reinforcing adjustments as
indicating an underlying trend, and cancelling adjustments as indicating noise from

the stochastic nature of the domain (or limitations of the domain model that contains
the weights). The individual leaming rate, oý for each weight wi, is set to be the ratio

of net recommended change to absolute recommended change:

ai =
IN, 1

(8.3)
Ai

with the following definitions and update rules:

end-I

Ni <- Ni + lri,, (8.4)
t=l

end-I

Ai <- Ai + Y, Iri', 1 (8.5)
1=1

rij = recommended change for weight wi at prediction t

PI. -Pend-I are predictions, Pend is the final outcome

The operational order is that changes to wi are made first, using the previous values of
Ni, Ai and ai ; then Ni, Ai and oý are updated. The parameter c has to be chosen, but

this does not demand a choice between fast learning and eventual stability, since it

99

Temporal Coherence and Prediction Decay

can be set high initially, and the oý- then provide automatic adjustment during the
learning process. All the oý- are initialised to I at the start of the learning process.

The foregoing formulae describe updating the weights and learning rates at the end of
each sequence. The method can be amended easily to update more frequently (e. g.
after each prediction), or less frequently (e. g. after a batch of sequences). For the

experiments reported in this Chapter, update at the end of each sequence is natural
and convenient to implement.

8.3 Prediction Decay: Determining X

We determine a value for the temporal discount parameter, A, by computing a
quantity V we call prediction decay. Prediction decay is a function of observed

prediction values, indexed by temporal distance between them, and described in more
detail in section 8.3.1. An exponential curve is fitted to the observed data, and the

exponential constant, Vf, from the fitted curve is the prediction decay. We set A =1
initially and A= Vthereafter.

The use of A--- V/ has the desirable characteristics that (i) a perfect predictor will result
in V--I, and TD(l) is an appropriate value for the limiting case as predictions

approach perfection, and (ii) as the prediction reliability increases, V increases, and it

is reasonable to choose higher values of A for TD learning as the prediction

reliability improves. We make no claim that setting /1--V/ is optimum'. Our

experience is that typically it performs better than human-guessed choices of fixed A

a priori.

The advantage of using prediction decay is that it enables TD learning to be applied

effectively to domains without prior domain knowledge, and without prior

experiments to determine an optimum A. When combined with our method for

adjusting learning rates, the resulting algorithm performs better than the comparison

method, and better than using fixed rates, in both test domains.

8.3.1 Setting the temporal discount parameter using prediction decay

Prediction decay is the average deterioration in prediction quality per timestep. A

prediction quality function measures the correspondence between a prediction and a

By expending sufficient computation time to repeatedly re-run the experiments we were able to find
somewhat better values for A.

100

Temporal Coherence and Prediction Decay

later prediction (or end-of-sequence outcome). The observed prediction qualities for

each temporal distance are averaged. An exponential curve is then fitted to the

average prediction qualities against distance (Figure 8.1 shows an example), and the

exponential constant of that fitted curve is the prediction decay, V/. We set the TD
discount parameter A to 1 initially, and A= V/ thereafter. In the experiments reported, V/
(and hence A) were updated at the end of each sequence.

The prediction quality measure, Qd(P, PI we used is defined below. It is constructed
as a piece-wise linear function with the following properties:

(a) When the two predictions p and p ". are identical, Qd ý-- 1. (The maximum Qd IS 1 -)

(b) As the discrepancy between p and p*increases, Qd decreases.

(c) When one prediction is land the other is 0, then Qd::: -I. (The minimum QdiS -1.)

(d) For any given p, the average value Of Qd for all possible values of p'. such that 0

:! ý p "! ý 1, equals 0. (Thus random guessing yields a score of zero.) This property
is achieved by the quadratic equations in the definition below.

We achieve these properties by defining:

Q (p, P')
p >. 5

dýp<. 5

P<S

F(p, p')

p>s

where:

r=lp - p'l

(p, p') (8.6)
F(I - p, l - p')

I

r: 9 x: 1-rlx Ir>x

: -p(r-x)I(p - x)l'

(8.7)
r: 9 y 1-rly

r>y -p(r-y)I(p-y)1

s= solution of 2s 2
-5s+1=0

x= solutionof 2(1+P)x2-4px+p=0

y= solutionof (1+p)y'+(2-2p-p 2)y_(j_Pý=0

p is the current prediction, p "is an earlier prediction, and d refers to the temporal

distance between p and p' Predictions lie in the range [0,1].

101

Temporal Coherence and Prediction Decay

It is assumed that learning occurs over the course of many multi-step sequences, in

which a prediction is made at each step; and that the sequences are independent. To
form a prediction pair, both predictions must lie within the same sequence.

Qd is the average prediction quality over all prediction pairs separated by distance d

observed so far. For this purpose, the terminal outcome at the end of the sequence is

treated as a prediction. At every prediction, values of Qd are incrementally updated.

An example graph from our experimental results is given in Figure 8.1. This example
is typical of the fit to the observed data in the game domain. The exponential curve is
fitted to the averaged prediction qualities by Minimising the mean squared error
between the exponential curve and the observed Qd values. Vfwas fairly stable in the

range 0.990 - 0.993 during the test runs.

Dy=0.991

LD 0.5

Q)
/t

CL Observed da a

0 100 200 300 400
Temporal distance between predictions

Figure 8.1: Fit of the prediction quality temporal decay to observed data from the game
domain, at the end of a run of 2000 games.

To prevent rarely occurring distances from carrying undue weight in the overall error,

the error term for each distance is weighted by the number of observed prediction

pairs. Thus we seek a value of iff which minimises:

I
_Yfd d

Nd

d=O

(8.8)

where Qd is the average prediction quality for distance d, and Nd is the number of

prediction pairs separated by that distance, and 1 is the length of the longest sequence
in the observations so far. In the experiments reported here the value for y/ was

102

Temporal Coherence and Prediction Decay

obtained by simple iterative means, making small incremental changes to its value
until a minimum was identified. Values for V (and hence X) were updated at the end
of each sequence.

8.4 Delta-bar-delta

The delta-bar-delta algorithm (DBD) for adapting leaming rates is described by
Jacobs (1988). Sutton (1992) later introduced Incremental DBD for linear tasks. The

original DBD was directly applied to non-linear tasks, and hence more easily adapted
to both our test domains. In common with our temporal coherence method, it

maintains a separate learning rate for each weight. If the current derivative of a
weight and the exponential average of the weight's previous derivatives possess the
same sign, then DBD increases the leaming rate for that weight by a constant, ic. If

they possess opposite signs, then the learning rate for that weight is decremented by a
proportion, 0, of its current value. The exponential average of past derivatives is

calculated with 0 as the base and time as the exponent. The leaming rates are
initialised to a suitable value, &), and are then set automatically, although the meta-
parameters ic, 0,0 and co must be supplied. To adapt DBD to TD domains, we
compute a weight adjustment term, and a leaming rate adjustment at each timestep,

after each prediction, but we only apply the weight and leaming rate adjustments at
the end of each TD sequence. DBD is very sensitive to its meta-parameters and prior
to our experiments we performed many test runs, exploring a large range of meta-
parameter values and combinations. We used the best we found for the comparison
between DBD and TC reported here. Both algorithms update the weights, and the
internal meta-parameters, at the end of each sequence.

8.5 Test Domain One: A Bounded Random Walk

The methods described in this Chapter are designed to be domain independent, and

should be applicable over a wide range of possible domains. We report first on a

simple domain, that of a bounded random walk where the task is to learn the

probability of terminating the walk at a particular state. We selected this domain

because it has been used as a test domain before, for example by Sutton (1988) and
Dayan (1992).

103

Temporal Coherence and Prediction Decay

Start
1

QD 49 -4 00 (ýD 14 wo QD 19 IN it wo 0 w@
Figure 8.2: A bounded random walk.

All walks begin in state D. When in states B, C, D, E, and F, there is a 50% chance of

moving to the adjacent left state and a 50% chance of moving to the adjacent right

state. When either end state (A or G) is reached, then the walk terminates, with a final

outcome defined as 0 in state A, and 1 in state G. This absorbing Markov process

generated the random walks used in the experiments. Each sequence for the TD

learning process is based on one walk. The learning task is to obtain five weights, one
for each of the five internal states. These weights are estimates of the probabilities of
terminating the walk at G, starting at the given internal state.

Sutton (1988) presents this task and shows that temporal difference leaming is more

effective here than the widely-used supervised learning method of Least Mean Square

(Widrow and Hoff 1960), given an appropriate choice of control parameters. His

experiments showed that the results achieved by TD(k) in this domain were sensitive
to the choice of both (x and /I

8.5.1 Results from the bounded random walk

For each experiment, a set of 1,000 random walks was generated and each of the

learning procedures was then applied to the same 1,000 sequences. With this large

number of sequences, the values towards the end of the run, averaged over recent

sequences, are very close to the known theoretical value, and the weight movements

are random noise. Nevertheless, to allow for variations due to different random

sequences, each experiment was repeated 10 times using a different random number

seed. The results from each of the 10 seeds were all very similar. Figures 8.3 through

8.6 are derived from one particular starting seed, and are typical. Figure 8.7 presents

results averaged from all 10 seeds.

Figures 8.3 and 8.4 show the weight movements from typical runs, using TD with two

fixed learning rates, chosen to cover the range we found to be best from many runs,

and a fixed A (0.3) chosen as the most suitable for this task from results presented by

Sutton (1988). The five traces on each graph show the estimated values of the five

unknown states, after each of 1,000 sequences. For this task, the true values are

known, and are shown on the graphs as horizontal lines. The graphs illustrate that the

104

Temporal Coherence and Prediction Decay

higher the learning rate, the faster the weights approach the target values initially, but

also illustrate that as the learning rate rises, the less stable the weight values become.

At high rates, it may become impracticable to extract stable weights.

I Ar%

I Aiki

0.83

" 0.67 E
0

_0 0.50

0.33

0.17

0.00

Weight F

Weight E

Weight D

Weight C

Weight B

0 500 1000
Number of sequences

Figure 8.3: Weight movements from a typical run using a fixed ot of 0.1.

I Aiti

0.83

(D
E 0.67
0
42
1

0 0.50

0.33

0.17

0.00

Weight F

Weight E

Weight D

Weight C

Weight B

0 500 Number of sequences
1000

Figure 8.4: Weight movements from a typical run using a fixed a of 0.01.

From Figure 8.3 it can be seen that the weight adjustment made using a fixed (X of 0.1

are seriously unstable, even towards the end of the run, when the average value is

close to the desired value. This learning rate is too high for obtaining stable weights.

On the other hand, Figure 8.4 shows that if the learning rate is lower, the final weights

105

Temporal Coherence and Prediction Decay

are much more stable. However, the weights in Figure 8.4 take of the order of 500

sequences to approach the right values, whereas the high learning rate of Figure 8.3

only took around 50 sequences. This behaviour was repeated in each of the 10 runs.

1.00

0.83

0.67 E

0.50

0.33

0.17

Weight F

Weight E

Weight D

Weight C

Weight B

0.00 11

0 500 Number of sequences
1000

Figure 8.5: Weight movements from a typical run using temporal coherence.

1.00

0.83

a) 0.67 E

_0 0.50

0.33

L'

Weight F

Weight E

Weight D

Weight C

Weight B

0.00 1
0 500 Number of sequences

1000

Figure 8.6: Weight movements from a typical run using delta-bar-delta.

Figures 8.5 and 8.6 show typical results from our temporal coherence algorithm, and

delta-bar-delta, respectively. Both of these methods automatically adjust the learning

rate. We found the delta-bar-delta algorithm to be highly sensitive to its meta-

parameters (starting rate, adjustment step size and ratio, and exponential decay factor

of weight changes). Figure 8.6 shows the best result from several runs performed

106

0.17

Temporal Coherence and Prediction Decay

with different values of the meta-parameters, guided by the values used by Jacobs
(1988). We used parameter settings of: K=0.01,0 = 0.333,0 = 0.7, F-0 = 0.03 and
A---0.3. We tried a number of other parameter settings, none of which performed any
better than the chosen set.

Figure 8.5 shows that Temporal Coherence yields fast initial movement towards the
target values, and enables the weights to stay close to the target values thereafter. In
Figure 8.5, the weights approach the right values within about 50 sequences (as least

as fast as the quick but unstable learning of Figure 8.2), and become as stable as the

slow learning of Figure 8.3 within about 250 sequences (twice as fast as the slow
learning rate). Figure 8.6 shows that delta-bar-delta did less well than temporal

coherence.

Figures 8.3 through 8.6 are all based on the random sequences generated with one
particular starting seed. We repeated the experiments with many starting seeds and

saw very similar results. The graphs presented here are typical. To avoid reliance on
the particular sequences involved, Figure 8.7 presents a summary of the performance

of the different algorithms, showing their progress towards the values sought. Each

trace in Figure 8.7 represents the squared error, summed over all weights, after each

sequence for a given algorithm, averaged over 10 runs'.

2 For presentation convenience, the surn-of-squared error is first normalised to the range [0,1] where I
is the error at the start of the run, and 0 is no error (achieved when the weight equals the true value),
then charted as g, the inverse of error:

/5

(Wi _Vi)2 Y, (0.5 - Vi)2 (8.9)

wi is the weight for state i, vi is the true value for state i, 0.5 is the initial value for all weights at the
start of the run.

107

Temporal Coherence and Prediction Decay

1

(D

ca
E
0
a) 0-

TC

DBD

Fixed (x = 0.01

Fixed cc = 0.1

0.8 L
0 500 Number of sequences

1000

Figure 8.7: Performance averaged over 10 runs for various learning rate methods.

Figure 8.7 shows that the fast fixed learning rate has the best initial scores, but the

performance trace for that option shows that it never reaches accurate values. It

remains unstable and well below the other traces from about sequence 50 onwards.
Figure 8.7 shows that temporal coherence has the best overall performance. It is

almost as fast as the unstable learning rate initially, achieves a closer final approach at
the end of the runs than any of the other methods tested, and is either closer to the

right values or reaches them sooner than the other methods. These conclusions are

emphasised by Figure 8.8, which compares the trace of weight B from Figures 8.4,

8.5 and 8.6.

108

Temporal Coherence and Prediction Decay

0.5

0.4

0.3

-0

0.2
CL

0.1

0

Temporal Coherence

Fixed a=0.01

Delta-bar-delta

0 Soo
Number of sequences

Figure 8.8: Weight trace B compared from three different learning rate methods.

1000

In this domain, unlike the more complex domains of chess and shogi, the value of the

weights does not have any effect on the sequences. For this reason, a given seed for

the random number generator ensures that each of the learning methods will have

exactly the same sequences to learn from. From Figure 8.8 it can be seen that,

especially towards the ends of the runs, the peaks and troughs in the weight traces

match up, and represent similar leaming adjustments in response to the training

sequence.

8.6 Test Domain Two: Learning the Values of Chess Pieces

In addition to the simple bounded walk problem, we also tested the new methods in

the more complex domain of chess. As in Chapter 5, the chosen task was the learning

of the values of chess pieces by a minimax search program in the absence of any

chess-related initial knowledge other than the rules of the game.

The task was to learn suitable values for five adjustable weights (pawn, knight,

bishop, rook and queen), via a series of randomised self-play games. Learning from

self-play has the important advantage that no existing expertise (human or machine) is

assumed, and thus the method is transferable to domains where no existing expertise
is available. In Chapter 5 we showed that using this method it is possible to learn

relative values of the pieces that perform at least as well as those quoted in elementary

109

Temporal Coherence and Prediction Decay

chess books. The learning performance of the temporal coherence scheme was

compared with the learning performance using fixed learning rates, and with delta-

bar-delta.

It was reported in Chapter 3 that the TD learning process is driven by the differences
between successive predictions of the probability of winning during the course of a
series of games. In this domain each temporal sequence is a set of predictions for all
the positions reached in one game, each game corresponding to one sequence in the
learning process. The predictions vary from 0 (loss) to I (win), and are determined by

a search engine that uses the adjustable piece weights to evaluate game positions. The

weights are updated after each game. The search engine used for these experiments
was described in section 4.1.

At the start of the experiments all piece weights were initialised to one, and a series of
games was played using a four-ply search. To avoid the same games from being

repeated, the move lists were randomised. This had the effect of selecting at random
from all tactically equal moves with the added benefit of ensuring that a wide range of
different types of position was encountered.

8.6.1 Results from single runs

To visualise the results obtained from the various methods for determining leaming

rates, we present graphs produced by plotting the weight movements for each of the
five piece values over the course of runs each consisting of 2,000 game sequences.
As the absolute values of the piece weights are unimportant compared with their

relative values, the graphs are normalised so that the average value of the pawn

weight over the last 10% of the game sequences is 1. This enables comparison with

the widely quoted elementary values of 1: 3: 3: 5: 9. As in the bounded walk domain,

the number of sequences in each run is large enough for the values to reach a quasi-

stable state of random noise around a learnt value. To confirm that the apparent

stability is not an artefact, each experiment was repeated 10 times, using different

random number seeds.

110

Temporal Coherence and Prediction Decay

12

11

10

9

8

.47

6

5

IL 4

3

2

1

0

/vI

Queen

Rook

Bishop

Knight

Pawn

0 1000 Games 2000

Figure 8.9: Weight movements from a typical single run using fixed (x=0.05.

Figure 8.9 shows the weights achieved using fixed settings of (X = 0.05 and A--0.95

over a typical single run. In the experiments of Chapter 5 we found that these settings

offered a good combination of learning rate and stability from the many fixed settings
that were tried. A lower learning rate produced more stable values, but at the cost of
further increasing the number of sequences needed to establish an accurate set of

relative values. Raising the learning rate made the weights increasingly unstable.

III

Temporal Coherence and Prediction Decay

12

11

10

9

8

C)

a)
0
cl)

04

3

2

1

0

-

Queen

Rook

Bishop

Knight

Paw n

0 1000 Games 2000

Figure 8.10: Weight movements from a typical single run using temporal coherence.

Figure 8.10 shows the weights learrit by the temporal coherence system over a typical

single run. In this Figure we can see that the learning process is essentially complete

after 500 sequences and that the weights remain fairly stable for the remainder of the

sequences. This was typical of all runs, as shown later in Figure 8.11.

The pieces values are much more stable in Figure 8.10 than Figure 8.9, and the

relative ordering of the pieces is consistent over the length of the run. In addition, the

speed of learning is significantly faster using temporal coherence than in the fixed

learning rate run where a significant amount of the learning occurring after 500

sequences.

112

Temporal Coherence and Prediction Decay

12

11

10

9

8

7

6

ö> 5

C)- 4

3

2

1

0

Queen

Rook

Bishop

Knight

Paw n

Games 2000 0 1000

Figure 8.11: Weight movements from a typical single run using delta-bar-delta.

Figure 8.11 shows the results achieved from a typical run using delta-bar-delta.
Comparing this Figure with Figure 8.10, we can see that the weights produced using
DBD are much less stable than those produced by TC, and the relative ordering of the
pieces is not consistent. For this domain we used meta-parameters of: K=0.035,0 =
0.333,0 = 0.7, and co = 0.05, guided by data presented by Jacobs (1988) and
preliminary experiments in this domain. For A, which DBD does not set, we used

/1--0.95 derived from our experience with the fixed rate runs. We tried a number of

other meta-parameter settings, none of which performed better. It is possible that a
comprehensive search for a better set of meta-parameters might have improved the

performance of the delta-bar-delta algorithm, but given the computational cost of a

single run of 2,000 sequences, we were unable to attempt a systematic search of all
the meta-parameter values. Other runs with different random seeds showed similar
behaviour to Figure 8.11.

Figures 8.9 to 8.11 showed typical results obtained from single runs, deten-nined by a

random number seed. We repeated the experiment ten times, using ten different

seeds. Figures 8.12 to 8.14 show averaged weight movements, to confirm that the

characteristics seen in the single runs represent consistent behaviour.

113

Temporal Coherence and Prediction Decay

8.6.2 Results from the average of 10 runs

Figure 8.12 shows the average weights achieved using fixed settings of a=0.05 and
A=0.95 over a series of 10 runs. Figure 8.13 shows the average weights produced by

the delta-bar-delta algorithm over 10 runs.

12

11

10

9

8

7

6

5

0-

4

3

2

1

0

Queen

- �A//' /

Rook

Bishop

Knight

Paw n

0 500 1000 1500 Games 2000

Figure 8.12: Average weight movements from 10 runs using a fixed oc of 0.05.

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

A

Queen

Rook

Bishop

Knight

Flaw n

0 500 1000 1500 Games 2000

Figure 8.13: Average weight movements from 10 runs using delta-bar-delta.

114

Temporal Coherence and Prediction Decay

12

11

10

9

8

-C 7 LM
6

(D

5
a-

4

3

2

1

0

Queen

Rook

Bishop

Knight

Raw n

0 500 1000 1500 Games 2000

Figure 8.14: Average weight movements from 10 runs using temporal coherence.

Figure 8.14 shows the average weights obtained using temporal coherence. It can be

seen from the Figure that all traces have approached their final values after about 900

sequences (some much sooner). Comparing with Figures 8.11 and 8.12 it can be seen
the TC algorithm is faster to approach final values, and more stable once they are
reached. In addition, the traces in Figure 8.14 are smoother than in Figures 8.12 and
8.13, with less variation due to noise in the individual runs.

Figure 8.15 shows the average piece values over 10 runs for the various methods,
combined into a single term measuring progress towards the values achieved at the

ends of the runs. From this Figure we can see that delta-bar-delta does not improve

much on a carefully-chosen fixed learning rate, and that temporal coherence clearly
produces faster learning. The TC and fixed a final weights were not significantly
different.

115

Temporal Coherence and Prediction Decay

1

(I)
U)
a)
c,)
0
IL

0

Figure 8.15: Progress in the chess domain averaged over 10 runs.

To confirm that the learning process had produced satisfactory values, a match was
played pitting the learnt values against the set 1: 3: 3: 5: 9, in the manner reported in
Chapter 5. One program used the standard values, the other used the weights learnt

using temporal coherence, as a check that the learnt values were at least as good
(under our test conditions) as the standard values. In a match of 2,000 games, the TC

values achieved a score of 58% (won 1,119; lost 78 1; drawn 100).

8.7 Discussion

This Chapter described new extensions, temporal coherence, and prediction decay, to

the temporal difference learning method that set the major control parameters,
learning rate and temporal discount, automatically as learning proceeds. The resulting
temporal difference algorithm does not require initial settings for a and A, and has

been tested in depth on two domains.

Results from the two domains demonstrated both faster learning and more stable final

values than a previous algorithm and the best of the fixed learning rates. In these test

domains values were learrit without supplying any domain-specific knowledge.

In our comparisons with the delta-bar-delta algorithm, we tried to find good parameter

sets for DBD, which requires four meta parameters instead of the one control

116

1000 Games 2000

Temporal Coherence and Prediction Decay

parameter, (x. We tried several different (meta-) parameter sets in each domain, but

were unable to find a set of parameters that improved performance over the results

presented in sections 8.5.1 and 8.6.1 It is possible that a systematic search for better

sets of meta-parameters in each of the domains might improve performance.
However, it is a major drawback that DBD requires its meta-parameters to be tuned to

the domain it is operating in. It is part of the advantage of the methods presented here

that searches for good parameter values are not required.

The experimental results demonstrate that the temporal coherence plus prediction
decay algorithm achieves three benefits: (1) removal of the need to specify

parameters; (2) faster learning and (3) more stable final values.

117

Conclusions

9 CONCLUSIONS

The aim of this thesis was to adapt and improve the temporal difference learning

methods that were used successfully for backgammon and apply them to other
complex games that require search for high-level play. A secondary aim was for the
learning to occur with as little input of external knowledge as possible.

In Chapter 3 we described how Sutton's TD(k) could be applied to minimax searches,
involving the introduction of a squashing function to apply to the evaluation of the

search's principal position.

The main experimental platform was introduced in Chapter 4, and a number of
sophisticated enhancements to the basic platform were discussed. The work described
in this Chapter resulted in an efficient and robust search engine that was used for most
of the experiments described in the remainder of the thesis.

The learning method described in Chapter 3 was applied successfully to the complex
domains of chess and shogi in Chapters 5 and 6. In both domains our methods were

successful in learning piece values that compared well with human chosen values.
The aim of learning about the chosen domains with minimal knowledge input was

achieved by the use of randomised self-play, and no external knowledge was required
for the learning to succeed.

In Chapter 7 experiments to learn more complex weight sets were described. Even

when the number of weights being learnt was increased to over 300, the methods of
Chapter 3 were successful in learning sensible and effective values. The results of the

experiments conducted at MIT by Don Dailey show that our methods can be

successful in competitive programs playing at the highest level.

Chapter 8 presented a major research contribution in which we described a novel

extension to Sutton's TD0,) which automatically sets and adjusts TD(X)'s two major

control parameters. In both a simple random-walk state-leaming task and a complex

game our methods of temporal coherence and prediction decay were shown to

produce both faster learning and more stable final values than carefully chosen fixed

learning rates. The faster learning is important because all the learning in the

complex domains of Chapters 5 and 6 required significant computational effort. Our

methods also perfonned better than an alternative method of learning rate adjustment
described in the literature.

118

Conclusions

9.1 Application Areas

In Chapter 8 we showed how the use of Temporal Coherence and Prediction Decay
leads to faster learning. In theoretical terms it is possible to make a distinction

between better learning (i. e. producing better results) and faster learning (producing

the same results in less time). In practice, faster learning will often lead directly to
better learning, because reducing the amount of time taken by each trial leaves more
time to experiment with different algorithms and architectures. In the literature,

typically only results from the most successful experiments are presented, with the

authors explaining that the architecture and/or algorithms used were arrived at after
some experimentation. It has been our experience that such "preliminary

experiments" often have a computational cost far in excess of that of the published

results. The use of Temporal Coherence and Prediction Decay not only enables faster

learning during 'production' runs but also greatly reduces the computation cost of any

preliminary, more experimental, trials. This reduction in computational cost allows

more effort to be invested in experimentation with alternative algorithms,

architectures and feature sets, potentially leading to greatly improved final results.

Temporal Coherence can deliver its advantage anywhere reinforcement learning

systems can be used. Prediction Decay can be utilised wherever TD(k) is used.

Presented below are a number of practical real world domains in which the use of
Temporal Coherence and/or Prediction Decay could be expected to result in

significant improvement, not only in speed of learning, but also in improved outcomes
due to exploring more of the solution spaces.

9.1.1 Elevator Dispatching

Elevator dispatching is a difficult real-world problem that has seen the successful

application of reinforcement learning techniques. The elevator domain is especially

challenging because elevator systems operate in continuous state spaces and in

continuous time as discrete event dynamic systems. Their states are not fully

observable and they are non-stationary due to changes in the rate with which new

passengers arrive.

An example of the elevator domain (Crites and Barto 1996) consists of a 10-story

building with 4 elevator cars, and a passenger profile which dictates arrival rates for

every 5 minute interval during a typical afternoon rush hour. Each car has a small set

of primitive actions. The performance objective in this example is to minimise the

119

Conclusions

sum of the squared wait times (the time between the arrival of a passenger and his

entry into a car).

The state space for this problem is continuous because it includes the elapsed times

since elevator calls were registered, which are real-valued. Even if these real values
were approximated as discrete values, Crites and Barto (1996) estimate that the state
space would have at least 1022 states, making solving this problem by classical
dynamic programming methods completely impractical.

Crites and Barto (1996) approached this problem by using a team of reinforcement
leaming (RL) agents, one controlling each elevator car. The team of agents received a

global reinforcement signal which appears noisy to each agent due to the effects of the

actions of the other agents, the random nature of the arrivals and the incomplete

observation of the state. The elevator system events occur randomly in continuos
time, which complicates the use of algorithms that require explicit lookahead as the
branching factor is effectively infinite. For this reason Crites and Barto (1996)

utilised a team of discrete-event Q-leaming agents, with each agent having

responsibility for controlling a single elevator car. Q(xa) is defined as the expected

return obtained by taking action a in state x and then following an optimal policy
(Watkins, 1989). The Q-values were stored in feed-forward neural networks which

received some state information as input, and produced Q-value estimates as output.

For the example described above, Crites and Barto (1996) achieved their best results

using networks with 47 hand chosen input units (features), 20 hidden units with

sigmoid activation functions, and 2 linear output units. After every training decision

the agent's estimate of Q(xa) was adjusted toward the target output by error
backpropagation. The learning rate parameter was set to either 0.01 or 0.001. Crites

and Barto presented results that surpassed the performance of the best heuristic

elevator control algorithms, but found that it required "considerable experimentation"

to achieve their best results.

Temporal Coherence should significantly reduce the computational cost of training,

allowing better network architectures to be identified for the same computational cost

by using the computational savings for additional experiments. Using fixed learning

rates, each RL controller (of which there were 10) was trained by Crites and Barto on

60,000 hours of simulated elevator time, taking four days on a 100 MEPS machine.

This was just the time taken for the best, presented, results. As these results were

only achieved after "considerable experimentation", presumably equivalent

experiments were performed many other times with different network architectures

120

Conclusions

and algorithmic parameters. Crites and Barto (1996) state "Although this [four days

on a 100 MEPS processor] is a considerable amount of computation, it is negligible
compared to what any conventional dynamic programming algorithm would require. "

9.1.2 Job-shop Scheduling

Many tasks in manufacturing industries require job-shop scheduling. The goal is to
schedule a set of tasks to satisfy a set of temporal and resource constraints while also
seeking to minimise the total duration of the schedule. It is an example of an
important industrial domain where temporal difference leaming is very effective.

The NASA space shuttle payload processing (SSPP) domain (Zweben et al., 1994;
Zhang and Dietterich, 1995,1997) requires scheduling the various tasks that must be

performed to install and test the payloads that are placed in the cargo bay of the space
shuttle. The method regularly used at the Kennedy Space Center is an iterative repair-
based scheduling procedure that combines a set of heuristics with a simulated
annealing search procedure (Zweben et al., 1994).

A typical SSPP problem involves the simultaneous scheduling of between two and six
shuttle missions, with each mission involving between 32 and 164 tasks (Zhang and
Dietterich, 1995). This results in scheduling problems containing several hundred

tasks. Most of these tasks must be performed prior to launch, but some also take

place after the shuttle has landed. Because every shuttle mission has a fixed launch

date, but no starting date or ending date, tasks required prior to launch have deadlines

but no ready times, and tasks required after landing have ready times but no deadlines.

A primary goal of the scheduling system is to minimise the total duration of the

schedule. As Zhang and Dietterich (1995) observe, this is a much more demanding

problem than simply finding a feasible schedule.

Zhang and Dietterich (1995,1997) applied TD(X) to train a neural network to learn an
heuristic evaluation function for problems from a SSPP task. They experimented with

two different network architectures. In their earlier experiments (1995) they used a
feed-forward network with 40 sigmoidal hidden units and 8 sigmoidal output units.
They trained eight different network using all combinations of. learning rate = 0.1 or
0.05, X=0.2 or 0.7 and two values for their probabilistic exploration schedule. They

do not provide any explanation for their choice of parameters other than observing

that preliminary experiments showed that X=0 did not perform as well.

121

Conclusions

In their subsequent experiments Zhang and Dietterich (1996) used a larger and more
complicated time-delay neural network which included 3 hidden layers with a total of
1123 adjustable parameters. Various experiments were conducted where X was fixed

at 0.2 and 0.7 Their best results were achieved using this more complicated network,
which generally took around 10,000 training iterations before its performance stopped
changing.

This domain is another in which the use of Temporal Coherence and Prediction Decay

would be expected to produce a significant reduction in the computational cost of
individual training runs, allowing more time for experimentation with other
architectures and methods. Zhang and Dietterich found that their more complex
network produced better results, and had they been able to reduce their training times
by the use of Temporal Coherence and Prediction Decay it is quite possible that they

would have discovered a more effective network architecture.

9.1.3 Dynamic Channel Allocation Strategies

An important problem in cellular communication systems is to allocate the available
communication resource (bandwidth) so as to maximise service in an environment
where demand changes stochastically. The geographical area covered by the service
is divided up into separate cells, where each cell serves the calls that are within its
boundaries. The total system bandwidth is divided into channels, with each channel
centred around a frequency. Each channel can be used simultaneously by different

cells, providing that the cells are separated by enough geographical distance to ensure
that there is no interference between them. The minimum separation distance

between simultaneous reuse of the same channel is called the channel reuse constraint
(Singh and Bertsekas, 1997).

When a request for a call is made to the system, the cell responsible either allocates a
free channel (one that does not violate the channel reuse constraint) or else the call is

blocked from the system. An additional complexity is introduced when a mobile

caller's physical location moves from one cell to another. In this case, responsibility
for the call is passed on to the newly entered cell, which must itself allocate a channel

to the call to prevent it from being disconnected from the system. One objective of a

channel allocation strategy is to minimise the number of blocked calls. Another

objective is to minimise the number of calls that are disconnected when they are

passed on to an already busy cell. This second objective is often given a higher

weighting, as disconnecting existing calls is usually considered more undesirable than
blocking new calls (Singh and Bertsekas, 1997).

122

Conclusions

In practice, many cellular systems use a Fixed Assignment (FA) channel allocation
strategy. This means that the set of channels is divided up and allocated to cells in

such a way that all cells are able to use all channels allocated to them simultaneously
without interference. When a call arrives in a cell it is blocked unless there is an
unassigned channel available. This strategy is static and as such is unable to take

advantage of any temporal variations in demand for service, and therefore is less

efficient than dynamic channel allocation strategies. Dynamic strategies assign
channels to different cells so that every channel is available to every cell unless the

channel reuse constraint is violated. An example of a dynamical channel allocation
strategy is Borrowing with Directional Channel Locking (BDCL), introduced by
Zhang and Yum (1989) and shown by them to be superior to its competitors,
including FA.

Singh and Bertsekas (1997) formulated the channel assignment problem as a dynamic

progranu-ning problem, but note that it is too complex to be solved exactly. For this

reason they introduced approximations based on the methods of reinforcement
learning, using Sutton's (1988) temporal difference algorithm TD(O) to learn

approximations to the optimal value function. Singh and Bertsekas presented results
from a simulation of a large cellular system with approximately 7049 states, and
showed that TD(O) with a linear function approximator was able to find better channel
allocation policies than the BDCL and FA strategies.

The reinforcement learning system used by Singh and Bertsekas (1997) utilised a
linear neural network, and took two sets of features as input. The first set of input

features was the number of free channels in each cell, the second measured, for each

cell-channel pair, the number of times that channel is used in a4 cell radius. They

found that using non-linear neural networks as function approximators did improve

performance in some cases, but at a cost of a large increase in training time. Sutton

(1999) highlights four open theoretical questions in reinforcement learning that seem
"particularly important, pressing or opportune. " One of these open theoretical

questions concerns the use of X by reinforcement learning methods. Sutton presents a

collection of empirical results in which k was varied from 0 to 1. In all cases, as in the

experiments presented in this thesis, the best performance was found at an
intermediate value of X. Similar results have been shown analytically by Singh and
Dayan (1988) but only for particular tasks and initial settings. Sutton (1999)

comments that there is no proof as yet that the use of 0<k<I is better, but there is a
lot of evidence. However Sutton suggests no method for determining or adjusting X.

123

Conclusions

Singh and Bertsakas (1997) did not specify the learning rate they used. All of their
experiments were conducted using TD(O), i. e. X=0. It is likely that the use of
Temporal Coherence to set and adjust the learning rate, and Prediction Decay to
determine a value for X, would have reduced their training time and so allowed for

more experimentation with non-linear networks.

9.2 Possible Future Work

The previous section discussed several domains in which the use of Temporal
Coherence and/or Prediction Decay could be expected to result in significant
improvements. Other directions for possible future work are outlined below.

The application of the methods described in this thesis to fully-featured competitive
game-playing programs is potentially very promising. The work of Don Dailey at
MIT described in Chapter 7 suggests that weight sets can be found using our methods
that perform significantly better than expertly hand-tuned weight sets. This might be

of particular use in games such as shogi where much less effort has been invested in

choosing weights for evaluation terms.

Preliminary experiments we conducted with the shogi engine suggest that the learning

of piece-square weights for shogi is feasible, and that additional king-proximity tables

are useful for ensuring that the short-ranged pieces common in shogi do not wander
too far from the 'action'.

Learning values for piece combinations rather than the individual pieces themselves

might be an interesting task. For example, in chess the combination of queen and
knight is often considered stronger than queen and bishop, even though individually a
bishop is usually more valuable than a knight.

As a step beyond generating weights for given terms, the problem of identifting

suitable evaluation terms remains as a research frontier. The two-level neural-net

approach that was so successful in backgammon (Tesauro 1992,1994) does not seem
likely to work well in complex domains such as chess and shogi, where search based

tactical expertise is required.

124

References

REFERENCES

Almeida, L. B., Langlois, T., Amaral, J. D. and Plakhov, A. (1998) On-Line Step Size
Adaptation. Technical Report RT07197 INESC, 9 Rua Alves Redol, 1000 Lisbon,
Portugal.

Anantharaman, T. S., Campbell, M. S. and Hsu, F. (1988) Singular Extensions: adding
selectivity to brute force searching. International Computer Chess Association
Joumal, vol. 11, no. 4, pp. 135-143.

Anantharaman, T. S. (1991a) Confidently Selecting a Search Heuristic. International
Computer Chess Association Journal, vol. 14, no. 1, pp. 3-16.

Anantharaman, T. S. (1991b) Extension Heuristics. International Computer Chess

Association Journal, vol. 14, no. 2, pp. 47-65.

Anantharaman, T. S. (1997) Evaluation Tuning for Computer Chess: Linear

Discriminant Methods. International Computer Chess Association Journal, vol. 20,

no. 4, pp. 224-242.

Babbage, C. (1864) Passages on the Life of a Philosopher. Longman, London.

Baxter, J., Tridgell, A. and Weaver, L. (1998) KnightCap: A chess program that
learns by combining TD(k) with game-tree search. In Machine Learning, Proceedings

of the Fifteenth International Conference (ICML 98), Madison, pp. 28-36.

Beal, D. F. (1984) Mating Sequences in the Quiescence Search. International

Computer Chess Association Journal, vol. 7, no. 3, pp. 133-137.

Beal, D. F. (1989) Experiments with the Null Move. In Beal, D. F. (ed) Advances in

Computer Chess 5, North-Holland, pp. 65-79.

Beal, D. F. and Smith, M. C. (1994) Random Evaluations in Chess. International

Computer Chess Association Journal, vol. 17, no. 1, pp. 3-9.

Beal, D. F. and Smith, M. C. (1995) Quantification of Search Extension Benefits.

International Computer Chess Association Journal, vol. 18, no. 4, pp. 205-218.

Beal, D. F. and Smith, M. C. (1996) Multiple Probes of Transposition Tables.

International Computer Chess Association Journal, vol. 19, no. 4, pp. 227-233.

125

References

Beal, D. F. and Smith, M. C. (1997) Learning piece values using temporal differences.

International Computer Chess Association Journal, vol. 20, no. 3, pp. 147-15 1.

Beal, D. F. and Smith, M. C. (1998a) Temporal Coherence and Prediction Decay in

Temporal Difference Learning. Technical report #756, Dept. of Computer Science,

Queen Mary and Westfield College, University of London.

Beal, D. F. and Smith, M. C. (1998b) First Results from using Temporal Difference
Learning in Shogi. In van den Herik, H. and lida, H. (eds.) Proceedings of the First

International Conference on Computers and Games (CG'98) Springer-Verlag, Berlin,

pp. 113-125.

Beal, D. F. and Smith, M. C. (1999a) Temporal Difference Learning Applied to Game

Playing and the Results of Application to Shogi. To appear in Theoretical Computer

Science.

Beal, D. F and Smith, M. C. (1999b) Temporal Coherence and Prediction Decay in TD

Leaming. In Proceedings of the International Joint Conference on Artificial

Intelligence (IJCAI'99), Morgan Kaufman, pp. 564-569.

Beal, D. F. and Smith, M. C. (1999c) Temporal Difference Learning for Heuristic

Search and Game Playing. To appear in Infonnation Sciences Journal.

Berliner, H. J. (1979) The B* Tree Search Algorithm: A Best First Proof Procedure.

Artificial Intelligence, vol. 12, no. 1, pp. 23-40.

Berliner, H. J., Goetsch, G., Campbell, M. and Ebeling, C. (1989) Measuring the

Performance Potential of Chess Programs. In Beal, D. F. (ed.) Advances in Computer

Chess 5, North-Holland, pp. 13-29.

Berliner, H. J., Kopec, D. and Northam, E. (1991) A Taxonomy of Concepts for

Evaluating Chess Strength. In Beal, D. F. (ed.) Advances in Computer Chess 6, Ellis

Horwood, pp. 179-191.

Berliner, HT (1989) Some Innovations Introduced by Hitech. In Beal, D. F. (ed.)

Advances in Computer Chess 5, North-Holland, pp. 284-289.

Breuker, D. M., Uiterwijk, J. W. H. M., and van den Herik, H. J. (1994) Replacement

Schemes for Transposition Tables. International Computer Chess Association

Journal, vol. 17, no. 4, pp. 183-193.

126

References

Breuker, D. M., Uiterwijk, J. W. H. M., and van den Herik, H. J. (1996) Replacement
Schemes and Two-Level Tables. International Computer Chess Association Journal,

vol. 19, no. 3,175-180.

Capablanca, J. R. (1921) Chess Fundamentals, G. Bell and Sons Ltd., London.

Christensen, J. and Korf, R. (1986) A Unified Theory of Heuristic Evaluation
Functions and its Application to Learning. AAAI-86, Morgan-Kaufman, pp. 148-152

Crites, R. H., and Barto, A. G. (1996) Improving Elevator Performance Using
Reinforcement Leaming. In Advances in Neural Information Processing Systems:
Proceedings of the 1995 Conference, MIT Press, Cambridge MA, pp. 1017-1023.

Dayan, P. (1992) The Convergence of TD(k) for General X. Machine Learning, vol.
8, pp. 341-362.

Donninger, C. (1993) Null Move and Deep Search: Selective Search Heuristics for
Obtuse Chess Programs. International Computer Chess Association Journal, vol. 16,

no. 3, pp. 137-143

Ebeling, C. (1986) All the Right Moves: A VLSI Architecture for Chess. Ph. D.

thesis, Carnegie-Mellon University, Pittsburgh, Pa. MIT Press, Cambridge, MA.

Fairbaim, J. (1989) Shogifor Beginners. Ishi Press Intemational.

Frey, P. W. (1977) Chess Skill in Man and Machine. Springer-Verlag, Heidelberg.

Ftirnkranz, J. (1996) Machine Learning in Computer Chess: The Next Generation.

International Computer Chess Association Journal, vol. 19, no. 3, pp. 147-161.

George, M. and Schaeffer, J. (1991) Chunking for Experience. In Beal, D. F. (ed.)

Advances in Computer Chess 6, Ellis Horwood, London, pp. 133-146.

Goetsch, G. and Campbell, M. S. (1990) Experiments with the Null-Move Heuristic.

In Marsland, T. A. and Schaeffer, J. (eds.) Computers, Chess and Cognition, Springer-

Verlag, New York, pp. 159-168.

Hyatt, R. M., Gower, A. E. and Nelson, H. L. (1990) Cray Blitz. In Marsland, T. A.

and Schaeffer, J. (eds.) Computers, Chess and Cognition, Springer-Verlag, New

York, pp. II 1- 130.

127

References

Jacobs, R. A. (1988) Increased Rates of Convergence Through Learning Rate
Adaptation. Neural Networks, vol. 1, pp. 295-307.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996) Reinforcement learning: a
survey. Journal ofArtificial Intelligence Research, vol. 4, pp. 237-285.

Kaindl, H., Horacek, H. and Wagner, M. (1986) Selective Search versus Brute Force.
International Computer Chess Association Journal, vol. 9, no. 3, pp. 140-145.

Keres, P. (1973) Practical Chess Endings, Batsford, London.

Knuth, D. E. (1973) The Art of Computer Programming. Vol. 3: Sorting and
Searching. Addison-Wesley Publishing Company, Reading Massachusetts.

Knuth, D. E. and Moore, R. W. (1975) An analysis of alpha-beta pruning. Artificial
Intelligence, vol. 6, no. 4, pp. 293-326.

Kopec, D. (1990) Advances in Man-Machine Play. In Marsland, T. A. and
Schaeffer, J. (eds.) Computers, Chess and Cognition, Springer-Verlag, New York,

pp. 9-32.

Lang, K. J. and Smith, W. D. (1993) A Test Suite for Chess Programs. International
Computer Chess Association Journal, vol. 16, no. 3, pp. 152-161.

Leggett, T. (1993) Shogi: Japan's Game of Strategy. Charles E. Tuttle Company.

[Reprinted in 1993, first published in 1966].

Levene, M. and Fenner, T. (1995) A Partial Analysis on Minimaxing Game Trees

with Random Leaf Values. International Computer Chess Association Journal, vol.
18, no. 1, pp. 20-33.

Levinson, R. and Snyder, R. (1991) Adaptive Pattern Oriented Chess. In

Proceedings ofAAAI-91, Morgan-Kaufman, pp. 601-605.

Levy, D., Broughton, D. and Taylor, M. (1989) The SEX Algorithm in Computer

Chess. International Computer Chess Association Journal, vol. 12, no. 1, pp. 10-2 1.

Levy D. and Newborn, M. (1991) How Computers Play Chess. Computer Science

Press, New York. ISBN 0-7167-8239-1

Marsland, T. A. and Rushton, P. G. (1973) Mechanics for Comparing Chess Programs,

In Proceedings of the ACM Annual Conference, pp. 202-205.

128

References

Marsland, T. A. (1983) Relative Efficiency of Alph-Beta Implementations. In
Proceedings of the 8 th International Joint Conference on Artificial Intelligence, pp.
763-766.

Marsland, T. A. (1986) A Review of Game-Tree Pruning, International Computer
Chess Association Journal, vol. 9 no. 1, pp. 3-19.

Marsland, T. A. (1990) A Short History of Computer Chess. In Marsland, T. A. and
Schaeffer, J. (eds.) Computers, Chess, and Cognition. Springer-Verlag, New York,
ISBN 0-387-97415-6, pp. 3-7.

Marsland, T. A. (1992) Computer Chess and Search. In Shapiro, S. (ed.)
Encyclopaedia of Artificial Intelligence (2nd edition), J. Wiley & Sons.

Matsubara, H., Eda, H. and Grimbergen, R. (1996) Natural Developments in Game
Research: From Chess to Shogi to Go. International Computer Chess Association
Journal, vol. 19, no. 2, pp. 103-112.

McCarthy, J. (1990) Chess as the Drosophila of Al. In Marsland, T. A. and Schaeffer,
J. (eds.) Computers, Chess, and Cognition. Springer-Verlag, New York, ISBN 0-

387-97415-6, pp. 227-238.

Michie, D. (1990) Brute Force in Chess and Science. In Marsland, T. A. and
Schaeffer, J. (eds.) Computers, Chess, and Cognition. Springer-Verlag, New York,

ISBN 0-387-97415-6, pp. 239-258.

Mutz, M. (1994) Gnu Shogi vI. 2pO3. Available from many sources, including

ftp: //ftp. uni. passau. de/pub/local/shogi

Palay, A. J. (1983) The B* Tree Search Algorithm - New Results. Artificial

Intelligence, vol 19, pp. 145-163.

Pitrat, J. (1998) Games: The Next Challenge. . International Computer Chess

Association Journal, vol. 21, no. 3, pp. 147-156.

Pell, B. (1992) METAGAME: A New Challenge for Games and Leaming. In van
den Herik, H. J. and Allis, L. V. (eds.) Heuristic Programming in Artificial Intelligence

3, Ellis Horwood, England, ISBN 0-13-388265-9, pp. 237-251.

129

References

Plaat, A., Schaeffer, J., Pijis, W., and de Bruin, A (1994) A New Paradigm for
Minimax Search. Technical Report 94-18, Department of Computing Science,
University of Alberta, Edmonton, Canada.

Pritchard, D. B. (1994) The Encyclopaedia of Chess Variants. Games and Puzzles
Publications, Surrey, United Kingdom.

Reinfeld, F. (1945) Win at Chess. Dover Publications.

Reinfeld, F. (1953) The Human Side of Chess. Faber and Faber Ltd., London.

Reinfeld, F. (1955) 1001 Winning Chess Sacrifices and Combinations. Wilshire
Book Company.

Reiss, M. (1999) Personal communication.

Rollason, J. (1999) Personal communication.

Roycroft, A. J. (1986) Queen and Pawn on b7 against Queen. Roycroft's 5-Man
Chess Endgame Series, no. 7, Chess Endgame Consultants and Publishers, London,
England.

Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986) Leaming internal

representation by error propagation. In Rumelhart, D. and McClelland, J. (eds.)

Parallel Distributed Processing, vol. 1. MIT Press, Cambridge, Mass.

Samuel, A. L. (1959) Some studies in machine learning using the game of checkers.
IBM Journal of Research and Development, vol. 3, no. 3, pp 211-229.

Schaeffer, J. (1983) The History Heuristic. International Computer Chess

Association Journal, vol. 6, no. 3, pp. 16-19.

Schraudolph, N. N., Dayan, P. and Sejnowski, T. J. (1994) Temporal difference

leaming of position evaluators in the game of go. In Cowan, J. D., Tesauro, G. and
Alspector, (eds.) Advances in Neural Information Processing 6, Morgan Kaufmann,

San Francisco, pp. 817-824.

Schraudolph, N. N. (1998) Online Local Gain Adaptation for Multi-layer Perceptrons.

Technical Report IDSIA-09-98, IDSIA, Corso Elvezia 36,6900 Lugano, Switzerland.

Seirawan, Y. (1997) The Kasparov - Deep Blue Games. International Computer

Chess Association Journal, vol. 20, no. 2, pp. 102-125.

130

References

Shannon, C. E. (1950) Progranu-ning a Computer to Play Chess. Philosophical
Magazine, vol. 41, pp. 256-275.

Singh, S. P., and Dayan, P. (1998) Analytical Mean Squared Error Curves for
Temporal Difference Learning. Machine Learning 25(l): 5-22.

Singh, S. P., and Bertsekas, D. (1997) Reinforcement Leaming for Dynamic Channel
Allocation in Cellular Telephone Systems. In Advances in Neural Infonnation
Processing Systems: Proceedings of the 1996 Conference, MIT Press Cambridge MA.

Slate, D. and Atkin, L. (1977) Chess 4.5 - The Northwestern University Chess
Program. In Frey, P. W. (ed.) Chess Skill in Man and Machine, Springer-Verlag, pp.
82-118.

Smith, M. C. [co-authored with Beal, D. F.] (1994). Random Evaluations in Chess.
International Computer Chess Association Journal, vol. 17, no. 1, pp. 3-9.

Smith, M. C. [co-authored with Beal, D. F.] (1995) Quantification of Search Extension
Benefits. International Computer Chess Association Journal, vol. 18, no. 4, pp. 205-

218.

Srnith, M. C. [co-authored with Beal, D. F.] (1996) Multiple Probes of Transposition

Tables. International Computer Chess Association Journal, vol. 19, no. 4, pp. 227-

233.

Smith, M. C. [co-authored with Beal, D. F.] (1997) Leaming piece values using
temporal differences. International Computer Chess Association Journal, vol. 20, no.
3, pp. 147-151.

Smith, M. C. [co-authored with Beal, D. F.] (1998a) Temporal Coherence and
Prediction Decay in Temporal Difference Learning. Technical report #756, Dept. of
Computer Science, Queen Mary and Westfield College, University of London.

Smith, M. C. [co-authored with Beal, D. F.] (1998b) First Results from using
Temporal Difference Learning in Shogi. In van den Herik, H. and lida, H. (eds.)

Proceedings of the First International Conference on Computers and Games (CG'98)

Springer-Verlag, Berlin, pp. 113-125.

Smith, M. C. [co-authored with Beal, D. F.] (1999a) Temporal Difference Learning

Applied to Game Playing and the Results of Application to Shogi. To appear in

Theoretical Computer Science.

131

References

Smith, M. C. [co-authored with Beal, D. F.] (1999b) Temporal Coherence and
Prediction Decay in TD Learning. In Proceedings of the International Joint

Conference on Artificial Intelligence (1JCAI'99), Morgan Kaufman, pp. 564-569.

Smith, M. C. [co-authored with Beal, D. F.] (1999c) Temporal Difference Learning
for Heuristic Search and Game Playing. To appear in Infonnation Sciences Journal.

Stockman, G. C. (1979) A Minimax Algorithm Better than Alpha-Beta? Artificial
Intelligence, vol. 12, no. 2, pp. 179-196.

Sutton, R. S. (1988) Leaming to Predict by the Methods of Temporal Differences.
Machine Learning, vol. 3,9-44.

Sutton, R. S., (1992) Adapting bias by gradient descent: an incremental version of
delta-bar-delta. In Proceedings of the Tenth National Conference on Artificial

Intelligence, pp. 171-176.

Sutton, R. S., and Singh, S. P. (1994) On Step-Size and Bias in Temporal-Difference

Learning. In Proceedings of the Eighth Yale Workshop on Adaptive and Learning

Systems, pp. 91-96.

Sutton, R. S. (1999) Open Theoretical Questions in Reinforcement Learning. In

Fischer, P. and Simon, H. U. (eds.) Computational Learning Theory (proceedings of
EuroCOLT'99) pp. 11-17.

Tesauro, G. (1989) Neurogammon wins Computer Olympiad. Neural Computation,

vol. 1, pp. 321-323.

Tesauro, G. (1992) Practical Issues in Temporal Difference Leaming. Machine

Learning, vol. 8, pp. 257-277.

Tesauro, G. (1994) TD-Gammon, a Self-Teaching Backgammon Program, achieves
Master Level Play. Neural Computation, vol. 6, no. 2. pp. 215-2.

Tesauro, G. (1995) Temporal Difference Learning and TD-Gammon.

Communications of the ACM, vol. 38, no. 3.

Thompson, K. (1986) Retrograde Analysis of Certain Endgames. International

Computer Chess Association Journal, vol. 9, no. 3, pp. 131-139.

Turing, A. M. (1950) Computing Machinery and Intelligence. Mind LIX 2236, pp.
433-460.

132

References

Turing, A. M. (1953) Digital Computers Applied to Games. In Bowden, B. V. (ed.)

Faster than Thought, London, pp. 286-3 10.

Walker, A. N. (1996) Hybrid Heuristic Search. International Computer Chess
Association Journal, vol. 19, no. 1, pp. 17-23.

Watkins, C. J. C. H. (1989) Learningfrom Delayed Rewards. Ph. D. thesis, Cambridge
University.

Widrow, B., and Hoff, M. E. (1960) Adaptive Switching Circuits. IRE Western
Electronic Show and Convention Record, Part 4, pp. 94-104.

Yamashita, H. (1997) YSS: About the Data Structures and the Algorithm. Published

on the WWW at http: //p1aza15. mbn. or. jp/-yss

Ye, C. and Marsland, T. A. (1992) Experiments in Forward Pruning with Limited
Extensions. International Computer Chess Association Journal, vol. 15, no 2, pp. 55-
66.

Zhang, M. and Yum, T. P. (1989) Comparisons of Channel-Assignment Strategies in

Cellular Mobile Telephone Systems. IEEE Transactions on Vehicular Technology.
Vol. 38, no. 4.

Zhang, W., Dietterich, T. G., (1995). A Reinforcement Learning Approach to Job-

Shop Scheduling. In Proceedings of the Fourteenth International Joint Conference

on Artificial Intelligence. Morgan Kaufmann, San Francisco, CA. pp. 1114-1120.

Zhang and Dietterich (1996) High-Performance Job-Shop Scheduling with a Time-

Delay TD(X) Network. In Touretzky, Mozer and Hasselmo, (eds.) Advances in Neural

Information Processing Systems: Proceedings of the 1995 Conference. MIT Press

Cambridge MA.

Zobrist, A. L. (1970) A New Hashing Method with Application for Game Playing.

Technical Report 88, Computer Science Dept. University of Wisconsin. Reprinted

(1990), International Computer Chess Association Journal, vol. 13, no. 2, pp. 69-73.

Zweben, M., Daun, B. and Deale, M. (1994) Scheduling and Rescheduling with
Iterative Repair. In M. Zweben and M. S. Fox (eds.) Intelligent Scheduling. Morgan

Kaufman, San Francisco, CA. Pp. 241-255.

133

Appendix A

APPENDIX A: EXPERIMENTAL DETAILS FROM
CIIAPTER FOUR

A. 1 Test Positions used in the Transposition Table Experiments

Below are the positions used in the transposition table experiments of section 4.2. All

positions occurred in games from the 10th VSB Tournament, Amsterdam,
Netherlands, March 1996, and are given after Black's 20th move. These positions are
available online at http: / /www. dcs. qmw. ac. uk/ -martins /research/vsb3 0. set

Format: [index, players, position, side to move, depth searched]

1, Topalov-Kasparov, 2blkb2/lpq3rp/r2plppl/pInBpPNI/8/4BQ2/PPP3PP/R4RKI, W, 9
2, Kramnik-Seirawan, 5rkl/r2nlppp/p2Bpn2/q7/8/p2QIB2/2P2PPP/3RIRKI, W, 9
3, Lautier-Short, lr3r2/lb2bpkp/pp2qnpl/2ppN2P/3PIP2/PQNIPB2/IP3P2/3RKIRI, W, 7
4, Gelfand-Anand, lbqff lkl/lp3plp/plp5/3nlppl/IPNP2bl/P2NPIPl/2Q2PlP/R3RBKI, W, 8
5, Timman-Piket, rlb2rkl/lp3ppl/4p2p/lB2nlbl/p2RP3/PIN4P/IPPNRIPI/2K5, W, 10
6, Short-Gelfand, rlrlk3/3nbppl/plqpln2/lp2pPBI/4P3/PIN4Q/IPPN3P/R5RK, W, 8
7, Anand-Topalov, Irb2rkl/2q2ppp/3p4/3P4/pp3BPb/5B2/PPPQ3P/2KR2RI, W, 8
8, Seirawan-Lautier, rlblrlkl/pp3ppp/2pQln2/P5ql/2PPp2n/2NIP2P/3NIPPI/R2RIBK1, W, 8
9, Piket-Kasparov, rlr3kl/lnlbBIbl/p4ppl/lplPp2n/4P3/5PIP/PPIKNN2/R4BIR, W, 8
10, Timman-Kramnik, 3qlrkl/5ppl/2nlpblp/pIPp4/3P4/IPN2N2/3QIPPP/IR4KI, W, 9
11, Topalov-Short, r2qr2k/lplb2pp/p4p2/2BRIPIQ/8/lB6/PPP3PP/6Kl, W, 9
12, Kasparov-Anand, r2qrlkl/p2blppl/2nlpblp/2ppN3/3PIB2/2PB4/p4PPP/IRIQRIKI, W, 9
13, Lautier-Timman, r4rkl/p3qppl/lpln3p/IPIP4/3p4/P2B2BI/IPQ2PPP/lKlR4, W, 9
14, Gelfand-Seirawan, 4r 1kI /pb Iq1 rpp/ 1 p3 n2/3p I p2/P I pP4/2P I PP2/3B BI PP/RQ3RK 1, W, 8
15, Short-Kasparov, 3rlrkl/2qlbpnl/p3plpl/lp2P2p/IPIBQIPI/2P5/PIB4P/R4RKI, W, 9
16, Kramnik-Lautier, r4rkl/lplblppl/pqlb3p/8/IP2BP2/p2Q4/3R2PP/2B2RKI, W, 10
17, Seirawan-Topalov, 2rlrlkl/3nqppl/2p2nlp/p2p4/lPpP4/P3PP2/IQ2NBPP/R4RKI, W, 9
18, Timman-Gelfand, 4ffkl/pp3ppl/2p4p/3pNn2/3P4/IPP5/p4PPP/4RRKI, W, 10
19, Topalov-Tinunan, r2q2kl/lplnlrpl/4p2B/p2pPp2/3P3b/IPIBQPIP/P4P2/IR4RK, W, 9
20, Kasparov-Seirawan, rlblklrl/lplnlq2/p3p2p/4PpBl/PIQ5/2N2NIP/IP4PI/R6K, W, 9
21, Anand-Short, r2qlnlr/4bpkn/3p2pl/pQlPpIPI/Pp4BI/IN2B3/IPP2P2/2KR3R, W, 9
22, Lautier-Piket, 2r2B kI /pb3ppp/4pn2/4q3/2B 1 n3/4P3/4QPPP/R4RK 1, W, 9
23, Kramnik-Topalov, r4rkl/pblnb2p/lqlp2pl/2pPPp2/lp3PIN/IP4PI/IB5P/R2QRBKI, W, 9
24, Lautier-Gelfand, 2krlblr/lbq3pp/8/lpnlp3/2p5/4BN2/IPBIQPPP/R4RKI, W, 9
25, Seirawan-Anand, r3rlkl/ppq2pbl/3nplpl/3pN2p/P2PIPIP/2PQ2Pl/lPlN2KI/R3R3, W, 8
26, Piket-Short, rlq3kl/p3rppl/lp5p/lBnRIQ2/8/4PN2/Pb3PPP/5RKI, W, 9
27, Tinu-nan-Kasparov, rib2qlk/3nb2n/p2plrpl/lplPp3/4P2p/INNIBPlP/PPIQB3/IKIR2Rl, W, 8
28, Kasparov-Kramnik, rlb2klr/4bp2/4pp2/3qlPlp/pp6/3B3Q/PPPINIPP/lKR4R, W, 9
29, Short-Seirawan, r4rkl/nlqlbppl/2plplbp/P2pP3/2nP4/INB2N2/Q3BPPP/R3RlKl, W, 9
30, Anand-Timman, r4rlk/lbpqb3/plnp4/3Np2p/Q3Pppl/2PPINIP/IP2KPPI/RIBIR3, W, 9

134

Appendix A

A. 2 Details from the Search Extension Experiments

Here we indicate the 563 problems from the book 1001 Winning Chess Sacrifices and
Combinations (Reinfeld, 1955) that were used in the search extension experiments of

section 4.4.

Each entry represents: position number, depth to solution, target gain.

The target gain is measured relative to the material balance in the position initially.

M means that the solution leads to checkmate.

The actual positions themselves can be found in machine readable format at
http: //www. dcs. qmw. ac. uk/-martins/research/wcsac563. txt

1,4,5 2,8,7 3,4,2 5,6,3 6,6,3 7,10,1 8,4,4
9,8,3 11,6,1 12,6,3 14,6,1 15,4,3 16,4,2 18,6,2
19,6,4 22,8,2 23,4,2 25,4,1 26,8,3 28,6,2 29,4,1
30,10,2 31,8,3 33,6,3 34,4,5 35,6,4 36,6,3 41,8,1
44,4,1 45,6,4 48,8,3 49,8,3 50,4,1 52,6,1 57,8,1
58,6,1 59,4,3 61,6,6 63,6,4 65,8,1 66,4, M 68,6,3
70,8,3 72,6,5 73,4,3 74,6,3 75,12,6 76,8,4 77,8,11
79,8,2 82,6,1 87,6,2 88,4,6 89,6,2 90,4,4 91,8, M
92,8,3 93,4,1 94,8,3 100,6,5 102,8,10 103,4,6 105,6,2
106,6,5 109,4,3 111,6,3 113,6,8 116,4,2 117,4,2 118,4,2
119,4,4 120,6,3 122,6,1 123,8,10 124,6,4 125,4,4 126,4,6
127,4,2 128,6,4 129,6,5 131,8,1 132,8,6 134,4,2 135,6,6
136,10, M 137,10,3 138,8,3 141,8,1 142,8,3 143,4,2 144,8,3
146,4,5 149,4,2 150,8,2 152,4,2 153,8,4 154,4,2 155,6,2
159,4,2 160,6,1 163,4,3 165,6,2 166,4,1 167,4,1 168,6,2
171,4,2 172,4,2 173,4,1 174,4,3 177,4,3 178,4,2 180,4,3
181,4,3 185,10,2 186,4,3 187,4,2 188,4,2 189,4,3 193,6,3
194,6,1 195,4,1 198,4,2 199,12, M 200,6,2 202,4,2 203,4,5
204,4,3 205,8,2 207,4,3 208,4,3 209,6,1 210,8,2 211,4,3
213,4,3 214,4,3 215,8,2 217,10,2 218,6,3 221,4,2 222,4,2
223,4,2 225,4,2 226,8,1 227,4,2 228,6,4 231,4,4 233,6,2
235,6,3 236,6,4 237,6,2 239,6,1 240,8,2 241,10,3 245,4,1
246,4,2 247,6,3 249,6,2 250,6,2 251,12, M 252,8,1 254,4,3
255,6,2 256,6,2 257,6,3 262,4,1 263,6,2 264,4,2 265,6,1
268,6,3 269,4,2 272,10,2 273,6,1 275,4,4 276,6,1 277,4,2
278,4,1 279,4,2 280,4,3 281,6,6 282,6,1 284,4,2 285,4,4
287,6,3 288,4,2 290,6,3 291,4,3 292,4,1 293,6,6 295,6,8
297,8,1 298,4,2 300,4,1 301,8,15 303,4,2 306,4,5 307,6,2
308,10,4 310,4,3 311,4,3 312,10,5 313,10,2 314,6,9 316,4,6
318,6,2 320,8,2 321,8, M 323,6,1 324,4,3 326,8,8 329,4,2
332,6,2 334,4,3 337,4,3 338,4,1 339,8,1 340,10,2 341,4,3
342,6,4 343,6,2 344,4,2 346,6,3 347,4,7 348,4,5 350,6, M
351,4,3 352,4,2 353,6,2 354,4,8 355,6,3 356,4,3 357,6,7
360,8,6 363,6,3 364,10,6 365,4,2 370,8,3 372,6,3 374,6, M
375,4,2 377,10,9 378,8, M 379,6,4 380,6, M 382,6,3 383,4,5
385,4,4 386,8,3 388,4, M 390,8,3 392,4,5 394,4,1 399,6, M
400,8,2 402,8, M 405,6, M 406,6, M 409,6, M 410,4, M 411,8,1
412,6,1 414,10, M 415,4, M 418,4, M 419,8,5 420,4,7 421,6, M
422,8,4 423,6, M 424,8,2 426,6, M 427,12, M 428,6,1 430,6,5
432,6, M 433,4,6 436,8,4 438,6, M 440,4,4 443,8,5 444,8,3

135

Appendix A

445,6, M 446,6,5 447,8, M 448,6, M 449,4,4 452,8,3 454,8,5
455,4, M 456,6,2 457,8,2 458,4,2 460,8,3 461,8,5 462,4,5
463,4, M 467,4,3 468,4,4 469,6,1 476,8,7 478,6,4 479,8,8
480,4,1 492,4, M 495,8,3 486,4,5 487,8,5 492,4,5 497,4,1
498,4,3 499,4,1 501,6,2 503,4,2 504,4,2 505,8,4 507,4,4
509,8,2 510AI 511,6,3 513,4,3 514,4,2 520,4,2 521,8, M
523,4,4 524,8,4 532,4,1 535,8,7 536,6,3 537,4,3 538,4, M
539,8,9 543,4,3 544,6,3 545,4, M 548,4,5 549,8,4 551,4,5
556,4,4 557,10, M 558,4,2 560,6,2 562,8,4 564,10, M 565,8,7
567,8, M 572,4,5 577,8,2 581,8,2 583,8,5 585,8,6 587,4,4
588,8,2 590,8,2 594,10, M 597,8, M 598,6, M 600,4,4 603,4,4
605,6,1 607,10,3 608,8,1 610,4,2 613,4,2 614,4,2 615,6,3
619,4,1 622,6,2 625,4,1 626,45 629,8,4 630,4,3 631,4,4
632,8,1 634,6,2 635,8,2 637,45 638,4,4 641,4,4 642,6,3
643,8,3 645,9, M 646,6,3 647,10, M 648,10,2 649,6,2 650,10,3
651,8,4 652,4,5 654,4,2 660,8,4 662,4,9 664,8, M 666,4,3
667,8,3 669,10,3 669,8,3 670,85 671,4, M 675,4,4 676,6,9
677,6,2 678,6,8 690,8,3 681,8, M 682,85 684,65 685,6,8
686,6,5 687,8,3 689,6,7 690,8, M 691,8,3 692,6,10 693,4,4
694,10, M 695,6,5 697,8,3 699,4,4 700,4,4 701,4,5 702,45
703,8, M 704,10, M 705,8,10 706,45 712,6,10 715,4, M 717,6, M
718AM 719,4,2 720,4, M 721,8,3 722,6, M 723,4,4 725,6, M
726,4, M 727AM 729,10, M 731,4, M 735AM 736,4, M 737AM
739,10, M 740,8, M 741,10, M 744AM 745,6,2 746,8, M 749,8, M
751,6, M 752AM 753,8, M 755,45 758,8,2 759,6,2 761,6,2
762,6,5 763,6,2 764,4,9 766,10,10 767,6,3 769,12,3 770,6,4
772,10, M 773,4,1 774,6,3 776,65 777,6,2 778,4,3 781AM
783,12,2 784,6,3 785,4,6 786,8,3 787,12,1 788,4,4 789,4,6
795,8,7 797,8,4 798,10, M 800,8,1 802,4,9 804,10,13 805,8,8
906,6,5 807,8,2 809,8,5 810,6, M 812,8,5 813,4, M 814,8,1
816,8,1 821,6,6 822,4,3 823,6,2 825,8,2 826,6,1 831,10,5
837,8,2 838,4, M 941,10,9 848,4,4 851,6,2 854,4,1 855,6,3
856,4,1 858,6,2 871,10,4 972,6,1 874,9,1 878,9,5 879,4, M
881,4,5 882,6,2 885,6,3 886,8,2 889,8,1 892,6,1 993,6, M
894,8,1 897,4, M 898,6,4 899,6, M 900,4,6 902,8,5 904,4, M
905,8,8 906,6, M 908,8,1 912,4, M 913,8,2 918,8,1 920,4, M
921,6,7 922,8,4 923,6,4 925,8,4 927,6,3 930,6,1 931,4, M
934,10,1 935,8, M 937,4, M 939,6, M 944,4,6 947,4,4 948,6, M
955,6,5 957,6,9 959,10,1 960,4,5 962,8, M 964,4, M 969,8,9
971,6,6 975,6,3 981,6, M 983,8, M 989,6, M 993,6,10 994,1 O, M
997,8,6 999,4, M 1001,6, M

136

c> c. a cN 0 c. 00 ýo 00 00 wl 0 t-- m0 C> CT, C14 44
tr) 00 ýo

00
m

C) C) c: > 0 V.) r- c. (=) C) C-4 C) 80 ýo r-- (D G (UN 0 In 00 r- r- en C7,
cn clý . clý n aý ýý 0ý

ýt m C) 0m en kf)
00 ýo C) (13 r It C14
m C11 (:: ý tn IN cq

w

00 p (71 cn 0 ýo 0 C7% ýT cr, m0 00 . - 't W r)
r- C) ýT 00

4
r- cq N cq r- 0 W-) a) C,

c0 00 llý Ci
ýn

en C) vi m wl Cý In ON m wl C14 W)
IIC, : C'4 kn r- cn r- :ý0=; m C) m Z

,
;

8, C', " aý Oli . (:: ý 1* . r- C4) cn ,, m
It - CII M-

c) ýD 0o0 C> cq o0 00 m0C. V) V)

ol: i ocý
00 C-4 C)

C, 4

C) c) C) ýc r- 0 C) 0 r- c) (7, o C-i kn Cýl cý ff) W)
C) mM C14 m r4 cn 0ý C)

1ý 't "t rllý Ci r-ý Cý Cý Iq clý
00

W) M C, 00 00 wl
C14

gz !3 c: > r- wl C'l C'4 W) 3 ýc cn c) cf) :ta,
- ý3 C'4 ON C) 00 "t C) 00 C, ýt V , (ON (7N

'n S, 'n 0 crý ocý cq ocý q Fý ýR clý 't Cý C'l

EýIý 00 ýo Cf) - (=) r- (ý ýo m en -t -"- 0 ;j W) = 00 'd c. r V, n r- W) 'T g 00 00 00 (ý2 ! - 1 1 Cý - (71 Clq cq r- r4 M (3ý C 4 Cf) C 4

000 00 0 C) 0 CD 0 C. CN r- C) ý:: 00 C 01 10
ýc wl CD cq 1ý (11

00 n ocý Cli o(I ýq cq
ý tf'ý C, 4 kn C114

ýo
t-
-4

ý "I ' C) C) 0 C> m 00 C, 0 C) V) C, T C) It C:) 0 r- cq ý
ýc mm ýC; 0ý It C)

Cý 0ý Ci ýý

ýo 2 !ý 00 r- c,
cq C-4 en r1l

E!
9n.
ca ý 0- mm r- ýý, o, ýl ýo ") c, M -'. T ý .2V.) "t G 'D 00 c, m 'o W. ým ýo r- V.) 'o 00 0, 't t- W) 't cn 00

, r- 'e-, 00 (=ý Clý Cý Cli clý =ý ýq Cý clý rlý " Vi It I . ý 1* VI) W) m cn C7, r4 Cý 00 ýo r- 10 0 r, 00 ON
1 ýc W) 00 m r4 - C4 ýo r4 mC .4

c) 00 00 (=) c) C> 0 wl CD c) ýo c) 0 C> 't c>
C, ýc C) ý'!

q cq c

C:) C) c> ooc, c, r- C) V.) 0 C7,00 o 00 7 1 C) r- ;; 0 wl ýo
- C-ý (7, It 0 r- wl r

cq

9: 6 Cl) C> r- wl wl 00 VI) r- Cl V') ýo ýo O\ M cr, m
00 C) It C, 0 (ON ON C9 W) tr) N cr, cn

0ý cl! "t
, "t NN In In ýo mM-N- \0 en ýo C'4 ('4 C'4 I'D (1)

C) C) C'4 c) c, 0 C) C, c. o W) (ON C:) r- V-1 o I)0 00 (ON ýc V
c ýq ai Clli clý
C7\ ýD 't vi kri

00 V) C:) 0 Cý C7,0 c"I 00m0 t- m r-
00 00 0 (71 00 C\ en

loý ýq fli 't Oli
00 wl (: r\ 00 ol ' t

ed I t V)

Or, r- 00 ýo 'It C'4 't ýc cn 00
ýo 00 cq M VI zt r- o, --- C)
(7ý cllý Cli r-ý 14D In r1i (0ý nn Ci ýq \Cý --ý
00 00 C, 00 W) (ON C9 C-i cli ýo C:) 0 -1' M a,
cn 00 00 ýo C> W, Cf) ýc ýc \10 01)

z

, ý70 zZ z >1 +w +++ g) ' 4! !x
Cl. m o., " 'd w to V) - Y
" = == Et U
04 i; 5 zzz 04 W. i; 5 In +++ +++

Xx : z- ýý .
+ -ýd hd o. CL -ý4 -%4 -W CL u cts cd UUQ cd -14 t4 bl)

-

-
I 0 .807;

3
zu

C- Ezu0 4) . CE
(U

8u

P. r/) C4 zuuw C4 " uuup4u

"Cl 0

0 "T-1

t ý: n
"0

I

E
'o

a)

C/I >
7ý

0

cn
0. W d)

.0 4 ýi

(U

u

U

cn

C)
C6

o

-6
"a
A
C)

=3 . - 0 a)

CA

0

cd C-)

4- 4) 7ý cn

71

0

F-
40.

Appendix B

APPENDIX B: EXPERIMENTAL DETAILS FROM
CHAPTER FIVE

Pawn Knight Bishop Rook Queen Pawn Knight Bishop Rook Queen
Depth I
Run A 0.52 0.92 1.10 1.76 3.77 1.00 1.77 2.13 3.39 7.28
Run B 0.48 0.90 1.13 1.77 4.05 1.00 1.85 2.34 3.66 8.36
Run C 0.56 1.12 1.18 1.86 3.90 1.00 1.99 2.11 3.31 6.95
Run D 0.58 1.11 1.19 1.83 3.92 1.00 1.92 2.05 3.15 6.74
Run E 0.56 1.01 1.08 1.78 3.90 1.00 1.80 1.94 3.18 6.98
Ave. 0.54 1.01 1.14 1.80 3.91 1.00 1.86 2.11 3.34 7.26
Stdev. 0.04 0.10 0.05 0.04 0.10 0.00 0.09 0.15 0.20 0.64
Depth 2
Run A 0.39 1.11 1.50 2.08 4.30 1.00 2.87 3.86 5.37 11.09
Run B 0.40 1.00 1.26 1.84 4.18 1.00 2.52 3.17 4.65 10.56
Run C 0.37 1.13 1.39 1.68 4.41 1.00 3.07 3.76 4.54 11.95
Run D 0.40 1.03 1.25 1.82 4.20 1.00 2.61 3.16 4.61 10.64
Run E 0.40 1.07 1.44 1.99 4.34 1.00 2.70 3.63 5.03 10.95
Ave. 0.39 1.07 1.37 1.88 4.29 1.00 2.75 3.52 4.84 11.04
Stdev 0.01 0.06 0.11 0.16 0.09 0.00 0.22 0.33 0.35 0.55
Depth 3
Run A 0.76 1.36 1.76 3.15 6.18 1.00 1.78 2.31 4.13 8.11
Run B 0.80 1.47 1.79 3.21 6.25 1.00 1.83 2.24 4.01 7.81
Run C 0.79 1.29 1.88 2.92 6.47 1.00 1.64 2.38 3.69 8.19
Run D 0.77 1.41 1.72 2.98 6.40 1.00 1.83 2.23 3.87 8.31
Run E 0.79 1.31 1.90 2.93 6.36 1.00 1.65 2.39 3.69 8.00
Ave. 0.78 1.37 1.81 3.04 6.33 1.00 1.75 2.31 3.88 8.08
Stdev. 0.02 0.07 0.08 0.14 0.12 0.00 0.10 0.08 0.20 0.19
Depth 4
Run A 0.60 1.66 2.02 2.75 6.61 1.00 2.76 3.36 4.57 11.00
Run B 0.58 1.49 1.93 2.92 6.43 1.00 2.56 3.31 5.00 11.01
Run C 0.53 1.60 1.93 2.81 6.79 1.00 3.01 3.62 5.29 12.76
Run D 0.58 1.56 2.02 2.81 6.64 1.00 2.71 3.50 4.87 11.51
Run E 0.57 1.47 1.78 2.92 6.36 1.00 2.58 3.13 5.13 11.17
Ave. 0.57 1.56 1.93 2.84 6.57 1.00 2.72 3.38 4.97 11.49
Stdev. 0.03 0.08 0.10 0.07 0.17 0.00 0.18 0.19 0.27 0.74
Depth 5
Run A 0.96 1.97 2.31 3.78 7.45 1.00 2.04 2.40 3.92 7.73
Run B 0.86 1.99 2.28 3.81 7.14 1.00 2.33 2.67 4.45 8.35
Run C 0.88 1.81 2.11 3.36 7.26 1.00 2.06 2.40 3.81 8.25
Run D 0.92 1.95 2.33 3.49 7.22 1.00 2.12 2.53 3.79 7.85
Run E 0.89 1.87 2.34 3.90 7.61 1.00 2.10 2.63 4.38 8.55
Ave. 0.90 1.92 2.23 3.65 7.28 1.00 2.14 2.49 4.06 8.11
Stdev. 0.04 0.08 0.10 0.23 0.19 0.00 0.12 0.13 0.32 0.35
Depth 6
Run A 0.72 2.16 2.59 3.61 7.63 1.00 2.99 3.58 4.99 10.53
Run B 0.74 2.11 2.49 3.69 8.18 1.00 2.86 3.37 5.00 11.09
Run C 0.72 2.02 2.47 3.67 7.52 1.00 2.80 3.42 5.08 10.43
Run D 0.69 2.05 2.44 3.55 7.49 1.00 2.97 3.54 5.14 10.86
Run E 0.71 2.09 2.50 3.69 7.45 1.00 2.94 3.52 5.19 10.49
Ave. 0.72 2.09 2.50 3.64 7.65 1.00 2.91 3.49 5.08 10.68
Stdev. 0.02 0.05 0.06 0.06 0.30 0.00 0.08 0.09 0.09 0.28

Table BA: Final values for individual chess runs, at various depths.

Table B. I presents the final piece values (averaged over the last 20% of the runs) for

the individual chess runs described in Chapter 5. The values are presented first in

their absolute forms and then again normalised to pawn =I-

138

AppendLx C

APPENDIX C: EXPERIMENTAL DETAILS FROM
CHAPTER SIX

Pawn Lance Knight Silver Gold Bishop Rook
Deptlil A 0.08 0.16 0.19 0.33 0.39 0.45 0.59

B 0.08 0.17 0.21 0.37 0.39 0.50 0.61
C 0.08 0.16 0.23 0.34 0.41 0.49 0.60
D 0.08 0.15 0.23 0.31 0.37 0.47 0.62
E 0.09 0.19 0.20 0.33 0.33 0.44 0.56

Depth2 A 0.13 0.28 0.32 0.49 0.56 0.71 0.93
B 0.13 0.32 0.26 0.44 0.54 0.70 0.93
C 0.12 0.29 0.31 0.49 0.57 0.72 0.95
D 0.11 0.30 0.30 0.52 0.59 0.73 0.99
E 0.13 0.27 0.29 0.48 0.58 0.74 0.91

Depth3 A 0.12 0.24 0.27 0.60 0.70 0.83 1.15
B 0.13 0.32 0.34 0.71 0.80 0.99 1.35
C 0.12 0.26 0.38 0.63 0.79 0.87 1.21
D 0.13 0.32 0.35 0.64 0.77 0.92 1.25
E 0.14 0.26 0.32 0.64 0.81 0.98 1.30

Depth4 A 0.11 0.35 0.37 0.58 0.69 0.90 1.07
B 0.16 0.36 0.36 0.65 0.68 0.84 1.10
C 0.14 0.32 0.38 0.57 0.71 0.86 1.14
D 0.10 0.21 0.25 0.52 0.62 0.77 1.05
E 0.12 0.23 0.33 0.55 0.64 0.74 1.06

Table CA: Main piece values for each of the five runs (a-e) at depths 1-4

Pawn Lance Knight Silver Gold Bishop Rook
Depth I A 0.19 0.09 0.20 0.23 - 0.95 1.07

B 0.22 0.12 0.24 0.13 - 0.93 1.04
C 0.27 0.13 0.04 0.43 - 0.97 1.15
D 0.25 0.11 0.04 0.28 - 0.95 1.11
E 0.17 0.13 0.15 0.11 - 0.89 1.05

Depth2 A 0.76 0.58 0.59 0.67 - 1.39 1.60
B 0.72 0.49 0.60 0.59 - 1.23 1.71
C 0.74 0.54 0.58 0.67 - 1.35 1.65
D 0.72 0.48 0.53 0.69 - 1.30 1.72
E 0.73 0.50 0.48 0.65 - 1.33 1.63

Depth3 A 0.72 0.35 0.54 0.59 - 1.46 1.88
B 0.72 0.25 0.57 0.02 - 1.84 2.11
C 0.64 0.18 0.51 0.22 - 1.53 1.93
D 0.63 0.43 0.30 0.27 - 1.70 2.03
E 0.82 0.38 0.56 0.06 - 1.85 2.13

Depth4 A 0.74 0.65 0.73 0.85 - 1.43 1.74
B 0.85 0.78 0.78 0.85 - 1.32 1.61
C 0.75 0.80 0.79 0.80 - 1.37 1.69
D 0.56 0.36 0.58 0.67 - 1.31 1.66
E 0.65 0.39 0.57 0.69 - 1.31 1.57

Table C. 2: Promoted piece values for each of the five runs (a-e) at depths 1-4

139

Appendix C

Pawn Lance Knight Silver Gold Bishop Rook
Main Begin. 0.50 1.00 1.00 2.00 2.00 4.00 5.00

Gnu 0.42 2.11 2.11 2.83 3.03 4.74 5.00
YSS 0.48 2.07 2.16 3.08 3.32 4.28 5.00

Promoted Begin. 1.50 1.75 1.75 2.00 - 5.00 6.00
Gnu 1.91 2.50 2.63 3.16 - 5.21 5.16
YSS 2.02 3.03 3.08 3.22 - 5.53 6.25

Table C. 3: Piece values used in matches (normalised to rook=5)

140

Appendix D

APPENDIX D: EXPERIMENTAL DETAILs FROM
CHAPTER SEVEN

Pawn ranks Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7
Pawn 0.000 0.033 0.100 0.233 0.500 1.000

Piece centrality Ring I Ring 2 Ring 3 Ring 4
Knight 0.000 0.067 0.133 0.200
Bishop 0.000 0.033 0.067 0.100
Rook 0.000 0.000 0.000 0.000
Queen 0.000 0.033 0.067 0.100

Table D. I: The pawn rank and piece centrality bonuses used by the weight set Central

Table D. 1 presents the pawn rank and piece centrality bonuses used by the weight set
Central in section 7.2.3.

Half board Fullboard
Pawn 1.00 (0.00) 1.00 (0.00)
Knight 2.67 (0.17) 2.76 (0.11)
Bishop 3.07 (0.19) 3.08 (0.11)
Rook 4.72 (0.25) 4.62 (0.17)
Queen 9.39 (0.57) 9.46 (0.50)

Table D. 2: Chess piece values learnt using piece-square tables

The learnt chess piece values used in Figure 7.12 are given in Table D. 2. These

values were learnt in conjunction with the piece-square values presented in Table D. 3
below. The values are normalised to pawn=l, and their standard deviations are given
in parentheses.

141

Appendix D

Pawn Knight
8 0.00 0.00 0.00 0.00 8 0.00 0.71 0.73 0.73
7 2.14 1.92 1.68 1.63 7 0.53 0.77 1.08 0.81
6 1.25 1.20 1.16 1.13 6 0.79 1.14 1.16 1.44
5 0.46 0.61 0.54 0.65 5 0.99 1.24 1.29 1.45
4 0.20 0.38 0.35 0.53 4 0.77 1.05 1.23 1.29
3 0.10 0.34 0.26 0.37 3 0.57 0.86 0.95 1.11
2 0.00 0.30 0.27 0.10 2 0.48 0.79 0.91 0.76
1 0.00 0.00 0.00 0.00 1 0.64 0.41 0.60 0.67

a, h b, g Cf d, e a, h b, g cf d, e

Bishop Rook
8 0.25 0.19 0.21 0.15 8 1.01 0.99 1.05 0.86
7 0.17 0.39 0.31 0.25 7 1.11 1.13 1.10 1.03
6 0.30 0.42 0.55 0.43 6 0.92 0.91 0.92 0.88
5 0.30 0.43 0.52 0.50 5 0.66 0.60 0.88 0.81
4 0.21 0.26 0.47 0.53 4 0.40 0.61 0.66 0.76
3 0.13 0.36 0.40 0.31 3 0.13 0.46 0.50 0.60
2 0.23 0.28 0.26 0.26 2 0.00 0.36 0.56 0.60
1 0.08 0.06 0.00 0.08 1 0.09 0.13 0.36 0.55

a, h b, g cf d, e a, h b, g Cf de

Queen
8 0.27 0.55 0.78 0.57
7 0.41 0.70 1.11 0.73
6 0.71 1.12 1.15 1.10
5 0.45 0.31 0.89 0.74
4 0.20 0.48 0.50 0.55
3 0.21 0.28 0.30 0.40
2 0.14 0.29 0.32 0.30
1 0.29 0.00 0.04 0.19

a, h b, g Cf de

Table D. 3: Half-board piece-square values.

Table D. 3 shows the piece-square values learnt by the half-board runs, and used to

create Figures 7.6 to 7.10. Table DA shows the full-board values learnt for queens

and used in Figure 7.11. All values are presented from White's point of view.

Queen (full-board)
8 0.14 0.55 0.55 0.38 0.43 0.55 0.51 0.31
7 0.31 0.58 0.64 0.49 0.48 1.24 0.85 0.47
6 0.33 0.50 0.94 0.88 0.92 0.99 1.13 0.56
5 0.28 0.26 0.56 0.63 0.80 0.89 0.39 0.53
4 0.15 0.38 0.49 0.36 0.53 0.49 0.45 0.20
3 0.18 0.30 0.34 0.32 0.31 0.22 0.38 0.18
2 0.14 0.24 0.29 0.14 0.20 0.29 0.20 0.27
1 0.18 0.00 0.04 0.19 0.09 0.11 0.17 0.23

a b c d e f 9 h

Table DA Full-board piece-square values for queens.

142

Appendix E

APPENDix E: RANDom EVALUATIONS IN CHESS

This Appendix is a lightly edited version of a co-authored paper which appeared in
the International Computer Chess Association Journal (vol. 17, no 1,1994). It is

included here because although it does not form part of the main results presented in
this thesis, it is relevant to the discussion of minimax in Chapter 3, and influenced and
informed the experiments presented in Chapter 7. Subsequent to the publication of
the paper, Levene and Fenner (1995) presented a combinatorial analysis of minimax
using random evaluations, based on our experiments, that supported our results.

E. 1 Introduction

This Appendix reports on experiments using random numbers as 'evaluations' in

chess. Although this results in random play with a depth-I search, it is found that
strength of play rises rapidly with increasing depth of lookahead. This counter-
intuitive result and its implications for game-playing are discussed.

On first encounter it is surprising to most people that random 'evaluations' produce
anything better than random play when used in a minimax lookahead search. The

natural assumption is that lookahead on pure random numbers will result in a random
choice at the root.

This is, of course, a theoretical investigation, and 'strength' of play is used in a purely
relative sense. Lookahead on random numbers produces extremely weak play
compared with lookahead using even very simple chess-specific evaluations. There is

no expectation that random numbers can do as well as chess-specific evaluations.
Nevertheless, it is an intellectually interesting observation that lookahead on random

evaluations produces better-than-random play, and the matter is perhaps useful in

illuminating some of the fundamental principles of minimax search. It is possible to
imagine circumstances in which the effect might have implications for practical work
in game playing and these are discussed at the end.

E. 2 The First Experiment

Imagine two competing chess programs: one makes a list of all legal moves and then

chooses a move at random. Call this strategy root-random. The second program
performs a full-width minimax. search down to a fixed depth d to select its move. The

143

Appendix E

'evaluation' function used to score the nodes at depth d is entirely random. Hence the

move chosen at the root is determined from the backed-up random values from the

nodes at depth d. Call this strategy lookahead- random. Neither of these programs

utilises any chess-specific knowledge other than the rules of the game, which define

the game tree.

One might intuitively expect these two programs to have equivalent performance, e. g.
if played against each other over a large number of games they would each score
50%. Contrary to intuition, lookahead-random decisively out-performs root-random,
even at very low search depths.

However, there is a relatively obvious mechanism, of no interest to the present
research, by which lookahead-random, as described above, might outperform root-

random. Notably, the lookahead program will have a significant advantage when

game-terminal nodes lie within the lookahead. The lookahead program sees imminent

game terminations and root-random does not. If the game wanders into a position

with a mate-in-2 available, the root-random program has no reason to select that

move, whereas a 3-ply lookahead program (assuming game-terminal positions are

recognised and scored using the rules of the game) will select it. Similarly a 5-ply

lookahead will see and select mates up to mate-in-3.

In order to eliminate this advantage of lookahead-random over root-random, the

experiments described here perform a slightly different comparison. Instead of 'root-

random' as described above, a program called lookahead-zero is used. Lookahead-

zero performs a lookahead search to the same depth d as lookahead-random, but

lookahead-zero uses a constant, zero, as its evaluation at all non-terminal nodes.
Lookahead-zero usually finds all top-level moves have the same score - zero. It

makes its choice by tie-breaking with a single random number applied at the root

only. Thus it usually behaves like root-random, except that when game-terminal

nodes are encountered, the values are backed up and used to give lookahead-zero the

same capability to play and avoid imminent mates as lookahead-random has.

E. 2.1 Results of the first experiment

Figure E. 1 shows the results of the first experiment, pitting lookahead-random (LR)

against lookahead-zero (LZ) at depths from I to 5. The results are decisive.

Lookahead on random numbers improves play substantially. At I ply, the two

programs are equivalent, and the results show 50-50 scores. By 5 ply, all games are

won by the side using random numbers, none by lookahead-zero, not even a single
draw!

144

Appendix E

100%

90%

80%

Sc
ore 70%

60%

50%

40%

1234 Depth (ply) 5

Figure E. I: Percentage scores for lookahead-random (LR) playing against lookahead-zero (LZ).

E. 3 Two Additional Experiments

The concept of random evaluations can also be applied to evaluation components

rather than the whole evaluation. If we have a existing chess-specific evaluation -
material, for example, then we can combine it with a random evaluation, weighted to
be less significant than any change in the chess-specific term. Thus, for instance, we

could construct the combined evaluation <MB, Rand> = 1000*MB + rand(1000),

where MB stands for material balance and rand(N) means a random number in the

range O.. (N-1). We could then look to see if <MB, Rand> performs any better than

<MB, Zero> . (The constant 1000 is for illustration: the principle is independent of

the weight chosen.)

This experiment is similar in principle to the comparison between lookahead-random

and lookahead-zero. In fact it is exactly the same mechanism applied within a
different tree. This may be seen by considering the subtree of the game tree in which

all branches have the same backed-up MB value. Within this (perhaps narrow)

subtree, all paths are equivalent as far as MB is concerned. Using MB alone, with a

single application of random at the root to tie-break, is the equivalent of lookahead-

zero within the subtree. Using <MB, Rand> is the equivalent of lookahead-rand,

within its subtree. Thus we would expect the same effect to occur, although the

reduction in effective branching factor, and other differences due to exploring

different regions of the tree, might affect the strength of the effect.

145

Appendix E

100%

90%

80%

Sc
ore 70%

60%

50%

40%

LR vs. LZ
CR vs. CZ

a MR vs. MZ -

1234 Depth (ply) 5

Figure E. 2: Percentage scores for LR v LZ, CR v CZ, and MR v MZ.

We performed two such additional experiments, using <MB, Rand> and <Ctree,
Rand>. <Ctree, Rand> is also based on material balance, but quiesces material by

exploring the capture tree, in order to obtain the chess-specific part of the evaluation.
The experiments showed that the effect was nearly as strong as for random versus
zero without a chess-specific component. Figure E2 shows the results. CR stands for

Ctree Random, CZ for Ctree Zero, MR for Material-balance Random and MZ for

Material-balance Zero.

EA Further Details of the Experiments

Before discussing the results, we give some more detail of the experimental
implementation, in order to answer some questions that might be raised.

E. 4.1 Handling of the game-terminal positions

The handling of game-terminal positions is critical to ensuring fair comparison
between the different lookahead algorithms.

Figure E. 3 is intended to clarify the operation of, and differences between, the

programs we have called root-random, lookahead- random and lookahead-zero.

Root-random and lookahead-random differ in their behaviour at search-depth 1.

Root-random, defined as merely choosing randon-fly from the move list, would not

notice mate-in-1, and might not choose it. However, all versions of the lookahead

programs are defined to detect end-of-game-tree nodes, stop the search at that point,

and use the value defined by the rules of the game. Thus lookahead- random- to-

146

Appendix E

depth-] will play mates-in-I if they occur, because the checkmate position that

results is an end-of-game position, as defined by the rules of chess, and valued

appropriately. The idea of these definitions is to ensure that the behaviour of root-

random is obtained in the absence of game termination, and simultaneously to ensure
the lookahead programs are defined in a consistent manner to react to end-of-game
nodes within the horizon.

147

Appendix E

Root-Random

No evaluations - each of these moves is equally likely to be selected

Loo kahead- Random

(Random Evaluations)

Lookahead-Zero

(r
Ul

(Zero Evaluations)

Figure E3: Schematics: Root-Random, Lookahead-Random, and Lookahead-zero.
The bold line is the branch selected.

E. 4.2 Draws by repetition

One small decision that had to made was how to deal with the question of draws by

repetition and draws under the 50 move rule. We decided at an early stage to ignore

148

+1 +5 -44+22 +12 -3 +51 +6 -2 +42 -3 -77

000000000000

Appendix E

both these possibilities and allow games to continue. In human chess, the third

repetition of a position or the 50'h move under the 50-move rule does not

automatically result in a draw, but merely enables either player to claim a draw

should they so desire. Both these rules are designed to stop a human player from

trying to wear out an opponent by playing on in a hopelessly drawn position.
Computer players do not tire, and the handling of these draws is not a critical factor in

the random-evaluation experiments. Hence we simplified the experiment by

discarding the 3-fold repetition and 50-move draw rules.

E. 4.3 Length of games

A limit had to be set on the length of games, otherwise some of them might continue
for ever. We decided to stop unfinished games after 200 moves, and at that time

award the game to whichever side had a lead in material. In practice 200 moves was

usually ample for a game to reach its conclusion and few games reached the 200-

move limit.

149

Appendix E

E. 5 Numerical Results

The following Tables present the experimental results in fuller detail.

LR vs. LZ No. Games LR wins LZ wins Draws LR%
Depth 1 1000 222 239 539 49.2%
Depth 2 1000 389 288 323 55.1%
Depth 3 1000 331 106 563 61.3%
Depth 4 1000 953 32 15 96.1%
Depth 5 200 200 0 0 100%

Table E. 1: Comparison of Lookahead Random (LR) andLookahead Zero (LZ) at various depths.

CR vs. CZ No. Games CR wins CZ wins Draws CR%
Depth 1 1000 347 356 297 49.6
Depth 2 1000 591 384 25 60.4%
Depth 3 1000 829 120 51 85.5%
Depth 4 1000 794 168 38 81.3%
Depth 5 200 192 4 4 97.0%

Table E. 2: Comparison of Ctree Random (CR) and Ctree Zero (CZ) at various depths.

MR vs. MZ No. Games MR wins MZ wins Draws MR%
Depth 1 1000 67 61 872 50.3%
Depth 2 1000 560 439 1 56.1%
Depth 3 1000 536 422 42 55.7%
Depth 4 1000 808 164 28 82.2%
Depth 5 600 373 209 18 63.7%

Table E. 3: Comparison of Material-balance Random (MR) and Material-balance Zero (MZ) at
various depths.

Tables E. 1 to E. 3 show the results of the three experiment classes. There are 6

different types of result that we recognise:

(a) Mite Wins White checkmated black.
(b) Black Wins Black checkmated white.
(c) Draw Draw by stalemate, or 4 cases of insufficient material

(K-K, KN-K, KB-K, KNN-K).
(d) Mite wins (at 200) The game reached 200 moves, white was ahead.
(e) Black wins (at 200) The game reached 200 moves, black was ahead.
(f) Draw (at 200) The game reached 200 moves, material was level.

We ran 1000 games for each class at depths I to 4, and 200 at depth 5. The games

were divided with competing algorithms having an equal share of playing the white

pieces - though at this low level of chess being white gives very little advantage, if

any.

150

AppenAx E

E. 6 Interpretation of the Random Evaluation Results

As can been seen from Figure E. 1, the algorithms using Random positional evaluation
functions in their search perform significantly better than their Zero equivalents, and
this advantage increases at greater depths. As expected, at depth 1, Random and Zero

perform equally well (at depth I the algorithms are equivalent).

Overall, in all three experiments the results show strong advantage to lookahead on

random numbers compared with the root-level-only use of random numbers. It could
be argued that scoring games with a material advantage at 200 moves as a win for the

side with the material advantage is unsatisfactory, and might have overstated the

advantage. We counter by noting that this scoring is occurs rarely and is of marginal
impact when invoked. Less than 5% of the games at depth 2 and above reached 200

moves. (Depth- I is excluded because the games are random on both sides and no bias

is being measured). In most of the games reaching 200 moves the material advantage

was 5 pawns or more. Changes in the result categories for the remainder are very

unlikely to affect the conclusions presented here.

The graphs also show clearly visible swings from ply to ply. The most extreme occur
in MB-Random from depth 4 to 5, counter to the overall trend. Fluctuation of
behaviour with the parity of ply (odd/even) is a familiar phenomenon in minimax

searches to fixed depths. It is probably caused by evaluations being biased either
towards or against the player to move. The direction of bias and its magnitude depend

on the evaluation function and characteristics of the game.

The large swings in MB-Random are undoubtedly associated with the large swings

that occur in material score when conducting fixed-depth searches. (This is the reason

that quiescence searches are employed in chess programs). Depth-6 results can be

expected to follow the pattern set by the depth-3 to depth-4 transition - i. e. a large

increase in strength for lookahead-random (LR in Table E. 1).

Supplementary evidence that systematic parity-of-ply fluctuation is at work can be

derived from Figure EA, the graph of game length averaged over all games in all

three experiments. It can be seen that games played with an odd search depth last on

average longer than those with an even search depth. This probably has to do with the

question of which side is to play at the search horizon. This determines whether it is

more likely that forced play will be seen first by the side that can play it, or by the

side that can avoid it.

151

Appendix E

200

150

> 100 0 2i

50

0

2 3 Depth (ply)

Figure EA: Average lengths of games, by experiment.

E. 7 Why Does the Effect Occur?

Once the effect is pointed out, it does not take long to arrive at the conclusion that it

arises from a natural correlation between high branching factor in the game tree and
higher numbers of winning moves (i. e. high branching factor in the tree of winning
moves) at winning positions. In other words, mobility (in the sense of having many
moves available) is associated with better positions. This would be typical of most
games, although it would doubtless be possible to find atypical games in which this

was not the case. The branching factor influences the random value obtained from
lookahead: the more branches there are, the more likely it is that a high random value
will be found.

One might suggest that random numbers are merely an inefficient way to estimate
mobility. This is true in one sense, but deep lookahead on random evaluations does

more subtle things where the effect is not easily quantified. For instance, it responds
to available mobility at all depths - alternative branches from positions near the root

of the search contribute on an equal basis with alternatives occurring deeper in the

tree. In contrast, a program with minimax lookahead using an evaluation function

explicitly counting branches to obtain a value would only respond to choices available

at the horizon.

E. 8 Possible Applications of the Effect

it is unlikely that random numbers have much practical use in game-playing.
However, there are some places where either the effect itself might be useful, or

LR vs. LZ

CR vs. CZ,

MR vs. MZ

152

Appendix E

knowledge of the existences of the effect might be useful in the evaluation of other
techniques.

A possible application is in attempts to build very-general learning mechanisms for

game-playing. The random-evaluation experiments show that learning can start
without domain knowledge of any kind. It was always clear that biological evolution
somehow achieved this, but it is not always obvious how to start from zero knowledge
in Al programs.

The new paradigm would be: "when presented with a totally new game domain, start
with random evaluations with a N-ply search, use temporal-difference learning to
develop new functions that mimic the backed-up random values, replace the
evaluation function, and repeat".

It is possible that this strategy will soon have an environment in which it can be
tested. There have been recent proposals for computer game-playing tournaments in

which the rules of newly-invented games are given for each contest. Such

tournaments will require non-game-specific mechanisms, and will have to start from

zero domain knowledge each time (Pell 1992).

A minor way that random-evaluation technique could have a practical application,
even in high-performance game-playing programs, would be the introduction of new
evaluation terms against a background of random evaluation instead of zero.

What this means is: suppose a current evaluation function consisting of just a
material term, M, and pawn-structure term, P, was in use. The evaluation at each leaf

node would be <M + P>. With the superiority of random values over constant values
in mind, a better evaluation will be <M +P+ random>, with a suitably small weight
for random to ensure that changes in M+P always dominate. So the existing tenns

plus random should be the baseline for introducing new terms. A proposed new
term, open-file-control (OFQ say, should be compared with random by testing the
function <M +P+ OFC + smaller-random> against the existing function <M +P+

random>. (The process of testing is complicated in practice by the need to adjust

weight vectors to find the best combination for the newly-augmented set of terms, but

that is ignored here.)

If the enlarged evaluation is superior to the simpler one, then it should be retained,

and further evaluation terms considered. At each stage each putative evaluation terrn

would, in effect, be compared with random, which differs from present-style testing,

that effectively compares with zero. Evaluation terms of marginal value might fail to

153

Appendix E

justify their existence against random
'minimum utility' for evaluation terms.

This would provide a new criterion of

E-9 Discussion

These results demonstrate a counter-intuitive effect, namely that a chess program with
no chess-specific knowledge whatsoever, using random numbers as evaluation
functions, can play purposefully, and improve its performance with increasing
lookahead. It brings to mind the old saying sometimes applied to human chess: "any

plan is better than no plan".

The results also show that combining a random term with existing evaluation terms

can also be beneficial. Although they may be beneficial, random evaluations are poor
evaluations - in chess they are vastly inferior to typical evaluation functions in current

programs. However, it is suggested that the strong effects observed in some of the

experiments could have implications for game-playing programs, either because they

permit zero-knowledge approaches to game playing or because they provide a

criterion for minimum significant utility for additional terms in a proposed evaluation
function.

BIBL
154 LONDON

(

UNIV.

)

